用户名: 密码: 验证码:
乳化液泵检测系统的节能关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源需求的不断增加,煤矿对其生产效率的要求也越来越高。乳化液泵作为煤矿综采工作面的必备设备,其性能与可靠性直接影响到煤矿的生产效率与人员的生命安全,所以乳化液泵在出厂前要按照行业标准MT/T188.2-2000进行严格的检测试验。目前,乳化液泵的检测试验采用的是电动机直接驱动、节流阀或溢流阀加载的方法,该方法结构简单,但装机功率高,能源消耗大,浪费严重,尤其是当检测应用于高产高效煤矿的大功率乳化液泵。因此,开展乳化液泵检测系统的节能关键技术研究对于节约能源,降低检测成本具有重要的现实意义。
     本文在江苏省普通高校研究生科研创新计划项目(编号:CXZZ11_0288)的资助下,针对现有检测方法耗能高的弊端,采用理论建模、数值仿真和试验验证相结合的方法,以降低乳化液泵检测时的能源消耗为目标,设计了一套新型的功率回收系统,并深入开展了该系统对乳化液泵运行参数的调节规律和整个系统节能效率方面的研究,为降低乳化液泵检测的能耗与成本提供了理论支撑和技术解决方案。
     首先,详细分析了检测标准对于乳化液泵各种检测试验的运行要求和功率消耗情况,设计了一套以“变量泵—变量马达”作为被检测乳化液泵的驱动单元,以“双液压缸—整流阀”作为功率回收单元的新型功率回收系统方案;根据流体连续性和力学平衡推导出了系统驱动乳化液泵转速、压力及回收功率的表达式,分析了其影响因素及调节方法,搭建了乳化液泵检测的功率回收试验系统。
     其次,基于功率键合图理论,先分别建立了功率回收系统中各元部件的理论模型和状态方程,再由各元部件的模型组建了整个系统的理论模型,并根据理论模型推导出了整个系统的状态空间方程;基于整个系统的理论模型,在Simulink软件中建立了其仿真模型。
     再次,采用仿真和试验相结合的方法,验证了该功率回收系统的可行性;在满载检测工况下,该系统的功率回收系数可达0.76以上,整个系统的节能系数可达0.23以上;分析了系统中各元部件的功率损失比例以及产生的原因。
     然后,通过数值仿真得到了变量泵和变量马达的排量组合对于乳化液泵负载压力和转速的影响规律,并对乳化液泵负载压力和转速变化的三维曲面进行了多项式拟合,分别给出了乳化液泵负载压力和转速对变量泵和变量马达排量的拟合公式。
     最后,通过仿真和试验研究了乳化液泵的负载压力对于整个系统功率回收系数和节能系数的影响规律,分析了各元部件在不同负载压力下功率损失的变化规律;研究了系统背压力对于乳化液泵运行参数的影响规律及背压力的合理取值。
With the increasing demand of energy, the coal mines should improve theirproduction efficiency as high as possible. The emulsion pump, one of the necessaryequipment on the fully-mechanized face of coal mine, has a great influence on thecoal production efficiency and, more importantly, the life safety of coal mine work-ers due to its dynamic characteristics and reliability. As a result, the emulsion pumpmust be strictly tested before field usage according to the coal industry standard ofChina MT/T188.2-2000. So far, the test system adopted by the coal industry stand-ard employs the electric motor as the direct drive unit and relief valve (or throttlevalve) as the load unit of the test emulsion pump. This system is simple to use. Fromthe view point of energy-saving, however, it is energy-intensive and wastes hugeamount of energy because of its simple working principles. Consequently, the re-search on energy-saving technology for emulsion pump tests would increase the en-ergy efficiency and decease the power consumption and hence the cost of tests.
     Financially supported by the program sponsored for scientific innovation re-search of college graduate in Jiangsu province (Grant: CXZZ11_0288), this paperhas designed a novel energy regeneration system (ERS) for emulsion pump tests todecrease the energy consumption of emulsion pump tests. This novel system isdeeply investigated by theoretical modeling, numerical simulation and experimentalvalidation to obtain the variation of running parameters of emulsion pump and theenergy–saving coefficient of the whole system.
     Firstly, the requirement of running parameters of emulsion pump by the teststandard is analyzed in detail and then a novel ERS is designed which employs‘variable displacement pump-variable displacement motor’ as the drive unit and‘double cylinders-rectifier valve’ as the power recovery unit. Based on the fluid con-tinuity equation and mechanical equilibrium equation, the analytical expressions ofemulsion pump rotation speed, load pressure and the energy-saving coefficient arederived, respectively. Moreover, the experimental system of ERS is built according-ly.
     Secondly, based on the bond graph modeling, the theoretical model of the pro-posed ERS for emulsion pump tests is established by first considering the separatecomponents before assembling them together. So is the status-space equation of theoverall system. Then the simulation model of ERS is built accordingly in the envi- ronment of Simulink software.
     Thirdly, the feasibility of this ERS is verified by both simulations and experi-ments. The simulation and experiment results show that in the full load test, for ex-ample, the power recovery coefficient and energy-saving coefficient are0.76and0.23, respectively. The causes of power losses of major components in the ERS areanalyzed and compared as well.
     Fourthly, the variation of load pressure and rotation speed of emulsion pump asto the displacement combination of variable displacement pump and motor is ob-tained by the simulation results. The three dimensional surfaces of both load pres-sure and rotation speed of emulsion pump are investigated by polynomial fit andtherefore the polynomial fit expressions of both load pressure and rotation speed ofemulsion pump are given.
     Lastly, by both simulations and experiments, the variation of power recoverycoefficient and energy-saving coefficient as to load pressure of emulsion pump areinvestigated. Furthermore, power loss of each component in the ERS is analyzed andcompared in different load pressure conditions. The influence of system back pres-sure on running parameters of emulsion pump is also studied by simulation and ex-periments, and the reasonable value of system back pressure is given.
引文
[1]袁利才.矿用乳化液泵站的现状及发展趋势[J].山西煤炭管理干部学院学报,2009(03):100-101.
    [2]桑勇,王占林,祁晓野,等.液压传动系统中节能技术的探讨[J].机床与液压,2007(03):83-86.
    [3]汪世益,方勇,满忠伟.工程机械液压节能技术的现状及发展趋势[J].工程机械,2010(09):51-57.
    [4] Lin T., Wang Q., Hu B., et al. Research On the Energy Regeneration Systems for HybridHydraulic Excavators[J]. Automation in Construction,2010,19(8):1016-1026.
    [5] Wu T., Cheung E. H. M. Erratum: Enhanced Stl [J]. International Journal of AdvancedManufacturing Technology,2007,32(3-4):422.
    [6] Yoon J. I., Kwan A. K., Truong D. Q. A Study On an Energy Saving Electro-Hydraulic Ex-cavator[C], Piscataway, NJ, USA,2009.
    [7]段岩波,张武高,黄震.混合动力电动汽车技术分析[J].柴油机,2003(01):43-46.
    [8]任勇,秦大同,杨亚联,等.混合动力电动汽车的研发实践[J].重庆大学学报(自然科学版),2004(04):27-30.
    [9]彭玲玲.能量回收系统在城市公共汽车上的应用[J].能源研究与信息,2008(03):152-155.
    [10]曹雪莲,许明恒.带有制动能量回收系统的城市公共汽车[J].中国测试技术,2003(01):17-18.
    [11]韩文,肖任贤.二次调节静液驱动技术在车辆中的应用[J].机床与液压,2004(10):192-193.
    [12]吴嘉斌,乌建中,张大兵,等.基于二次调节技术的旋挖钻机节能研究[J].流体传动与控制,2012(1):22-26.
    [13]陈惠贤,辛志民,常留学,等.二次调节静液传动技术在工程机械磨合试验台中的应用[J].液压与气动,2012(2):82-84.
    [14]高佩川,孙孟辉,吕云嵩,等.液压挖掘机液压二次调节节能方法研究[J].煤炭技术,2012(10):19-20,29
    [15]张彦廷,王庆丰,肖清.液压驱动惯性系统能量回收的节能试验研究[J].机床与液压,2007(07):91-92.
    [16]张彦廷.基于混合动力与能量回收的液压挖掘机节能研究[D].杭州:浙江大学,2006.
    [17]陈明东,赵丁选,倪涛.液压挖掘机动臂闭式油路节能系统[J].吉林大学学报(工学版),2012(5):1140-1144.
    [18]周宏兵,李铁辉,张大庆,等.新型混合动力挖掘机动臂势能回收系统研究[J].计算机仿真,2012(7):398-402.
    [19]管成,林名润,吴超,等.油液混合动力挖掘机动臂势能回收系统[J].计算机集成制造系统,2012(3):583-589.
    [20]夏德政.液压挖掘机动臂回路节能研究[D].太原:太原科技大学,2012.
    [21]李培.混合动力挖掘机动臂能量回收系统研究[D].成都:西南交通大学,2012.
    [22]李铁辉.混合动力挖掘机动臂势能回收研究[D].长沙:中南大学,2012.
    [23]高佩川,孙孟辉,李建启.液压挖掘机回转液压系统能量回收研究[J].机床与液压,2012(14):51-53,56.
    [24]徐晓.液压挖掘机回转制动能量回收系统研究[D].杭州:浙江大学,2012.
    [25]管成,徐晓,林潇,等.液压挖掘机回转制动能量回收系统[J].浙江大学学报(工学版),2012(01):142-149.
    [26]李赛白.液压挖掘机回转制动能量回收系统研究[D].长沙:中南大学,2012.
    [27] TAO Wang, WANG Qing-feng, LIN Tian-liang. Improvement of boom control performancefor hybrid hydraulic excavator with potential energy recovery [J]. Automation in Construc-tion,2013,30(1):161-169.
    [28]林潇,管成,裴磊,等.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报,2009(04):96-101.
    [29]张彦廷,王庆丰,肖清.混合动力液压挖掘机液压马达能量回收的仿真及试验[J].机械工程学报,2007(08):218-223.
    [30]王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005(12):135-140.
    [31]查鸿山,宗志坚,刘忠途.电动汽车能量回馈制动仿真研究[J].机械科学与技术,2012(04):572-577.
    [32]王红霞,李冠峰.电动汽车制动能量回收控制策略研究[J].机械研究与应用,2012(01):4-6.
    [33]王猛,孙泽昌,卓桂荣,等.电动汽车制动能量回收系统研究[J].农业机械学报,2012(02):6-10.
    [34]王猛,孙泽昌,卓桂荣,等.电动汽车制动能量回收最大化影响因素分析[J].同济大学学报(自然科学版),2012(04):583-588.
    [35]陶欣,付主木.混合动力轿车制动能量回馈控制策略[J].兰州理工大学学报,2012(02):78-81.
    [36]万里翔.汽车制动能量回收系统的研究[D].成都:西南交通大学,2008.
    [37] Liu T., Jiang J., Sun H. Investigation to Simulation of Regenerative Braking for ParallelHydraulic Hybrid Vehicles[C], Piscataway, NJ, USA,2009.
    [38] Yokota S., Nishijima T., Kondoh Y., et al. A Flywheel Hybrid Vehicle Making Use of Con-stant Pressure System [J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Ja-pan Society of Mechanical Engineers, Part C,2002,68(7):2127-2132.
    [39]尹怀仙.汽车CPS定压源能量回收系统的研究[D].成都,西南交通大学,2006.
    [40]张进秋,彭志召,岳杰,等.车辆馈能悬挂技术综述[J].装甲兵工程学院学报,2012(5):1-7.
    [41] Chao C.,Liao W H.. A Self-sensing Magnetor-heological Damper with Power Generation[J]. Smart Materials and Structures,2012,21(2):14-25.
    [42]于长淼.混合动力汽车馈能式悬架的方案设计与仿真分析[D].长春:吉林大学,2008.
    [43]梁经芝,邵春鸣.能量回馈式主动悬挂系统研究[J].车辆与动力技术,2010(1):55-58.
    [44]喻凡,张勇超.馈能型车辆主动悬架技术[J].农业机械学报,2010,01:1-6.
    [45]何仁,陈士安,陆森林.馈能型悬架的工作原理与结构方案评价[J].农业机械学报,2006,37(5):5-9.
    [46] Lin X., Xuexun G. Hydraulic Transmission Electromagnetic Energy-Regenerative ActiveSuspension and its Working Principle[C], Piscataway, NJ, USA,2010.
    [47] Zhang Y., Huang K., Yu F., et al. Experimental Verification of Energy-Regenerative Feasi-bility for an Automotive Electrical Suspension System[C], Beijing, China,2007.
    [48] Qu J., Ren C., Yang Z., et al. Parameters Optimization Method for Variable DisplacementPump/Motor and Transmission of Hydraulic Braking Energy Regeneration System[C], Pis-cataway, NJ, USA,2009.
    [49] Qu J., Liang L., Yang Z. Operation Pattern Recognition and Control for Super CapacitorBraking Energy Regeneration System of Micro Ev[C], Piscataway, NJ, USA,2009.
    [50] Qu J., Zhang X. Operation Pattern Recognition and Control for Hydraulic AccumulatorType Braking Energy Regeneration System of Bus[C], Piscataway, NJ, USA,2009.
    [51] Zhu R., Gao L., Li X. Research On the Energy-Saving Potentiality of Electro-HydraulicPower Steering System Based On Energy Flow[C], Wuhan, China,2010.
    [52]孟庆华.基于功率回收的新型液压封闭式汽车车桥疲劳试验台的研究[J].机床与液压,2007(05):130-132.
    [53] So R., Yang Q. The Simulation Analysis of Hydraulic Energy Regenerative System for theBurden Vehicle Based On the Linear Quadratic Regulator Theory[C], Hangzhou, China,2010.
    [54]张路军.功率回收型液压修井机的设计研究[J].液压与气动,2006(11):1-3.
    [55]张路军.功率回收型液压修井机中油管柱下放过程的仿真研究[J].系统仿真学报,2007(11):2599-2602.
    [56]张路军,王东兴,张磊.石油钻机用功率回收型辅助制动器的设计原理[J].液压与气动,2004(02):19-20.
    [57] Lujun Z. Study On Hydraulic Energy-Recovering Workover Rig and the Simulation forLifting the Pipestring[J]. Transactions of the Asme. Journal of Energy Resources Technol-ogy Trans. Asme, J. Energy Resour. Technol.(Usa),2007,129(2):96-101.
    [58] Zhang L. Study On an Electric Drilling Rig with Hydraulic Energy Storage[C], Wuhan,China,2010.
    [59] Zhang L., Xie H. New-Type Energy-Recovering hydraulic workover RIG and the simula-tion for lifting the tubing string[J]. Journal of Energy Resources Technology,2008,130(3):033103-033108.
    [60] Zhang L. An Energy-Saving Oil Drilling Rig for Recovering Potential Energy and De-creasing Motor Power[J]. Energy Conversion and Management,2011,51(01):359-365.
    [61]路甬祥,俞浙青,吴根茂.功率回收型液压抽油机的设计原理[J].石油机械,1995(02).
    [62]俞浙青,王秋成,姜伟,等.功率回收型液压抽油机实验系统的设计与建立[J].石油机械,1999(06):18-21.
    [63] Tatiana A M, Laurila L E, Pyrh nen J J. Analysis of electro-hydraulic lifting system's ener-gy efficiency with direct electric drive pump control [J]. Automation in Construction,2013,30(01):144-150.
    [64] Minav T A, Virtanen A, Laurila L,. Storage of energy recovered from an industrial forklift[J]. Automation in Construction,2012,22:506-515.
    [65] Almeida A D, Hirzel S, Patr o C,. Energy-efficient elevators and escalators in Europe: Ananalysis of energy efficiency potentials and policy measures [J]. Energy and Buildings,2012,47:151-158.
    [66] Huayong Y., Jian Y., Bing X. Computational Simulation and Experimental Research OnSpeed Control of Vvvf Hydraulic Elevator[J]. Control Engineering Practice Control Eng.Pract.(Uk),2004,12(5):563-568.
    [67] Jian Y., Bing X., Huayong Y. Comparison of Energy-Saving On the Speed Control of theVvvf Hydraulic Elevator with and without the Pressure Accumulator[J]. MechatronicsMechatronics (Uk),2005,15(10):1159-1174.
    [68] Xu B., Yang J., Yang H. Comparison of Energy-Saving On the Speed Control of the VvvfHydraulic Elevator with and without the Pressure Accumulator[J]. Mechatronics,2005,15(10):1159-1174.
    [69]徐兵,林建杰,杨华勇.液压电梯中的能量回收技术[J].液压与气动,2004(06):72-74.
    [70]林建杰.液压电梯闭式回路节能型电液控制系统研究[D].杭州:浙江大学,2005.
    [71] Yang H., Sun W., Xu B. New Investigation in Energy Regeneration of Hydraulic Eleva-tors[C],445Hoes Lane/P.O. Box1331, Piscataway, NJ08855-1331, United States,2007.
    [72] Yang H., Sun W., Xu B. Investigation Into Energy Regeneration of Hydraulic Elevators[C],Beijing, China,2007.
    [73]侯波,卞显兵.升降式工作台势能回收液压系统研究[J].矿山机械,2007(03):49-51.
    [74]侯波.液压升降机能量回收系统设计[J].液压与气动,2006(03):65-67.
    [75]阮学云,侯波,李琼.升降机势能回收液压系统分析[J].液压与气动,2009(04):28-31.
    [76]张大欢.节能型升降机液压系统改进设计[J].煤矿机械,2009(02):162-163.
    [77]田联房,于慈远,李尚义,等.能量回收技术在液压系统中的应用[J].工程机械,1997(04):31-32.
    [78]白国长,逄波,王占林,等.机械补偿液压功率回收系统研究[J].机械科学与技术,2007(02):213-216.
    [79]赵颖.大功率风电齿轮箱设计与研究[D].长春:吉林大学,2012.
    [80]胡康.大功率风电齿轮箱试验台的关键问题研究[D].杭州:浙江大学,2012.
    [81]张峥明.液压功率封闭系统设计及加载特性研究[D].长沙:中南大学,2010.
    [82]付永领,汪明霞,纪友哲.航空泵加速寿命试验台功率回收率的分析[J].北京航空航天大学学报,2010(05):505-508.
    [83]蔡廷文.液压泵和液压马达功率回收式试验方法的研究[J].液压与气动,2003(07):49-52.
    [84]乔江,陈图.液压泵、马达试验和功率回收[J].机电设备,2001(05):14-20.
    [85]丁原廉,张红俊,魏越云.液压泵和液压马达实验中的功率回收分析[J].机械管理开发,2003(04):10-11.
    [86]郭明杰,高殿荣.油泵油马达串并联液压补偿式功率回收试验系统分析[J].东北重型机械学院学报,1994(02).
    [87]吴时飞,胡军科,何国华,等.功率反馈式闭式液压泵、液压马达系统研究[J].机床与液压,2007(02):119-120.
    [88]蔡廷文.一种功率回收式液压试验系统的效率计算[J].机械制造,2002(12):26-27.
    [89]张峰.功率回收型液压泵试验系统研究[D].济南:济南大学,2010.
    [90] Sang Y., Wang Z. The Speed Servo Control of Airborne Hydraulic Pump On the Conditionof Existing Gear Backlash[C], Piscataway, NJ, USA,2009.
    [91] Wang M., Peng Z., Fu Y., et al. Study of Decoupling Control for Airborne Hydraulic Pumpin the Cyclic Stress Accelerated Life Test[C], Piscataway, NJ, USA,2009.
    [92] Sang Y., Wang Z. Research On Speed Robustness for Airborne Hydraulic Pump in the Cir-cular Stress Accelerated Life Test[C], Piscataway, NJ, USA,2009.
    [93]吴春,陈军,谌彪.滑片泵性能试验台设计[J].石油化工设备,2010(01):14-16.
    [94]杨真如.通轴式液压泵试验的功率回收[J].液压气动与密封,1999(04):39-41.
    [95]刘斌,姜伟,裘信国.双向变量液压泵试验台功率回收系统分析[J].机床与液压,2006(12):139-140.
    [96]张之良,贺建林,陈馨.功率回收方式在大流量油泵、油马达试验系统中的应用[J].船海工程,2006(05):39-42.
    [97]赵俊,邓斌,柯坚.变量泵试验中的变工况能量回收技术研究[J].机床与液压,2007(09):151-152.
    [98]沙明元,李建英,李春林.大型液压试验台功率回收系统研究[J].石家庄铁道学院学报,1998(04):84-87.
    [99]谢光辉,喇凯英,王留运.液压机械补偿功率回收模型参考模糊神经网络控制[J].机床与液压,2009(02):114-116.
    [100]吴时飞.泵—马达功率回馈式试验台液压及测控系统研究[D].长沙:中南大学,2006.
    [101]贾跃虎,宋福荣,赵红英,等.液压泵型式试验台设计分析[J].太原重型机械学院学报,2000(02):135-138.
    [102]何国华,胡军科,吴时飞,等.液压泵和液压马达功率反馈试验台设计[J].液压与气动,2005(09):22-23.
    [103]史俊青,孙政,王连洪,等.液压缸性能测试试验台的研究[J].工程机械,2006(02):41-44.
    [104]薛晨光,王卫东.采用功率回收方式的液压缸试验系统[J].液压与气动,1997(04).
    [105]纪跃波,张飞.高压高速液压缸耐久性试验功率回收节能技术[J].集美大学学报(自然科学版),2010(03):63-67.
    [106]张立军,赵升吨,刘克铭.中高压液压缸实验台液压系统仿真及优化[J].系统仿真学报,2007(03):671-674.
    [107]蔡廷文,蔡立.液压系统多极模型的研究[J].中国机械工程,2003(18).
    [108]周瑞艳,卢红影,刘宇辉,等.液压变压器变压原理的理论分析与仿真研究[J].机床与液压,2007(01):103-105.
    [109]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用[J].农业机械学报,2003(04):100-104.
    [110]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程,2003(03).
    [111]张志生,芮丰.变频调速功率回收液压泵及马达试验系统分析与实现[J].流体传动与控制,2008(01):41-43.
    [112]王淑娴,王慧.变频液压技术在泵测试系统中的应用[J].电子设计应用,2007(09):103-104.
    [113]刘志奇,段锁林,王明智.液压泵综合试验台设计[J].太原重型机械学院学报,2000(01):35-38.
    [114]张峥明,胡军科,葛玉柱.一种液压功率回收试验系统的工作特性及回收效率研究[J].现代制造工程,2010(05):123-126.
    [115]沈培辉,陈淑梅,胡步发,等.液压泵性能测试的计算机智能控制方法研究[J].福州大学学报(自然科学版),2004(05):578-582.
    [116]段锦良,马俊功.变频调速在液压泵性能测试中的应用[J].机床与液压,2008(11):117-119.
    [117]侯小华,黄志坚,章宏义.基于液压反馈的功率回收式试验台的分析[J].液压与气动,2012(03):73-75.
    [118]王宣银,戴捷,皮阳军等.功率回收型液压马达智能测试系统[J].液压气动与密封,2011(05):36-38.
    [119]罗宁,胡军科,黄新磊.一种新型功率回收液压泵试验台设计及研究[J].塑料工业,2011(01):45-48.
    [120] Yao B., DeBoer C. Energy-Saving Adaptive Robust Motion Control of Single-Rod Hydrau-lic Cylinders with Programmable Valves[C], Danvers, MA, USA,2002.
    [121] Liu S., Yao B. Coordinate Control of Energy Saving Programmable Valves[J]. Ieee Trans-actions On Control Systems Technology,2008,16(1):34-45.
    [122]缪雄辉,郭承志.工程机械功率回收液压马达试验台的研究与设计[J].工程机械,2012(9):22-24,114.
    [123]王华兵,胡军科.功率回馈式液压泵耐久性试验系统设计[J].机床与液压,2012(18):76-78.
    [124] Ahmed N. S., Nassar A. M., Zaki N. N., et al. Formation of Fluid Heavy Oil-in-WaterEmulsions for Pipeline Transportation[J]. Fuel,1999,78(5):593-600.
    [125] Chen B., Wang X., Zhang Y., et al. Experimental Research On Laminar Flow Performanceof Phase Change Emulsion[J]. Applied Thermal Engineering,2006,26(11-12):1238-1245.
    [126]邱伟前.乳化液泵机液耦合建模与仿真[D].西安:西安科技大学,2008.
    [127]李懿.乳化液泵虚拟样机仿真技术应用研究[D].太原:太原理工大学,2008.
    [128] Han X., Du C., Zhang Y., et al. Wear Fault Diagnosis of an Emulsion Pump Crank Bear-ing[J]. Journal of China University of Mining and Technology,2008,18(3):470-474.
    [129] Han X. Crank Bearing Wear Fault Diagnosis of Emulsion Pump Based OnFuzzy Support Vector Machine[C], Manchester, United kingdom,2009.
    [130]杨智炜.轴向柱塞泵虚拟样机仿真技术研究[D].杭州:浙江大学,2006.
    [131]曹春玲,窦美玲,滕以金.基于AMESim的乳化液泵特性仿真[J].机床与液压,2009(06):217-218.
    [132] Han X., Wang F., Tie Z., et al. Kinematics Modelling and Simulation of Emulsion PumpValve[C], Los Alamitos, CA, USA,2010.
    [133]田树军,张宏.液压管路动态特性的Simulink仿真研究[J].系统仿真学报,2006(05):1136-1138.
    [134]刘保国.基于计算机控制的新型液压泵综合试验台设计[J].液压与气动,2003(12):4-6.
    [135]黄建龙,刘明哲,王华.液压综合试验台及其监控系统的研究[J].液压与气动,2007(10):10-12.
    [136]孙战彬.乳化液泵工况监控系统[D].西安:西安科技大学,2003.
    [137]石惠天.乳化液泵微机在线状态监测的实验研究[J].煤矿机械,1997(03).
    [138]张小玉,蔡桂芳,鲁中健,等.一种新型液压泵自动检测系统的设计与实现[J].煤矿机械,2005(10).
    [139]张慧敏,龚德利,骆德发.离心泵性能测试的自动化控制系统[J].流体机械,2003(07):29-32.
    [140]余晓明,茅忠民,王明福,等.水泵性能全自动测试系统设计与研制[J].流体机械,1999(12):25-27.
    [141]张荣存,王溪波,牛连强.100kW泵性能试验台检测控制系统的研制[J].沈阳工业大学学报,1998(05):89-92.
    [142]王溪波,牛连强,张荣存.300MW核电水泵性能计算机检测系统设计与实现[J].沈阳工业大学学报,1998(05):6-9.
    [143]张振东,石鹏程,朱红萍,等.车用电动燃油泵性能检测及评价系统开发研究[J].上海理工大学学报,2009(04):372-375.
    [144]程明学,鄢杰. ZB-16液压泵智能测试系统设计[J].液压与气动,2005(09):58-60.
    [145]程明学,侯祖伟.飞机液压泵测试设备的监测与控制[J].液压与气动,2000(01):32-33.
    [146]程明学.液压泵智能测试系统设计[J].装备制造技术,2006(03):1-2.
    [147]苑明华,张淑东. A4VSO轴向柱塞泵的在线效率测试[J].甘肃冶金,2009(06):32-34.
    [148]安连锁,王松岭,秦培义.用热力学法对泵效率、流量进行测定及在线监测的应用研究[J].中国电机工程学报,1994(02):36-42.
    [149]吴丽华,高红俐,齐子诚,等.基于虚拟仪器的径向柱塞液压泵测试系统[J].轻工机械,2009(06):59-61.
    [150]罗会铭.基于虚拟仪器的液压泵试验台测试系统设计[J].流体传动与控制,2007(05):7-9.
    [151]李曼,郭卫,席海涛,等.基于虚拟仪器技术的乳化液泵性能测试系统[J].润滑与密封,2006(03):143-145.
    [152]冯平法,徐道春,陆冠玉,等.乳化液泵综合性能自动测试系统设计与实现[J].仪器仪表学报,2007(12):2218-2221.
    [153] Wu B., Cai C. The Hydraulic Pump Performance Test System Based On Labview[C], Wu-han, China,2009.
    [154] Wenhai H. Testing System of Hydraulic Head of Mine Pump Based On Labview[C], Pisca-taway, NJ, USA,2009.
    [155] Wang G., Jiao S., Song H. Mine Pump Comprehensive Performance Testing System BasedOn Labview[C], Zhangjiajie, Hunan, China,2009.
    [156]黄琳.基于虚拟仪器的液压试验台CAT系统设计[D].杭州:浙江大学,2006.
    [157]李娟.组态技术在液压泵测试系统中的应用[J].机床与液压,2010(08):95-97.
    [158]李曼,郭卫,王冬,等.乳化液泵站自动监控系统的研究与开发[J].煤矿机械,2005(09):97-98.
    [159]曹春玲.煤矿乳化液泵站液压系统[J].液压与气动,2006(08):34-35.
    [160]张盼盼.乳化液泵站自动监控系统的研究与开发[D].太原:太原理工大学,2009.
    [161]杨涛.乳化液泵站液压系统建模仿真与控制系统开发[D].太原:太原理工大学,2008.
    [162] KARNOPP D C, MARGOLIS D L, ROSENBERG R C. System dynamics: modeling, sim-ulation, and control of mechatronic systems[M].[S.l.]: Wiley,2012.
    [163] BORUTZKY W, MARGOLIS D L. Bond graph modelling of engineering systems: theory,applications and software support[M].[S.l.]: Springer New York,2011.
    [164] KARNOPP D, MARGOLIS D L, ROSENBERG R C. System dynamics: a unified ap-proach[M].[S.l.]: Wiley,1990.
    [165] PAOLO C, ALVIN A. Gray box modeling of an excavator’s variable displacement hydrau-lic pump for fast simulation of excavation cycles[J]. Control Engineering Practice,2013,21(4):483-494.
    [166] EUGENY S, BENOIT F. Bond graphs for spatial kinetics analysis of nuclear reactors[J].Annals of Nuclear Energy,2013,56:208-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700