用户名: 密码: 验证码:
动压影响底板巷道大变形力学机理及围岩控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮北矿区芦岭煤矿二水平主要开拓和准备巷道不受采动影响时,巷道维护状况良好,但在受到煤层开采的扰动时,变形强烈,不但巷道受影响的超前距离长,而且影响程度也大,巷道的变形和破坏极为严重,几乎所有底板巷道都要经过多次翻修,造成巷道维护困难,严重影响了矿井的正常生产秩序。
     本文采用理论分析、实验室试验、数值模拟和工业性试验相结合的综合研究方法,系统分析了动压影响底板巷道围岩大变形力学机理、采场底板应力分布规律及底板破坏深度、动压影响底板巷道围岩变形破坏规律,以及不同支护方式下动压影响底板巷道围岩稳定性时空演化规律。主要研究成果如下:
     (1)通过引入岩体强度软化模量Q=(σε-σcb)/ε0pb-ε0εp,建立静、动压条件下考虑应变软化条件时圆形巷道围岩弹塑性力学分析模型。然后推导出静、动压条件下的巷道围岩破裂区、塑性区、弹性区三区应力、位移新解。新解算例表明,应变软化模量对围岩“三区”范围影响显著,能够更为客观地反映静、动压条件下巷道围岩强度随应变增加而降低的特性。若岩石力学参数选择合理,则从理论上可以得到更为合理的解析解。通过提高破裂区岩体残余强度,可以有效控制破裂区半径,并可以作为今后动、静压巷道布置、支护设计施工的有效依据。
     (2)通过岩石力学试验,得到芦岭矿Ⅱ82采区石门砂岩岩块的单轴抗压、抗拉、抗剪强度。通过分析采动岩体的力学特性和运用roclab软件对采动岩体力学参数进行优化。通过X射线衍射实验可知:该巷道围岩所含膨胀性岩石组份极少,基本可以排除物化膨胀型的变型力学机制。通过现场调查可知:该巷道附近没有断层、褶曲等地质构造,岩层结构较好,没有特别软弱的夹层,层理、节理也不发育,基本可以排除结构变形型力学机制。认为该巷道变形仅为单一的应力扩容型变型力学机制,属于IID工程偏应力型软岩;
     (3)基于圣维南原理,将采场底板支承压力进行线性简化,引入分区函数ζ,求得工作面走向底板支承压力分布不同区域的集度q,并在此基础上求得底板应力分量σx、σy、τxy的积分表达式,并据此分析底板走向支承压力的分布规律;
     (4)假设采动应力场为弹性薄板中间矩形开孔问题,在基于Westergaad应力函数的采场围岩应力计算模型基础上求解得到采场附近应力场。从传统的采场附近应力场简化公式求得:①平面应力条件下采场边缘主应力值σ1、σ2、σ3边界方程r、采场底板岩体最大破坏深度值h,并根据上述公式求得8#煤开采底板最大破坏深度hm;②平面应变条件下采场边缘主应力值σ1、σ2、σ3’,边界方程r1、采场底板岩体最大破坏深度值h,并根据上述公式求得8#煤开采底板最大破坏深度hm;
     (5)提出一种“大、小塑性区”条件下留设底板巷道合理位置的计算公式:
     该公式即考虑采场底板塑性区范围又考虑动压影响底板巷道塑性区半径。据此,求得II82采区石门理论位置为距采场底板38.66m;
     (6)通过数值模拟分析得到巷道围岩内部大变形活动规律:该类巷道先后受到工作面超前支承压力和工作面后方老顶破断、回转的影响,巷道围岩不同部位、不同深度均产生极不均匀变形,该极不均匀变形极易导致U型棚或一次锚网承载结构结构性失稳,由“弱结构”部位继而引发整体结构性失稳。
     (7)提出二次锚网索支护中结构补强锚索作用机理为:针对单一锚杆支护承载结构的薄弱位置进行结构补强,可以提高原有支护方式中锚杆组合拱的厚度,改善了围岩的自承载能力,大幅度增强了锚网索支护承载结构的稳定性和承载能力。
     提出棚索耦合支护中结构补强锚索作用机理为:针对棚式支护被动承载结构的薄弱部位进行结构补强,大幅提高了U型棚帮部结构稳定性和承载能力,既充分利用U型棚的高强护表能力,又充分发挥锚索主动承载性能,大幅度提高了U型棚支护承载结构的稳定性和承载能力。
     (8)基于以上研究,提出两套巷道支护方案:①棚索耦合+底板锚网索+注浆;②二次锚网索结构补强+底板锚网索+注浆。矿压观测表明:两套方案均能比一次锚网支护更好的控制该类巷道围岩的极不均匀大变形,减小巷道表面位移,降低维护成本,具有较大的推广应用价值。
Luling coal mine, huaibei mining area two level of the main development and preparation of roadway is not affected by mining, roadway maintenance in good condition, but by coal bed mining disturbance, deformation, advance roadway affected not only the distance is long, but also big influence degree, deformation and failure of tunnel is very serious, almost all floor roadway after many renovations, cause roadway maintenance difficulties, seriously affected the normal production order of mine.
     Based on the theoretical analysis, laboratory test, numerical simulation and industrial test the integrated research methods of combining systematic analysis of the dynamic pressure influence mechanism of large deformation mechanics, stope floor of roadway surrounding rock stress distribution and floor damage depth, the dynamic pressure influence floor of roadway surrounding rock deformation and failure regularity, under different supporting method and the dynamic pressure influence the space-time evolution of floor roadway surrounding rock stability.The major achievements of this thesis are given as below:
     (1)By introducing rock mass strength softening modulus Q=σc-σbc/εpb0-εep0, the elastic-plastic mechanical analysis model of round roadway surrounding rock with consideration of strain softening condition under static pressure and mining pressure was set up. Then, the stress and new displacement explanation of elastic-plastic three area of roadway surrounding rock under static pressure and dynamic pressure were deduced. The new explanation example shows that strain softening modulus has remarkable impact on surrounding rock "three areas" scope, which can objectively reflect the features of roadway surrounding rock strength decrease along with strain increase under static pressure and dynamic pressure. This is the mechanical mechanism of large deformation for this kind of roadway. If reasonable rock physical and mechanics parameters are selected, then more reasonable analytic solutions can be obtained in theory. By improving residual strength status of fracture zone, the fracture zone radius can be effectively controlled. It is the mechanical mechanism of the roadway surrounding rock stability control, which can provide effective gist for the roadway arrangement and supporting design construction under static pressure and dynamic pressure.
     (2)By conducting the tests of indoor rock physical and mechanical properties, the uniaxial compressive, tensile and shearing strengths of sand rock mass at Ⅱ82mining area crosscut in Luling Coalmine were obtained. The shearing strength curve of sand rock was gained by matching. By analyzing the mechanical properties of mined rock mass and optimizing the mechanical parameters of mined rock mass with roclab software, the reliable mechanical parameters of rock mass was offered for the further numerical modeling establishment. Based on the analysis of rock constituents experiment, it can be concluded that the swelling rock constituents are precious few contained in roadway surrounding rock. This is merely single stress dilatation deformation mechanical mechanism rather than materialization dilatation deformation mechanical mechanism. Thus, it belongs to deviatoric stress soft rock of ⅡD project.
     (3)On the basis of saint venant principle, linear simplification of stope floor abutment pressure was made. Partitioning function ξ was introduced to calculate the intensities of floor abutment pressure distributions at different zones in working face direction. Based on the above, the integral representations of floor stress componentsσx, σy and τxy were computed. Then, the distribution law of abutment pressure in floor direction was analyzed.
     (4)Provided that mining stress field involves rectangle trepanning in the middle of elastic sheet, stress field nearby stope can be computed based on stope surrounding rock stress calculation model of Westergaad stress function. By simplified formula from stress field nearby traditional stope, it can be obtained:①under plane stress, principal stress value on the edge of stopeσ1,σ2and σ3, boundary equation r as well as maximal destruction depth value of stope floor rock mass h. According to the above equations, the maximal destruction depth value of mining floor in8#Coal hm=22.03m was obtained.②under plane strain, principal stress value on the edge of stopeσ1, σ2and σ3, boundary equation r'as well as maximal destruction depth value of stope floor rock mass h. According to the above equations, the maximal destruction depth value of mining floor in8#Coal hm=20.83m was obtained.
     (5)The computational formula of floor destruction depth under the condition of "big and small plastic zone" was proposed where both plastic zone radius of dynamic pressure influenced floor roadway and plastic zone range of stope floor were considered. The theoretical burial depth of1182mining area crosscuts had the distance of38.66m from stope floor, which was in line with field reality.
     (6)By adopting strain softening model in discrete element software UDEC, the mechanical model of stope and dynamic pressure influenced floor roadway was made, distribution features of stope floor abutment pressure were analyzed and following variation laws were acquired. The first is the variation law of floor fracture zone distribution along with working face advancing distance L. The second is that of floor fracture development along with working face advancing distance L. Through comprehensive comparison of influence laws of dynamic pressure on floor roadway surrounding rock equivalent stress, displacement, destruction line and fracture development, the internal activity law of dynamic pressure influenced floor roadway surrounding rock was given. In summary, this kind of roadway is influenced by lead abutment pressure of working face floor as well as upper roof fracture and revolving in the back of working face. There is uneven deformation for roadway surrounding rock from different parts at different depths, which can easily cause structural instability of support or abutment structure. Furthermore,"weak structure" part then triggers overall structural instability and global deformation.
     (7)The distribution law of surrounding rock equivalent stress, displacement and plastic zone is in organic connection with that of anchor rod axial force and failure zone wholly. By analyzing mechanical state of mining rock mass, supporting efficiency under different supporting ways was explained. In the same way, supporting efficiency under different supporting ways can be used to analyze mechanical state of mining rock mass. The supporting abutment behaviors of floor roadway at different parts involved transfer in different mining stages in working face. However, the stress was increased and supporting abutment property was improved as a whole. The action mechanism of structural reinforcement anchor rope means: structural reinforcement was made aiming at the weak location of single anchor rod supporting abutment structure to increase the thickness of anchor rod compound arch from original supporting way, enhance self-abutment capacity of surrounding rockand substantially reinforce the abutment capacity and structural stability of anchor netsupporting abutment structure. The action mechanism of structural reinforcementanchor rope on U-steel frame supporting roadway means: structural reinforcementwas made aiming at the weak location of shack supporting passive abutment structureto sharply improve the abutment capacity and structural stability of U-steel framesupport sides. In this way, highly intensive surface-protected capacity of U-steelframe support was fully used and active abutment property of anchor rope was fullydisplayed so to sharply improve the abutment capacity and structural stability ofU-steel frame supporting abutment structure. Suppose that there is the same stress fordynamic pressure influenced floor roadway, the supporting effect of shack-ropecoupling supporting is better than twice supporting of high-strength anchor-net-rope.Thus, beneficial reference can be provided for choosing reasonable supporting waysunder the same condition.
     (8)On the basis of detailed investigation into Ⅱ82mining area crosscuts geology,mining conditions and reasons of roadway surrounding rock failure, two sets oftesting programs of roadway stability controlling technology were proposed incombination with theoretical analysis and numerical simulation:
     ①S cheme of high-strength stability supporting at U-steel frame
     ②S cheme of high-strength stability supporting at anchor net supporting section
     The long-term mine pressure observation station was arranged for the testroadway to observe surface displacement. The monitoring results suggest that: underthe conditions of the similar geology, mining conditions, construction techniques andforces, the support effect of shack-rope coupling plus floor grouting is bettercompared with twice structural reinforcement of anchor-net-rope plus floor grouting,which can control the extremely uneven deformation of dynamic pressure influencedroadway surrounding rock to larger extent and reduce roadway surface displacementquantity by a large margin. In addition, the service length of developing systemroadway can be prolonged with bigger promotional value.
引文
[1]张华磊.采场底板应力传播规律及其对底板巷道稳定性影响研究[D].中国矿业大学,2011.
    [2]康钦容.缓斜煤层群采动影响下底板软岩巷道围岩稳定性控制[D].重庆大学,2011.
    [3]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [4]徐芝伦.弹性力学[M].北京:高等教育出版社,2002.
    [5]朱术云,姜振泉,姚普等.采场底板岩层应力的解析法计算及应用[J].采矿与安全工程学报,2007,24(2):192-195.
    [6]唐孟雄.采面底板应力计算及应用[J].湘潭矿业学院学报,1990,5(2):119-124.
    [7]张晓君.矿柱及围岩对采空区破坏影响的数值模拟研究[J].采矿与安全工程学报,2006,23(1):123-126.
    [8]肖远见,李美海,周定武.开采层底板岩层的应力分布实验及探讨[J].矿业安全与环保,2005,32(5):28-31.
    [9]弓培林,胡耀青,赵阳升等.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2005,24(23):4396-4402.
    [10]彭维红,董正筑,李顺才.半平面体弹性问题的边界积分公式及应用[J].中国矿业大学学报,2005,34(3):400-404.
    [11]关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003,28(2):121-125.
    [12]林峰.煤层底板应力分布的相似材料分析[J].淮南矿业学院学报,1990,10(3):19-27.
    [13]郭惟佳.采面底板应力分布及对底板突水的影响[J].中州煤炭,1990(1):19-21.
    [14]尹鹤峰,王宏,朱宏新.利用空间弹性理论分析和计算采动影响下的底板应力分布[J].阜新矿业学院学报,1992,11(1):19-24.
    [15]李兴高,高延法.开采对底板岩体渗透性的影响[J].岩石力学与工程学报,2003,22(7):1078-1082.
    [16]秦忠诚,王同旭.深井孤岛综放面支承压力分布及其在底板中的传播规律[J].岩石力学与工程学报,2004,23(7):1127-1131.
    [17]康红普,王金华等.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [18]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [19]徐有基.构造及采动对金川二矿区1150中段围岩及矿岩稳定性的影响[D].兰州大学,2006.
    [20]姚裕春.高水平应力软岩巷道围岩变形机理及支护对策[D].西安科技学院,2002.
    [21]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999,18(4):392-396.
    [22]贾蓬,唐春安,王述红等.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15.
    [23]李国富.高应力软岩巷道变形破坏机理与控制技术研究[J].矿山压力与顶板管理,2003,(2):50-52.
    [24]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1861.
    [25]WJ.Gale.Strata Control Dtillising Rock Reinforcement Techniques and Stress ControlMethodsin Australia Coal Mines[J].Mining Engineer,1991(1)
    [26] Jiang Jinquan, Ban Jisheng.Probability Distribution Characteristic Parameters and MethodtoPredict the Deformation of surrounding Rocks of Extraction Openings[J].A.A.BALKEMA/ROTTERDAMBROOKFIELD,1997.10
    [27] Hou Zhao jiong, He Yanan, Zhang Yidong. Key technique to compositely supportingtheroadway driven along previous goaf with bolts, bara and chainmeshes under complexcondition[J].Journal of Coal Science and Engineering(China),1995,7.
    [28]孔德森,蒋金泉.深部巷道围岩在复合应力场中的稳定性数值模拟分析[J].山东科技大学学报(自然科学版),2001,20(1):68-70.
    [29]陈祖煜.关于“边坡稳定性的三维极限平衡分析方法及应用”的讨论[J].岩土工程学报,2001,23(1):127-129.
    [30]于学馥.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [31]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986(3):77-85.
    [32]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [33]付国彬,靖洪文等.巷道围岩松动圈随采深变化的规律[J].建井技术,1994(4):4-5.
    [34]王立朝.深井动压巷道围岩变形机理及支护技术研究[D].山东科技大学,2000.
    [35]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [36]魏福生.深部巷道围岩松动圈随地应力的变化规律及巷道控制技术的探讨[D].重庆大学,2001.
    [37]王永岩,马士进.软岩巷道围岩变形时序预测方法的研究[J].辽宁工程技术大学学报自然科学版,2001,20(4):505-506.
    [38]王永岩.软岩巷道变形与压力分析、控制与预测[J].岩石力学与工程学报,2004,23(1):158-158.
    [39]范文,俞茂宏.基于统一强度理论的地基极限承载力公式[J].岩土力学,2005,26(10):1617-1622.
    [40]李明远,王连国,易恭蝤等.软岩巷道锚注支护理论与实践[M].北京:煤炭工业出版社,2001.
    [41]翟所业,贺宪国.巷道围岩塑性区的德鲁克-普拉格准则解[J].地下空间与工程学报,2005,1(2):223-226.
    [42]蒋斌松,张强,贺永年等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5):982-986.
    [43]Malan D F.Time-dependent behavior of deep level tabular excavations in hard rock[J].RockMechanics and Rock Engineering,1999,32(2):123-155.
    [44] Grgic D, Homand F, Hoxha D.A short-and long-term rheological model to understand thecollapses of iron mines in Lorraine, France [J].Computers and Geotechnics,2003,30(7):557-570.
    [45] Kitsutaka Yoshhinori. Fracture parameters by polylineat tension-softening analysis[J]. Journalof Engineering Mechanics,1997,123(5).
    [46][50]Kaiser P K, Guenot A, Morgenstern N R.Deformation of small roadways partIV-behaviorduring failure[J]. Int J Rock Mech&Min Sci Geomech Abstr,1985,22:141-152
    [47]Fairhurst C.Deformation,yield,rupture and stability of excavations at great depth[A].In:FairhustC ed. Rockburst and Seismacity in Mines[C].Rotterdam: A.A.Balkema,1990:1103-1114.
    [48]P. Egger. Design and Construction Aspects of Deep Roadways (with particular emphasisontrain softening rocks)[J]. Tunnelling and Underground Space Technology,2000,15(4):403-408.
    [49]J.F. Shao, Q.Z. Zhu, K. Su. Modeling of creep in rock materials in terms ofmaterialdegradation[J]. Computers and Geotechnics,2003,30:549-555[54] PuschR.Mechanisms and consequences of creep in crystal line rock[A].In: Hudson JAed.Comprehensive Rock Engineering[C].Oxford:Program on Press,1993:227-241.
    [50]Kiyama H., Fujimara H., Nishimura T., et al. Theoretical construction of abutmentcharacteristiccurve in tunneling[J]. J. Soc. Mat. Sci. Japan,1992,41(463):417-423[56]Ladanyi B., Gill D. E.. Design of tunnel linings in a creeping rock[J]. Int. J. Min.&GeologicalEng.,1988,6:113-126.
    [51]Minh D. N., Habib P., Guerpillon Y.. Time dependent behaviour of a pilot tunnel driven inhardmarls. ISRMBGS. Cambridge.1984.453-459[58] Chern, J.C., F.Y. Shiao, C.W.Yu. Anempirical safety criterion for tunnel construction[C].In:Regional Symposium on SedimentaryRock Engineering. Taipei, Taiwan.1998:222-227
    [52]Fairhurst.Deformation, yield, rupture and stability of excavations at great depth[A].In:FairhustC ed. Rockburst and Seismacity in Mines [C].Rotterdam: A.A.Balkema,1990:1103-1114.
    [53]Pusch R. Mechanisms and consequences of creep in crystal line rock[A].In: Hudson J Aed.Comprehensive Rock Engineering[C].Oxford: Program on Press,1993:227-241.
    [54]Malan D F. Simulation and Rock Engineering of the time-dependent behavior of excavationsinhard rock[J]. Rock Mechanics2002:35(4):225-254.
    [55]缪协兴,陈智纯.软岩力学[M].徐州:中国矿业大学出版社,1995.
    [56]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].武汉:中科院武汉岩土力学研究所,2005.
    [57]张向东,李永靖,张树光.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [58]刘建忠,杨春和,李晓红.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报,2004,23(22):3794-3798.
    [59]陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与顶板管理,2005,(3):43-45.
    [60]陶波,伍法权.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17):3165-3171.
    [61]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2007.
    [62]梁先发.考虑围岩软化的圆形巷道粘弹塑性解析[J].工程力学,1998,增:582-587.
    [63]卢爱红,茅献彪,彭维红.软岩巷道的粘弹性分析[J].采矿与安全工程学报,2008,25(3):313-317.
    [64]焦春茂,吕爱钟.粘弹性圆形巷道支护结构上的荷载及其围岩应力的解析解[J].岩土力学,2004,25(增):103-106.
    [65]王汝嘉.粘弹性岩石中井筒的井壁压力及位移[J].东北工学院学报,1984(2):1-12.
    [66]李忠华,官福海,潘一山.基于损伤理论的圆形巷道围岩应力场分析[J].岩土力学,2004,25(增):160-163.
    [67]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报,2007,26(5):877-885.
    [68]李树忱,钱七虎,张敦福等.深埋隧道开挖过程动态及破裂形态分析[J].岩石力学与工程学报,2009,28(10):2104-2112.
    [69]陈建功,贺虎,张永兴.巷道围岩松动圈形成机理的动静力学解析[J].岩土工程学报,2011,33(12):1964-1968.
    [70]曾钱帮,王恩志,王思敬.Hoek-Brown破坏准则求解圆形硐室塑性区半径与修正的芬纳公式比较[J].沈阳建筑大学学报,2008,24(6):933-938.
    [71]潘岳,王志强.基于应变非线性软化的圆形硐室围岩弹塑性分析[J].岩石力学与工程学报,2005,24(6):915-920.
    [72]曾钱帮,王恩志,王思敬.深埋圆形硐室围岩塑性形变压力的广义Hoek-Brown破坏准则解及其三元非线性回归模型[J].岩石力学与工程学报,2009(28)增:3543-3549.
    [73]潘岳,王志强.应变非线性软化的圆形硐室围岩荷载-位移关系研究[J].岩土力学,2004,25(20):1915-1921.
    [74]马念杰,张益东.圆形巷道围岩变形压力新解法[J].岩石力学与工程学报,1996,15(1):84-89.
    [75]刘夕才,轴对称巷道变形的弹塑性理论分析[J].应用研究,1994,(5):20-22.
    [76]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994,15(2):27-36.
    [77]刘夕才,林韵梅.软岩扩容性对巷道围岩特性曲线的影响[J].煤炭学报,1996,21(6):596-601.
    [78]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [79]蒋斌松,杨乐,时林坡.基于Hoek-Brown准则的破裂围岩应力分析[J].固体力学学报,2011(32)专辑:300-305.
    [80]杨荣尚.隧道工程围岩扩容和塑性软化的变形解析[J].西安科技大学学报2008.0928(3):455-460.
    [81] E. T. Brown and E. Hoek. Trends in relationships between measured in-situ stresses anddepth[J]. International Journal of Rock Mechanics and Mining Science&Geomechanics,1978,15(4):211-215.
    [82] John A. Hudson and John P. Harrison. In situ stress[J]. Engineering Rock Mechanics,1997:41-69.
    [83] J. A. Hudson and C. M. Cooling. In Situ rock stresses and their measurement in theU.K.—PartI. The current state of knowledge [J]. International Journal of Rock Mechanics andMining Science&Geomechanics,1988,25(6):363-370.
    [84] C. M. Cooling, J. A. Hudson and L. W. Tunbridge. In situ rock stresses and theirmeasurementin the U.K-Part II. Site experiments and stress field interpretation [J].International Journal of Rock Mechanics and Mining Science&Geomechanics,1988,25(6):371-382.
    [85] O. Stephansson, C. Ljunggren and L. Jing. Stress measurements and tectonic implicationsinFennoscandinavia [J]. International Journal of Rock Mechanics and Mining Science&Geomechanics,1991,28(6):317-322.
    [86] B. Amadei. Measurement of stress change in rock[J]. International Journal of RockMechanics and Mining Science&Geomechanics,1985,22(3):177-182.
    [87]王洪涛.深部巷道围岩破坏机理分析与防治技术[J].山东煤炭科技,2004(1):4-5.
    [88]翟新献,卢喜庸.深部巷道围岩变形机理及对策[J].煤矿设计,1995(2):7-10.
    [89]付国彬,徐金海.深井底板岩巷的围岩破裂范围[J].矿山压力与顶板管理,1996(4):40-42.
    [90]高明中,黄殿武.底板软岩动压巷道围岩应力分布的数值分析[J].安徽理工大学学报,2003(9):14-18.
    [91]翟新献,姜学云.移动压力支承作用下底板巷道围岩变形与采深的关系[J].焦作矿业学院学报,1994,13(6):16-20.
    [92]宋宏伟,郭志宏,周荣章等.围岩松动圈巷道支护理论的基本观点[J].建井技术,1994(4):3-9.
    [93]樊克恭,翟德元.巷道围岩弱结构破坏失稳分析与非均称控制机理[M].北京:煤炭工业出版社,2004.
    [94]樊克恭,翟德元,刘锋珍.岩性弱结构巷道顶底板弱结构体破坏失稳分析[J].山东科技大学学报,2004,23(2):11-14.
    [95]张洪敏,陈建文,牛伟.动压巷道的矿压显现与控制[J].矿山压力与顶板管理,2004(1):46-50.
    [96]顾士亮.软岩动压巷道围岩稳定性原理及控制技术研究[J].能源技术与管理,2004(1):15-37.
    [97]徐任飞,马满顺.对穿岩大巷受上部动压影响的研究[J].河北能源职业技术学院学报,2002(4):59-61.
    [98]刘斌.巷道围岩非线性变形破坏机理及其控制方法[J].中国矿业,1996,15(2):48-51.
    [99]钱鸣高,缪协兴,许家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [100]宋振骐,蒋金泉.煤矿岩层控制的研究重点与方向[J].岩石力学与工程学报,1996,15(2):128-134.
    [101]何满潮,袁和生,靖洪文等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [102]柏建彪.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425.
    [103]冯振山,程洪良.受动压影响的巷道合理支护方式探讨[J].煤,16(4):47-49.
    [104]陆士良,付国彬.采动巷道岩体变形与锚杆锚固力变化规律[J].中国矿业大学学报,1999,28(3):201-203.
    [105]秦练,吴宝刚,李长龙.二矿深部地压巷道变形破坏的原因及防治[J].内蒙古煤炭经济,2002(5):13-14.
    [106] Stillborg Bengt. Professional users handbook for rock bolting[M]. Trans TechPublications,1994.
    [107]Stille Hakan. Rock support in theory and practice. Rock support in mining andundergroundconstruction (Kaiser&McCreath eds), Balkema, Rotterdam,1992.
    [108] Stankus John C., Peng Syd S. A new concept for roof support[J]. Coal Age, September,1996.
    [109]Guo Zhiqiang etc. Supporting techniques for soft rocks and coal with bolt andshotcrete[J].Mining Science and Technology, Guo&Golosinski (eds).Balkema,Rotterdam,1996.
    [110] D. F. Howarth. The Effect of Pre-Ezisting microcaviyies on Mechanical Rock PerformanceinSedimentary and Crystalline Rock[J], Int. J. Rock Mech. Min. Sci.,1987,24(4):223-233.
    [111]陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990(3):20-24.
    [112]王连国,李明远,王学知.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16):2889-2893.
    [113]王连国,张志康,张金耀等.高应力复杂煤层沿空巷道锚注支护数值模拟研究[J].采矿与安全工程学报,2009,26(2):145-149.
    [114]李海亮,王连国,吴宇等.复杂难支护巷道锚注支护技术研究[J].煤炭科技,2008(2):4-7.
    [115]王连国,田金栋,吴宇等.动压软岩巷道锚注支护技术试验研究[J].矿业开发与研究,27(1):63-65.
    [116]吴宇,王连国,李青峰.软岩锚注巷道围岩变形量的时序预测[J].采矿与安全工程学报,2006,23(4):456-459.
    [117]王连国,缪协兴,董建涛.动压巷道锚注支护数值模拟研究[J].采矿与安全工程学报,2006,23(1):39-42.
    [118]王连国,缪协兴,董建涛等.深部软岩巷道锚注支护数值模拟研究[J].岩土力学,2005,26(6):983-985.
    [119]王连国,李明远,毕善军.高应力复杂构造区煤巷锚注支护试验研究[J].矿山压力与顶板管理,2005,21(1):2-4.
    [120]王连国,张连勇,李明好.高应力软岩巷道锚、梁、喷、注支护技术研究[J].矿山压力与顶板管理,2001(4):14-15.
    [121]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [122] John A. Hudson Engineering rock mechanics [M].Redood Books Press,1997.
    [123] F.O.Franclss.WeakRockTunneling[M].A.A.Balkema Press,1997.
    [124] Kidybinski. Strata Control in Deep Mines [M].A.A.Balke-maPress,1990.
    [125]冉玉江,赵立龙.爆破锚杆卸压锚固注浆加固反拱底板技术及施工工艺研究与应用[J].矿业安全与环保,2010,37(4):68-70.
    [126]徐学锋,窦林名,刘军等.煤矿巷道底板冲击矿压发生的原因及控制研究[J].岩土力学,2010,31(6):1977-1982.
    [127]王书兵,毛德兵,任勇.钻孔卸压技术参数优化研究[J].煤矿开采,2010,15(5):14-17.
    [128]王维纲高等岩石力学[M].徐州:中国矿业大学出版社,1996.
    [129]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [130]李世平.岩石力学简明教程[M].徐州:中国矿业学院出版社,1986.
    [131]曾钱帮,马平,刘彤.圆形硐室广义Hoek-Brown围岩弹塑性交界面上径向应力的近似解[J].土木工程学报,2011,44(12):85-92.
    [132]潘岳,王志强,吴敏应.巷道开挖围岩能量释放与偏应力应变能生成的分析计算[J].岩土力学,2007,28(4):663-669.
    [133]潘岳,王志强,王在泉.非线性硬化与软化的巷道围岩应力分布与工况研究[J].岩石力学与工程学报,2006,25(7):1343-1351.
    [133]罗超文,李海波,刘亚群.煤矿深部岩体地应力特征及开挖扰动后围岩塑性区变化规律[J].岩石力学与工程学报,2011,30(8):1613-1618.
    [134]林育梁.软岩工程力学若干理论问题的探讨[J].岩石力学与工程学报,1999,18(6):690-693.
    [135]胡小荣,俞茂宏.三剪强度准则及其在巷道围岩弹塑性分析中的应用[J].煤炭学报,2003,28(4):389-393.
    [136]王其胜,李夕兵,李地元.深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭学报,2008,33(4):364-367.
    [137]王襄禹,柏建彪,陈勇,胡忠超.深井巷道围岩应力松弛效应与控制技术[J].煤炭学报,2010,35(7):1072-1077.
    [138]曾开华,鞠海燕,盛国君,张常光.巷道围岩弹塑性解析解及工程应用[J].煤炭学报,2011,36(5):752-755.
    [139]李英杰,潘一山,李忠华.岩体产生分区碎裂化现象机理分析[J].岩土工程学报,2006,28(9):1124-1128.
    [140]潘阳,赵光明,孟祥瑞.非均匀应力场下巷道围岩弹塑性分析[J].煤炭学报,2011,36卷增:53-57.
    [141]孙金山,卢文波.非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J].岩土力学,2007(28)增:327-332.
    [142]王明斌,李术才.含衬砌圆形压力隧洞弹塑性新解[J].岩石力学与工程学报,2007,(26)增:3770-3775.
    [143]陶帅,王学滨,潘一山,王玮.基于摩尔-库仑模型的非线性本构模型的开发及其在应变局部化中的应用[J].岩土力学,2011(32)增:403-407.
    [144]李英杰,张顶立,刘保国.考虑变形模量劣化的应变软化模型在FLAC3D中的开发与验证[J].岩土力学,2011(32)增:647-659.
    [145]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295.
    [146]刘成学,杨林德,李鹏.考虑应力重分布的深埋圆形透水隧洞弹塑性解[J].工程力学,2009,26(2):16-20.
    [147]王水林,吴振君,李春光,汤华.应变软化模拟与圆形隧道衬砌分析[J].岩土力学,2010,31(6):1929-1936.
    [148]贾善坡,陈卫忠,杨建平,陈培帅.基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施[J].岩土力学,2010,31(7):2051-2058.
    [149]蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题[J].岩石力学与工程学报,1997,16(6):550-557.
    [150]张春会,赵全胜,黄鹂,叶森,于永江.考虑围压影响的岩石峰后应变软化力学模型[J].岩土力学,2010(31)增:193-197.
    [151]陈昌富,肖淑君,杨宇.考虑应变软化厚壁圆筒受外压作用统一极限解[J].湖南大学学报,2006,33(2):1-5.
    [152]温世游陈云敏李夕兵.考虑应变软化特性的缩孔解析解[J].岩石力学与工程学报2002(21)增:2432-2438.
    [153]陆银龙,王连国,杨峰,李玉杰,陈海敏.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640-648.
    [154]宋俐,张永强,俞茂宏.压力隧洞弹塑性分析的统一解[J].工程力学,1998,15(4):57-61.
    [155]王亮赵均海李小伟.岩质圆形隧洞围岩应力场弹塑性新解[J].程地质学报,1004-9665/2007/15(03)-0422-06:422-427.
    [156]张强,王水林,葛修润.圆形巷道围岩应变软化弹塑性分析[J].岩石力学与工程学报,2010,29(5):1031-1035.
    [157]李顺才,董正筑,赵慧明.弹性薄板弯曲及平面问题的自然边界元方法[M].北京:科学出版社,2011:3-5,93-94,115-116.
    [158]路可见.平面弹性复变方法[M].武汉:武汉大学出版社,2005:9-10,86-87.
    [159]祁仰仙.关于Westergaard应力函数的可加性[J].南京航空航天大学学报,1981(04):23-25.
    [160]张文泉.矿井底板突水灾害的动态机理及综合判测和预报软件开发研究[D].山东科技大学,2004.
    [161]桑逢云.充填法开采底板应力及破坏规律研究[D].山东科技大学,2008.
    [162]李冲.邯邢地区煤层底板破坏规律研究[D].河北工程大学,2011.
    [163]胡茂流.朱庄煤矿六煤层底板突水防治技术的研究[D].安徽理工大学,2005.
    [164]张有朝,吴秀仪,刘长武.老顶初次来压时工作面底板破坏深度研究[J],煤炭科技,2008(1):61-63.
    [165]Itasca.UDEC,Vers.4.0User Mannual.ITASCA Consulting GrouP,MinneasPolis,USA,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700