用户名: 密码: 验证码:
煤矿矸石压实力学特性及其在充填采煤中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合机械化固体充填采煤是近年来发展起来的新的采煤方法,它将煤矸石、粉煤灰、建筑垃圾等固体废弃物密实充填至采空区,实现了“三下”压煤等难开采煤层的高效安全开采,同时,可有效减少或消除煤炭开采引起的地质灾害与环境污染等问题,是煤炭资源绿色开采的重要研究方向。充填材料(矸石、粉煤灰等)的压实特性与充填采煤岩层移动规律研究是实施固体密实充填采煤技术的重要基础。本文综合采用理论分析、实验测试、数值模拟和现场实测等方法,对煤矿矸石压实的细观机理、宏观规律、固体充填采煤岩层移动理论等方面进行了系统的研究,取得了如下主要创新性成果:
     (1)基于煤矿矸石压实力学特性试验,研究了侧限压实条件下煤矿矸石粒径级配的分形特征,得到了不同岩性、初始粒径级配的试样在不同压实应力水平下的分形维数;结合颗粒破碎的分形特征,从能量角度建立了压实过程中试样的宏观变形与颗粒破碎特征的关系。
     (2)研制开发了随机碎石几何模型生成程序RGM,程序可生成形状随机且满足指定粒径级配要求的破碎矸石几何模型。通过将RGM生成的随机碎石几何模型模导入颗粒流软件PFC3d,建立了不规则颗粒形状的破碎矸石压实数值模型,实现了PFC3d数值模拟中细观力学参数与宏观实验力学参数的有效转换,并进行了压实特性的数值试验,得到了不同岩性试样的颗粒破碎、压实应变-应力关系和侧压系数K0在压实过程中的变化规律。
     (3)基于煤矿矸石的压实特性及充填采煤覆岩移动特征,建立了固体充填采煤岩层移动的双参数Winkler地基板模型,分析得到了工作面基本顶的挠度、弯曲内力和应力分布的解析解,并给出了充填采煤覆岩不破断的条件及其随充填材料力学特性参数的变化规律。
     (4)成功地将煤矿矸石压实变形规律用于某矿试验充填采煤工作面覆岩移动规律的数值模拟,得到了工作面覆岩下沉变形、应力分布、塑性区分布及充填体受力特征随工作面推进距离的变化规律,并与现场实测结果比较,印证了充填采煤岩层移动双参数Winkler地基板模型的合理性。
Fully Mechanized Solid Backfilling Coal Mining (FMSBCM) is a new coalmining method well developed in recent years. FMSBCM fills solid waste such asgangue, fly ash, construction damp, etc. densely into goaf, so that the coal whitch isdifficult to mine in conventional methods (e.g. coal under buildings, water bodies andrailways) can be extracted safely and effectively, and the problems caused by coalmining such as geological disasters and environmental pollution, etc. can be reducedor prevented, those advantages make FMSBCM a major research area in Green CoalMining. Compaction properties of backfill materials (e.g. gangue and fly ash, etc.) andstrata movment in backfilling coal mining is an important basis of implementingFMSBCM technology. In this dissertation, methods of theoretical analysis,experimental test, numerical simulation and field measurement are comprehensivelyused to systematically research the meso-scale mechanism, macro-scale laws ingangue compaction and theory of strata movement in FMSBCM, and the innovativeachievements are as follows:
     (1) Based on the compaction tests of gangue, the fractal breakage of ganguegrains in lateral confined compaction was studied, and fractal diemsions of sizegradation with different lithologies, initial gradations, and stresses were gainded; bytaking consideration of fractal crushing, the relation between grain breakage andmacro deformation was established from the aspect of energy dissipation.
     (2) Random Gravel Model (RGM), a program to randomly generate geometricmodel of accumulated gravel grains with given size gradation, were developed basedon computational geometry. Crushed gangue samples with irregular shaped grainswere modeled in the Particle Flow Code software PFC3d by importing the randomgeometric models generated by RGM program, and the effective conversion ofmechanical parameters from macro-scale to meso-scale were realized, then thenumerical compaction tests were implemented, and laws of grain breakage,strain-stress relation and lateral pressure coefficient K0with different lithologies wereobtained.
     (3) The double-parameter Winkler foundation supported plate model of stratamovement in FMSBCM were established based on gangue’s compaction propertiesand characteristics of strata movement in bacfilling coal mining. The analyticalsolutions of deflection, internal bending loads and stress distributions of backfilling coal mining panel’s main roof were calculated, and the condition which maintainoverlaying strata don’t breake and its varation with compaction properties ofbackfilling material was derived.
     (4) Compaction strain-stress ralations of gaungue were successfully used innumerical simulation of bacfilling coal mining panel’s strata movement of a coal mine,and the overlying strata subsidence, stress distribution, plastic zone distribution andstress within bacfill during the retreaing of the face were simulated, and comparasionof numerical and field measured results proves rationality of the double-parameterWinkler foundation supported plate model of strata movement in FMSBCM.
引文
[1]中华人民共和国国土资源部.中国矿产资源报告2013[M].北京:地质出版社,2013.
    [2]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1-14.
    [3]张吉雄.矸石直接充填综采岩层移动控制及其应用研究[D].徐州;中国矿业大学,2008.
    [4]安泰龙.矸石-粉煤灰压实变形机理及应用研究[D].徐州;中国矿业大学,2010.
    [5]缪协兴,孙亚军,浦海,等.干旱半干旱矿区保水采煤方法与实践[M].徐州:中国矿业大学出版社,2011.
    [6]缪协兴,张吉雄,郭广礼.综合机械化固体废物充填采煤方法与技术[M].徐州:中国矿业大学出版社,2010.
    [7]缪协兴.综合机械化固体充填采煤技术研究进展[J].煤炭学报,2012,37(8):1247-1255.
    [8]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1-7.
    [9]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [10]缪协兴,张吉雄,郭广礼.综合机械化固体充填采煤方法与技术研究[J].煤炭学报,2010,35(1):1-6.
    [11] Miao X X, Zhang J X, Feng M M. Waste-filling in fully-mechanized coal mining and itsapplication[J]. Journal of China University of Mining&Technology,2008,18(6):480-483.
    [12] Zhang J X, Zhang Q, Huang Y L, et al. Strata movement controlling effect of waste and fly ashbackfillings in fully mechanized coal mining with backfilling face[J]. Mining Science andTechnology (China),2011,21(5):721-726.
    [13]黄艳利,张吉雄,张强,等.充填体压实率对综合机械化固体充填采煤岩层移动控制作用分析[J].采矿与安全工程学报,2012,29(2):162-167.
    [14]缪协兴,张吉雄.矸石充填采煤中的矿压显现规律分析[J].采矿与安全工程学报,2007,24(4):379-382.
    [15]张吉雄,李剑,安泰龙,等.矸石充填综采覆岩关键层变形特性研究[J].煤炭学报,2010,35(3):357-362.
    [16]张吉雄,缪协兴,郭广礼.矸石(固体废物)直接充填采煤技术发展现状[J].采矿与安全工程学报,2009,26(4):396-402.
    [17]张吉雄,吴强,黄艳利,等.矸石充填综采工作面矿压显现规律[J].煤炭学报,2010,35(S):1-4.
    [18]黄艳利.固体密实充填采煤的矿压控制理论与应用研究[D].徐州;中国矿业大学,2012.
    [19]李剑.含水层下矸石充填采煤覆岩导水裂隙带演化机理及控制研究[D].徐州;中国矿业大学,2013.
    [20]缪协兴,茅献彪,胡光伟,等.岩石(煤)的碎胀与压实特性研究[J].实验力学,1997,12(3):394-400.
    [21]马占国,浦海,张帆,等.煤矸石压实特性研究[J].矿山压力与顶板管理,2003,20(1):95-96.
    [22]姜振泉,季梁军,左如松.煤矸石的破碎压密作用机制研究[J].中国矿业大学学报,2001,30(2):139-142.
    [23]陈中伟,张吉雄,茅献彪,等.充填黄土压缩蠕变特性与湿陷性试验研究[J].地下空间与工程学报,2009,5(1):54-59.
    [24]张振南,缪协兴,葛修润.松散岩块压实破碎规律的试验研究[J].岩石力学与工程学报,2005,24(3):451-455.
    [25]苏承东,顾明,唐旭,等.煤层顶板破碎岩石压实特性的试验研究[J].岩石力学与工程学报,2012,31(1):18-26.
    [26]胡炳南,郭爱国.矸石充填材料压缩仿真实验研究[J].煤炭学报,2009,34(8):1076-1080.
    [27] Michalski P, Skarzynska K. Compactability of coal mining wastes as a fill material. Proceedingsof the treatment and utilization of coal mining wastes durham[C], England: Symposium on theReclamation, F,1984.
    [28] Skar yńska K M. Reuse of coal mining wastes in civil engineering—Part1: properties ofminestone[J]. Waste Management,1995,15(1):3-42.
    [29] Stewart B, Daniels W. Physical and chemical properties of coal refuse from SouthwestVirginia[J]. Journal of Environmental Quality,1992,21(4):635-642.
    [30] Franklin J A, Dusseault M B. Rock engineering applications[M]. New York: McGRw-Hill,1991.
    [31] Bishop C, Simon N. Selected soil mechanics properties of Kentucky coal preparation plantrefuse[C]. Pineville, Kentucky, F,1976.
    [32] Solesbury F. Coal wastes in civil engineering works: two case histories from South Africa.Proceedings of the The2nd Symposium on the Reclamation[C], Treatment and Utilization ofCoal Mining Wastes[S l]: Printed in the Netherlands, F,1987.
    [33] Sowers G, Sowers G. Introductory Soil Mechanics and Foundation[M]. New York: Macmillan,1979.
    [34] Karfakis M, Bowman C, Topuz E. Characterization of coal-mine refuse as backfilling material[J].Geotechnical&Geological Engineering,1996,14(2):129-150.
    [35] Attewell P B, Taylor R K. Ground movements and their effects on structures[M]. SurreyUniversity Press,1984.
    [36]苗克芳.煤矸石地基工程特性的试验研究[J].黑龙江科技学院学报,2003,13(2):28-30.
    [37]缪协兴,张振南.松散岩块侧压系数的试验研究[J].徐州建筑职业技术学院学报,2001,1(4):15-17.
    [38]马占国,肖俊华,武颖利,等.饱和煤矸石的压实特性研究[J].矿山压力与顶板管理,2004,21(1):106-108.
    [39]唐志新,黄乐亭,滕永海.煤矸石做为建筑地基的特性分析及实践[J].矿山测量,2007,4):76-77.
    [40]李树志,刘金辉,王华国.矸石地基承载力及其确定[J].煤炭科学技术,2000,28(3):13-14.
    [41]唐志新,戴华阳.采动区煤矸石地基理论研究及实践[J].煤炭学报,1999,24(1):43-47.
    [42]刘松玉,邱钰,童立元,等.煤矸石的强度特征试验研究[J].岩石力学与工程学报,2006,25(1):199-205.
    [43]刘松玉,童立元,邱钰,等.煤矸石颗粒破碎及其对工程力学特性影响研究[J].岩土工程学报,2005,27(5):505-510.
    [44]王明立.煤矸石压缩试验的颗粒流模拟[J].岩石力学与工程学报,2013,32(7):1350-1357.
    [45]刘送永,杜长龙,李建平.煤截割粒度分布规律的分形特征[J].煤炭学报,2009,34(7):977-982.
    [46]刘瑜,周甲伟,杜长龙.基于分形统计强度理论的煤颗粒冲击破碎概率研究[J].固体力学学报,2012,33(006):631-636.
    [47]刘瑜,周甲伟,杜长龙.煤块冲击破碎粒度分形特征[J].振动与冲击,2013,32(3):18-21.
    [48]郑克洪,杜长龙,邱冰静.煤矸破碎粒度分布规律的分形特征试验研究[J].煤炭学报,2013,38(6):1089-1094.
    [49] Marsal R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics andFoundations Division,1967,93(2):27-43.
    [50]日本土质工学会.粗粒料的现场压实[M].北京:中国水利水电出版社,1999.
    [51]花俊杰,周伟,常晓林,等.300m级高堆石坝长期变形预测[J].四川大学学报(工程科学版),2011,43(3):33-38.
    [52]秦尚林.巨粒土高路堤压实控制与力学性状研究[D].武汉;中国科学院武汉岩土力学研究所,2007.
    [53]徐文杰,胡瑞林.虎跳峡龙蟠右岸土石混合体粒度分形特征研究[J].工程地质学报,2006,14(4):496-501.
    [54]徐文杰,胡瑞林,曾如意.水下土石混合体的原位大型水平推剪试验研究[J].岩土工程学报,2006,28(7):814-818.
    [55]徐文杰,胡瑞林,谭儒蛟.三维极限平衡法在原位水平推剪试验中的应用[J].水文地质工程地质,2006,33(6):43-47.
    [56]徐文杰,胡瑞林,谭儒蛟,等.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报,2006,25(6):1270-1277.
    [57] Xu W J, Xu Q, Hu R L. Study on the shear strength of soil-rock mixture by large scale directshear test[J]. International Journal of Rock Mechanics&Mining Sciences,2011,48(8):1235-1247.
    [58] Oyanguren P R, Nicieza C G, Fern Ndez M I á, et al. Stability analysis of Llerin Rockfill Dam:An in situ direct shear test[J]. Engineering Geology,2008,100(3):120-130.
    [59]傅华,李国英.堆石料与基岩面直剪试验[J].水利水运工程学报,2003,4):37-40.
    [60]陈生水,关秉洪,朱铁.堆石料与基岩面间抗剪强度试验研究[J].岩土工程学报,1999,21(5):621-624.
    [61]杨光,孙江龙,于玉贞,等.偏应力和球应力往返作用下粗粒料的变形特性[J].清华大学学报(自然科学版),2009,49(6):838-841.
    [62]杨光,孙江龙,于玉贞,等.循环荷载作用下粗粒料变形特性的试验研究[J].水力发电学报,2010,29(4):154-159.
    [63]杨光,孙逊,于玉贞,等.不同应力路径下粗粒料力学特性试验研究[J].岩土力学,2010,31(4):1118-1122.
    [64]杨光,张丙印,于玉贞,等.不同应力路径下粗粒料的颗粒破碎试验研究[J].水利学报,2010,41(3):338-342.
    [65]李翀,何昌荣,王琛,等.粗粒料大型三轴试验的尺寸效应研究[J].岩土力学,2008,29(S1):
    [66]胡黎明,马杰,张丙印,等.粗粒料与结构物接触面力学特性缩尺效应[J].清华大学学报(自然科学版),2007,47(3):327-330.
    [67]花俊杰,周伟,常晓林,等.堆石体应力变形的尺寸效应研究[J].岩石力学与工程学报,2010,29(2):328-335.
    [68]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报,1994,16(4):89-95.
    [69]翁厚洋,朱俊高,余挺,等.粗粒料缩尺效应研究现状与趋势[J].河海大学学报(自然科学版),2009,37(4):425-429.
    [70]杨贵,刘汉龙,陈育民,等.堆石料动力变形特性的尺寸效应研究[J].水利发电学报,2009,28(5):121-126.
    [71]朱俊高,翁厚洋,吴晓铭,等.粗粒料级配缩尺后压实密度试验研究[J].岩土力学,2010,31(8):2394-2398.
    [72]刘萌成,高玉峰,刘汉龙,等.堆石料变形与强度特性的大型三轴试验研究[J].岩石力学与工程学报,2003,23(7):1104-1111.
    [73]刘萌成,高玉峰,刘汉龙.堆石料剪胀特性大型三轴试验研究[J].岩土工程学报,2008,30(2):205-211.
    [74]秦红玉,刘汉龙,高玉峰,等.粗粒料强度和变形的大型三轴试验研究[J].岩土力学,2004,25(10):1575-1580.
    [75]张少宏,张爱军,陈涛.堆石料三轴湿化变形特性试验研究[J].岩石力学与工程学报,2005,24(S2):5938-5942.
    [76]高玉峰,张兵,刘伟,等.堆石料颗粒破碎特征的大型三轴试验研究[J].岩土力学,2009,30(5):1237-1246.
    [77]魏松,朱俊高,钱七虎,等.粗粒料颗粒破碎三轴试验研究[J].岩土工程学报,2009,51(4):533-538.
    [78]董威信,孙书伟,于玉贞,等.堆石料动力特性大型三轴试验研究[J].岩土力学,2011,32(S2):296-301.
    [79]王琛,詹传妮.堆石料的三轴松弛试验[J].四川大学学报(工程科学版),2011,43(1):27-30.
    [80] Wei H, Dano C, Hicher P Y. experiments on a calcareous rockfill using a large triaxial cell;proceedings of the GeoShanghai2010International Conference, ShangHai, F,2010[C]. ASCE.
    [81]廖秋林,李晓,朱万成,等.基于数码图像土石混合体结构建模及其力学结构效应的数值分析[J].岩石力学与工程学报,2010,29(1):155-162.
    [82]秦武,杜成斌,孙立国.基于数字图像技术的混凝土细观层次力学建模[J].水利学报,2011,42(4):431-439.
    [83]徐文杰,胡瑞林,岳中崎.基于数字图像处理的土石混合体细观结构[J].辽宁工程技术大学学报(自然科学版),2008,27(1):51-53.
    [84]岳中崎,陈沙,郑宏,等.岩土工程材料的数字图像有限元分析[J].岩石力学与工程学报,2004,23(6):
    [85] Xu W J, Yue Z Q, Hu R L. Study on the mesostructure and mesomechanical characteristics of thesoil-rock mixture using digital image processing based finite element method[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2008,45(5):749-762.
    [86] Yue Z Q, Chen S, Tham L G. Finite element modeling of geomaterials using digital imageprocessing[J]. Computers and Geotechnics,2003,30(5):375-397.
    [87] Stroeven P, Hu J, Guo Z. Shape assessment of particles in concrete technology:2D imageanalysis and3D stereological extrapolation[J]. Cement&Concrete Composites,2009,31(1):84-91.
    [88] Man H K, Jan G M, von Mier. Influence of particle density on3D size effects in the fracture of(numerical) concrete[J]. Mechanics of Materials,2008,40(6):470-486.
    [89]马辉,高明忠,张建康,等.卵石土等效弹性模量理论预测模型初探[J].岩土力学,2011,32(12):3642-3646.
    [90]宋晓刚,杨智春.一种新的混凝土圆形骨料投放数值模拟方法[J].工程力学,2010,27(1):154-159.
    [91]宋晓刚,杨智春.混凝土多边形骨料投放的随机游走算法[J].应用力学学报,2009,26(4):808-811.
    [92]柏巍,彭刚.蒙特卡罗法生成混凝土随机骨料模型ANSYS实现[J].石河子大学学报(自然科学版),2007,25(4):504-507.
    [93]程伟峰.混凝土三维随机凸型骨料模型生成方法研究[J].水利学报,2011,42(5):609-615.
    [94]董蔷薇,袁达,宋斌,等.混凝土细观骨料模型随机性的分形验证[J].河海大学学报(自然科学版),2011,39(1):95-98.
    [95]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报,2006,37(6):662-667.
    [96]付兵,李建波,林皋,等.基于真实骨料形状库的混凝土细观数值模型[J].建筑科学与工程学报,2010,27(2):
    [97]付兵,李建波,林皋,等.基于真实骨料形状库的混凝土细观数值模型[J].建筑科学与工程学报,2010,27(2):10-17.
    [98]高利甲,刘锡军,王玉梅.基于MATLAB混凝土二维细观结构数值模拟骨料随机投放[J].湖南工程学院学报,2011,21(1):81-84.
    [99]高巧红,关振群,顾元宪,等.混凝土骨料有限元模型自动生成方法[J].大连理工大学学报,2006,46(5):641-646.
    [100]高政国,刘光庭.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714.
    [101]侯宇星,王立成.混凝土细观分析中随机多边形骨料生成方法[J].建筑科学与工程学报,2009,26(4):59-65.
    [102]李建波,林皋,陈健云.随机凹凸型骨料在混凝土细观数值模型中配置算法研究[J].大连理工大学学报,2008,48(6):869-874.
    [103]李坛,朱慈勉.混凝土随机多面体骨料模型的生成方法[J].结构工程师,2011,27(4):23-27.
    [104]李运成,马怀发,陈厚群,等.混凝土随机凸多面体骨料模型生成及细观有限元剖分[J].水利学报,2006,37(5):588-592.
    [105]刘光庭,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003,43(8):1120-1123.
    [106]刘光庭,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89.
    [107]马怀发,芈书贞,陈厚群.一种混凝土随机凸多边形骨料模型生成方法[J].中国水利水电科学研究院学报,2006,4(3):196-201.
    [108]邱志章,王宗敏.混凝土随机骨料结构在非线性有限元分析中的应用[J].混凝土,2010,7):22-24.
    [109]孙立国,杜成斌,戴春霞.大体积混凝土随机骨料数值模拟[J].河海大学学报(自然科学版),2005,33(3):291-295.
    [110]覃伟平,杨新华,陈传尧.一种快速的三维凸型混凝土骨料随机投放算法[J].水电能源科学,2006,24(3):39-42.
    [111]唐欣薇,张楚汉.随机骨料投放的分层摆放法及有限元坐标的生成[J].清华大学学报(自然科学版),2008,48(12):2048-2052.
    [112]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报,2005,22(6):728-732.
    [113]杨新华,徐瑞,陈传尧.三维随机多面体骨料生成和投放技术[J].华中科技大学学报(自然科学版),2009,37(8):99-102.
    [114]应宗权,杜成斌,孙立国.基于随机骨料数学模型的混凝土弹性模量预测[J].水利学报,2007,38(8):933-937.
    [115]张剑,金南国,金贤玉,等.混凝土多边形骨料分布的数值模拟方法[J].浙江大学学报(工学版),2004,38(5):581-585.
    [116]钟根全,李丽娟,刘锋,等.混凝土二维随机骨料的数值模拟[J].混凝土,2008,9):70-73.
    [117]石建光.再生骨料对混凝土性能影响的试验研究和计算分析[D].上海;上海大学,2010.
    [118]孙立国.三级配(全级配)混凝土骨料形状数值模拟及其应用[D];南京:河海大学,2005.
    [119] Liu J, Geng Q D. Three-dimensional particles generation algorithm[J]. Journal of DalianUniversity of Technology,2011,51(2):
    [120]徐文杰,胡瑞林,岳中崎.土-石混合体随机细观结构生成系统的研发及其细观结构力学数值试验研究[J].岩石力学与工程学报,2009,28(8):1652-1665.
    [121]郭培玺,林绍忠.粗粒料颗粒随机分布的数值模拟[J].长江科学院院报,2007,24(4):50-52.
    [122]郭培玺,林绍忠.粗粒料力学特性的DDA数值模拟[J].长江科学院院报,2008,25(1):58-60.
    [123]马刚,周伟,常晓林,等.堆石体三轴剪切试验的三维细观数值模拟[J].岩土工程学报,2011,55(5):746-753.
    [124]马刚,周伟,常晓林,等.考虑颗粒破碎的堆石体三维随机多面体细观数值模拟[J].岩石力学与工程学报,2011,30(8):1671-1682.
    [125]周尚志.混凝土动静力破坏过程的数值模拟及细观力学分析[D].西安;西安理工大学,2007.
    [126]朱兴一.沥青混凝土的细观力学模型及数值模拟[D].杭州;浙江大学,2010.
    [127]黄海燕.混凝土尺寸效应理论研究与断裂参数分析[D].南京;河海大学,2004.
    [128]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].南京;河海大学,2007.
    [129]唐欣薇.基于宏细观力学的混凝土破损行为研究[D].北京;清华大学,2008.
    [130]应宗权,杜成斌.考虑界面影响的混凝土弹性模量的数值预测[J].工程力学,2008,25(8):92-96.
    [131] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique,1979,29(1):47-65.
    [132] Cusatis G, Pelessone D, Mencarelli A. Lattice Discrete Particle Model (LDPM) for failurebehavior of concrete. I: Theory[J]. Cement&Concrete Composites,2011,33(9):881-890.
    [133] Sullivan C O. Particle-based discrete element modeling: Geomechanics perspective[J].International journal of geomechanics,2011,11(6):449-464.
    [134] Park J W, Song J J. Numerical simulation of a direct shear test on a rock joint using abonded-partical model[J]. International Journal of Rock Mechanics&Mining Sciences,2009,46(8):1315-1328.
    [135] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of RockMechanics&Mining Sciences,2004,41(8):1329-1364.
    [136] Wang C, Tannant D D, Lilly P A. Numerical analysis of the stability of heavily jointed rockslopes using PFC2D[J]. International Journal of Rock Mechanics&Mining Sciences,2003,40(3):415-424.
    [137]李立青,蒋明镜,吴晓峰.椭圆形颗粒堆积体模拟颗粒材料力学性能的离散元数值方法[J].岩土力学,2011,32(S1):714-718.
    [138]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [139] Bi Z, Sun Q, Jin F, et al. Numerical study on energy transformation in granular matter underbiaxial compression[J]. Granular Matter,2011,13(4):503-510.
    [140]严颖,季顺迎.碎石料直剪实验的组合颗粒单元数值模拟[J].应用力学学报,2009,26(1):1-7.
    [141]杨贵,肖杨,高德清.粗粒料三维颗粒流数值模拟及其破坏准则研究[J].岩土力学,2010,31(S2):402-406.
    [142]刘君,刘福海,孔宪京.考虑破碎的堆石料颗粒流数值模拟[J].岩土力学,2008,29(1):107-112.
    [143] Sitharam T G, Vinod J S. Evaluation of Shear Modulus and Damping Ratio of Granular MaterialsUsing Discrete Element Approach[J]. Geotechnical and geological engineering,2010,28(5):591-601.
    [144] Vallejo L E, Lobo-Guerrero S, Chik Z. A network of fractal force chains and their effect ingranular materials under compression[M]. Fractals in engineering. Springer.2005:67-80.
    [145]蒋明镜,李秀梅,胡海军.含抗转能力散粒体的宏微观力学特性数值分析[J].计算力学学报,2011,28(4):622-628.
    [146] Chen W, Qiu T. Numerical simulations for large deformation of granular materials usingsmoothed particle hydrodynamics method[J]. International journal of geomechanics,2012,12(2):127-135.
    [147]魏建国.沥青稳定碎石技术特性研究[D].西安;长安大学,2008.
    [148]缪协兴.综合机械化固体充填采煤矿压控制原理与支架受力分析[J].中国矿业大学学报,2010,39(6):795-801.
    [149]查剑锋,郭广礼,刘元旭,等.矸石变形非线性及其对岩层移动的影响[J].煤炭学报,2009,34(8):1071-1075.
    [150]王启春,郭广礼,查剑锋,等.厚松散层下矸石充填开采地表移动规律研究[J].煤炭科学技术,2013,41(2):96-99.
    [151]周振宇,郭广礼,查剑锋,等.建筑物下矸石充填巷采沉陷控制研究[J].煤矿安全,2008,8(405):19-22.
    [152]查剑锋.矸石充填开采沉陷控制基础问题研究[D];徐州:中国矿业大学,2008.
    [153]马占国,范金泉,朱发浩,等.矸石充填巷采等价采高模型探讨[J].煤,2010,19(8):1-6.
    [154]马占国,王建斌,苏海,等.高应力区超高巷采矸石充填采煤技术[J].煤炭科技,2008,4):32-35.
    [155]胡炳南,李宏艳.煤矿充填体作用数值模拟研究及其机理分析[J].煤炭科学技术,2010,4):13-16.
    [156]刘长友,杨培举,侯朝炯,等.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [157]朱仁诒,容灵惠.应用矸石自溜充填法开采村庄下压煤[J].煤炭科学技术,1989,10):2-6.
    [158]程艳琴,邱秀梅,王连国,等.充填对围岩控制作用效果的数值模拟研究[J].山东农业大学学报:自然科学版,2007,37(4):637-641.
    [159] Turcotte D. Fractals and fragmentation[J]. Journal of Geophysical Research: Solid Earth (1978–2012),1986,91(B2):1921-1926.
    [160]钱自卫,曹丽文,姜振泉,等.煤矸石侧限加载-浸水-卸载实验研究[J].采矿与安全工程学报,2013,30(4):578-582.
    [161]杜俊,侯克鹏,梁维,等.粗粒土压实特性及颗粒破碎分形特征试验研究[J].岩土力学,2013,34(S1):155-161.
    [162]申存科,迟世春,贾宇峰.颗粒破碎对粗粒料力学特性的影响研究[J].水利与建筑工程学报,2009,7(2):5-7.
    [163]张季如,祝杰,黄文竞.侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J].岩土工程学报,2008,30(6):783-789.
    [164]张家铭,蒋国盛,汪稔.颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J].岩土力学,2009,30(7):2043-2048.
    [165] Einav I. Breakage mechanics—part I: theory[J]. Journal of the Mechanics and Physics of Solids,2007,55(6):1274-1297.
    [166] Mcdowell G, Bolton M, Robertson D. The fractal crushing of granular materials[J]. Journal ofthe Mechanics and Physics of Solids,1996,44(12):2079-2101.
    [167] Jaky J. Pressure in silos; proceedings of the Proceedings of the2nd International Conference onSoil Mechanics and Foundation Engineering, F,1948[C].
    [168] Mcdowell G, Bolton M. On the micromechanics of crushable aggregates[J]. Géotechnique,1998,48(5):667-679.
    [169] Jones D R, Ashby M F. Engineering materials volume2: an introduction to microstructures,processing and design[M]. Butterworth-Heinemann,1998.
    [170] Garboczi E J. Three-dimensional mathematical analysis of particle shape using X-raytomography and spherical hamonics: Application to aggregates used in concrete[J]. Cement andConcrete Research,2002,32(10):1621-1638.
    [171] Garboczi E J. Three-dimensional mathematical analysis of particle shape using X-raytomography and spherical harmonics: Application to aggregates used in concrete[J]. Cement andConcrete Research,2002,32(10):1621-1638.
    [172] Lin C, Miller J.3D characterization and analysis of particle shape using X-ray microtomography(XMT)[J]. Powder Technology,2005,154(1):61-69.
    [173] Wang L, Park J Y, Fu Y. Representation of real particles for DEM simulation using X-raytomography[J]. Construction and Building Materials,2007,21(2):338-346.
    [174] Lu M, Mcdowell G. The importance of modelling ballast particle shape in the discrete elementmethod[J]. Granular Matter,2007,9(1-2):69-80.
    [175]张程林.级配颗粒堆积体密度估算方法研究[D];华南理工大学,2013.
    [176] Forrest A. Computational geometry in practice[M]. Fundamental Algorithms for ComputerGraphics. Springer.1991:707-724.
    [177] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms (Third Edition)[M].London: The MIT Press,2009.
    [178] Schneider P J, Eberly D H. Geometric Tools for Computer Graphics[M]. San Francisco: MorganKaufmann Publishers, An imprint of Elsevier Science,2003.
    [179] Pirzadeh H. Computational geometry with the rotating calipers[D]; McGill University,1999.
    [180] Ericson C. Real-time collision detection[M]. CRC Press,2004.
    [181] Cameron S. Enhancing GJK: Computing minimum and penetration distances between convexpolyhedra; proceedings of the ICRA, F,1997[C]. Citeseer.
    [182] Itasca Consulting Group Inc. PFC3d User's Manual[M].3.0ed. Minneapolis,2003.
    [183]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [184]徐芝纶.弹性力学(下册)[M].第四版.北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700