用户名: 密码: 验证码:
一维氧化硅基纳米结构的电纺制备、微结构控制和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维氧化硅基的纳米结构材料不仅具有非晶态氧化硅材料天然的生物相容性、亲水性、光致发光特性以及稳定的化学性质等突出优势,还可以通过微结构的调控,实现对多种性能的优化和拓展。一直以来,由于制备方法的局限,氧化硅基的纳米材料的制备、性能和应用研究都主要集中在零维结构,对于一维的氧化硅复合材料以及微结构可控的氧化硅基纤维的研究还相对较少,而一维纳米结构相对零维纳米结构而言往往具有更广的结构可调控性以及更有效的构建二维和三维的能力。因此,解决一维氧化硅基纳米结构的可控制备问题以及研究其性能与微结构的关系,具有重要的理论意义和实际应用价值。
     本文采用溶胶凝胶结合单针头静电纺丝法成功地制备了一维氧化硅基纳米材料,通过SEM、HRTEM、XRD、XPS、FTIR等多种分析测试方法深入系统地研究了氧化硅基纳米纤维的形貌、微结构以及组成,通过抗菌性、生物活性以及光学性能测试系统研究了一维氧化硅基纳米材料的掺杂以及微结构对性能的影响规律,主要结果如下:
     (1)采用溶胶凝胶法制备了具有可纺性的静电纺丝前驱体溶液,通过控制溶胶中TEOS的水解缩聚时间以及作为介孔模板物的三嵌段聚合物F127(EO106PO70EO106)的浓度,能够调节溶胶的粘度和Si-O-Si网络的比例。系统研究了溶胶制备参数和电纺参数对氧化硅纳米纤维的形貌、尺寸以及介孔结构的影响,发现随着TEOS水解缩聚时间的增加,溶胶的粘度增大,Si-O-Si网络中线性氧化硅键的比例显著增加,得到的纺丝直径增加,纺丝形貌均匀性先增加后降低,这是由于溶液粘度过高时反而会降低可纺性。而改变F127的含量,则不仅能显著改变氧化硅纤维的尺寸和形态,也会同时改变纤维中介孔的尺寸和有序性。当水解缩聚时间为13小时,F127/TEOS质量比为0.26和0.28时,纺丝中形成的是尺寸分布均匀(直径约为4nm)的无序介孔,当F127/TEOS质量比为0.14~0.18区间时,圆柱形纺丝内部会形成一列与轴向平行的高度有序介孔结构。
     (2)利用电纺过程中高分子溶液的溶剂快速挥发导致的相分离现象,使用传统单针头电纺法制备出了中空结构的氧化硅纳米纤维,研究了TEOS/PVP的摩尔比例、PVP的摩尔浓度以及H2O含量对电纺纤维形貌、尺寸和管壁厚度的影响。发现高分子PVP载体的加入,不仅能够调节溶胶粘度,还可促进在电纺过程中的相分离,形成中空管状纤维结构。随着PVP浓度的增加,溶液的粘度值增加,纺丝的尺寸均匀性提高,当PVP=0.08mM/L时,能得到最均匀的纤维形貌,随着H2O/TEOS的摩尔比例从1.1增加到1.8,溶液中Si-O-Si网络的含量增加,纳米管的纤维直径从0.6士0.1μm增加到0.94+0.09μm,管壁厚度从107+6.9nm增加到199+21.3nm。
     (3)首次发现AgNO3(?)够替代H20来进行TEOS的分解和缩聚反应,AgN03含量的增加一方面能调控纳米氧化硅管中Ag的加载量,同时也能对Si-O-Si网络的形成与完整性起到调控作用。随着AgNO3摩尔含量从0.04M/L增加到0.09M/L,氧化硅管的管壁会逐渐从致密结构变成多孔、甚至是镂空的结构,其相应的比表面积也得到了增加。
     (4)研究了不同Ag含量和氧化硅管壁结构的纳米管的生物抗菌性能,发现镂空状的掺银氧化硅纳米管在7小时内就能完全杀灭大肠杆菌,48小时内完全杀灭金色葡萄球菌,这是由于镂空状的掺银氧化硅纳米管比表面积大、具有与细菌更多的接触面积而具有最强的抗菌性能。
     (5)研究了不同Ag含量和管壁结构的氧化硅纳米管的发光性质与拉曼增强性质,发现致密管壁的氧化硅管中由于Ag的掺入,导致氧化硅网络中的-OH缺陷状态发生变化,从而能对缺陷发光的峰位和强度具有明显的调控作用,而具有镂空结构的掺银氧化硅纳米管则由于Ag纳米颗粒的尺寸和密度增加,能起到最佳的拉曼增强效果。
     (6)首次利用单针头电纺法直接制备成型了中空结构、生物活性可调节的氧化硅基生物活性纤维。研究了前驱体种类、高分子PVP载体浓度和氧化硅含量对纤维形貌、相组分和结晶性的影响。发现了作为Ca源,CaCl2-6H20比Ca(NO3)2·4H2O能得到更高的纤维结晶率,PVP高分子摩尔浓度的提高会改善纤维形貌的均匀性,但会降低纤维的结晶率,而氧化硅含量的增加会显著降低纤维的结晶率,成功获得了直径在200-300nm范围内、管壁厚度在10-50nm,结晶率在0-81.2%可调的Ca、P共掺中空氧化硅基生物活性纤维。此外,通过引入AgNO3,成功制备了Ca、P、Ag三元共掺的同时具有生物活性和抗菌性能的中空氧化硅基纳米材料
     (7)系统研究了Ca、P共掺的中空氧化硅基纤维的生物活性及降解率,发现经过SBF模拟体液浸泡后,纤维内部及表面都生长出结晶性良好的HA和α-TCP混合组织,随着浸泡时间从6小时增加到12小时,HA的纳米晶粒尺寸从几纳米增加到十几纳米,随着Si02含量的增加会提高骨组织结构在纤维表面生长的速率,且得益于特殊的中空微结构,当浸泡时间超过72小时后,纤维的绝大部分氧化硅组分得到了降解,获得具有比块体和普通纤维结构更好的降解性。
The one-dimensional nanostructured silica-based materials not only possess the natural biocompatibility, hydrophility, photoluminescence and stable chemical properties of amorphous silica material, but also have significant potential to modulate the microstructure to adapt different applications. Therefore, by tailoring the component and microstructure of nanofibers, the performance of nanofibers can be controlled in a large scale to adopt different application purposes. Until now, the preparation and study of silica-based nanostructured materials have been focus on the zero-dimentional nanostructure due to the limitation of1-D nanostructures' produce method. But comparing to0-D nanostructures, the1-D nanostructures have better tunability and ability to construct the2-D and3-D structure, thus the study on preparation and application of1-D silica-based nanostructures has theoretical and practical significance.
     We adopted the sol-gel combined single-nozzle electrospinning to systematically prepare1-D silica-based nanofibers, and the corresponding morphology, microstructure and component of these nanofibers were intensively studied by a variety of characterization methods, such as SEM, HRTEM, XRD, XPS and FTIR. The effects of doping and microstructure on1-D silica-based nanofibers were discussed by antibacterial, bioactive and optical property tests. The main contents are listed as follows:
     (1) Spinnable precursor solutions were prepared by sol-gel for electrospinning, and the viscosity and Si-O-Si ratio of sols were controlled by the condensation time of TEOS and the concentration of nonionic surfactant Pluronic F127(EO106PO70EO106), which was used as template to form mesopores. The effects of parameters of sols preparation and electrospinning on silica nanofibers' morphology, diameter and mesoporous structure were studied systematically. It was found that, with the increase of condensation time of TEOS, the sol viscosity, linear Si-O-Si content of sol and the fiber diameter were all increased, and the uniformity of fiber was first improved and then decreased due to the excessive viscosity. The variation of F127content would not only change the size and morphology of silica fibers, but also change the mesopores' size and order. When the condensation time of TEOS was13hours, and the mass ratio of F127/TEOS was0.26and0.28, the formed mesopores were disordered with diameter of~4nm. When the mass ratio of F127/TEOS was in the range of0.14-0.18, a line of ordered mesopores parallel to the axis of fibers were formed.
     (2) Silica nanotubes can be successfully fabricated via single-nozzle electrospinning based on phase separation effect. The effects of molar ratio of TEOS/PVP, concentration of PVP and H2O on the morphology, diameter and wall thickness of tubes were discussed. It was found that the addition of PVP could ajust the sol viscosity and induct the phase-separation during the electrospinning, forming the hollow structure of fibers. With the concentration of PVP increased, sol viscosity was increased, and the uniformity of fibers was also improved. Uniform fiber morphology was observed when PVP concentration was0.08mM/L. The diameter of silica tubes was increased from0.6±0.1μm to0.94±0.09μm, and the wall thickness was increased from107±6.9nm to199±21.3nm, with the molar ratio of H2O/TEOS increase from1.1to1.8..
     (3) For the first time, We found that, instead of H2O, AgNO3could decompose TEOS and assist the polycondensation of TEOS to Si-O-Si. By increasing AgNO3concentration, not only the higher Ag-loading amout was achieved, but also the wall structure of Ag-silica tubes could be controlled. With the AgNO3concentration increased from0.04M/L to0.09M/L, the wall structure varied from dense to porous, and eventually turned into a'lace-like'structure, and the specific surface area was increased accordingly.
     (4) Antibacterial properties of Ag-silica composite nanotubes with different Ag content and wall structure were studied. The'lace-like'nanotubes showed robust antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms. These nanotubes could kill E. coli in7hours and S. aureus in48hours, due to their higher specific surface area and more contact area with bacterial, comparing with nanotubes of dense wall structure.
     (5) Photoluminescence and surface-enhanced Raman scatting properties of Ag-silica composite nanotubes with different Ag content and wall structure were studied. The doping of Ag could effect the-OH defect property dramaticlly, which further controlled the position and intensity of luminescence peak. The size and density of Ag nanoparticles in silica tubes have a great effect on the surface enhanced Raman spectroscopy results.
     (6) For the first time, hollow silica-based nanofibers with tunable bioactivity were prepared by single-nozzle electrospinning. The effects of calcium salt, PVP concentration and silica content on the morphology, phase component and crystallinity of hollow fibers were studied. Comparing to Ca(NO3)2·4H2O, addition of CaCl2·6H2O increased the crystallinity of hollow fibers, and the increasing of PVP concentration improved the fiber uniformity, but decreased the fiber crystallinity. The increase of silica content could decrese the crystallinity remarkably. The bioactive Ca, P doped silica hollow fibers were successfully prepared, with diameter in range of200~300nm, wall thickness in range of10~50nm, and tunable crystallinity in range of0~81.2%. Besides, by doping of AgNO3, silica-based bioactive hollow fibers with good antibacterial property were achieved.
     (7) The bioactivity and degradation of Ca, P doped silica-based hollow fibers were studied systematically. After immersing in the simulated body fluid for a few hours, mixture of HA and a-TCP nanocrystals could grow from inside and outside surface of fibers. The size of HA and a-TCP nanoparticles increased from several nanometers to more than a dozen nanometers, with the immersing time increasing from6hours to12hours. What's more, the growth rate of HA and a-TCP nanocrystals could accelerate with the increase of silica content in fibers. Due to the special hollow structures, the silica-based fibers pocessed faster growth rate of HA and better degradability, comparing with bulk material.
引文
[1]Nakamura H, Matsui Y. The preparation of novel silica gel hollow tubes. Advanced Materials. 1995;7:871-2.
    [2]Pan ZW, Dai ZR, Ma C, Wang ZL. Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires. Journal of the American Chemical Society. 2002;124:1817-22.
    [3]Zheng B, Wu Y, Yang P, Liu J. Synthesis of Ultra-Long and Highly Oriented Silicon Oxide Nanowires from Liquid Alloys. Advanced Materials.2002;14:122-4.
    [4]Dai L, You LP, Duan XF, Lian WC, Qin GG Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst. Physics Letters A.2005;335:304-9.
    [5]Cai XM, Djurisic AB, Xie MH. Growth of SiO[sub x] nanowire bunches cocatalyzed with Ga and Ni. Journal of Applied Physics.2005;98:074313-5.
    [6]Sun SH, Meng GW, Zhang MG, Tian YT, Xie T, Zhang LD. Preparation and characterization of oriented silica nanowires. Solid State Communications.2003;128:287-90.
    [7]Wang H, Zhang X-H, Ma DDD, Lee S-T. Large-scale silica nanowire array grown on liquid tin and its applications as Hg (Ⅱ) scavenger. Applied Physics Letters.2008;93:023119-3.
    [8]Park N-M, Park H-K, Choi C-J, Kim S-W, Maeng S. New approach to the growth of SiOx nanowire bunch using Au catalyst and SiNx film on Si substrate. Physica E: Low-dimensional Systems and Nanostructures.2008;40:3170-2.
    [9]Yan C, Zhang T, Lee P. Flow assisted synthesis of highly ordered silica nanowire arrays. Applied Physics A.2009;94:763-6.
    [10]Elliman RQ Kim TH, Shalav A, Fletcher NH. Controlled Lateral Growth of Silica Nanowires and Coaxial Nanowire Heterostructures. The Journal of Physical Chemistry C. 2012;116:3329-33.
    [11]Qiang H, Li W, Dasgupta T, Li Z, Sekhar PK, Bhansali S, et al. Statistical Weight Kinetics Modeling and Estimation for Silica Nanowire Growth Catalyzed by Pd Thin Film. Automation Science and Engineering, IEEE Transactions on.2011;8:303-10.
    [12]Elechiguerra JL, Manriquez JA, Yacaman MJ. Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst. Applied Physics A.2004;79:461-7.
    [13]Callsen G, Reparaz JS, Wagner MR, Vierck A, Phillips MR, Thomsen C, et al. Titanium-assisted growth of silica nanowires:from surface-matched to free-standing morphologies. Nanotechnology.22:405604.
    [14]Fang XS, Ye CH, Xie T, He G, Wang YH, Zhang LD. Synthesis and characterization of ultra-long silica nanowires. Applied Physics A.2005;80:423-5.
    [15]Yu DP, Hang QL, Ding Y, Zhang HZ, Bai ZG, Wang JJ, et al. Amorphous silica nanowires: Intensive blue light emitters. Applied Physics Letters.1998;73:3076-8.
    [16]Liang CH, Zhang LD, Meng GW, Wang YW, Chu ZQ. Preparation and characterization of amorphous SiOx nanowires. Journal of Non-Crystalline Solids.2000;277:63-7.
    [17]Peng XS, Wang XF, Zhang J, Wang YW, Sun SH, Meng GW, et al. Blue-light emission from amorphous SiOx nanoropes. Applied Physics A.2002;74:831-3.
    [18]Meng GW, Peng XS, Wang YW, Wang CZ, Wang XF, Zhang LD. Synthesis and photoluminescence of aligned SiOx nanowire arrays. Applied Physics A.2003;76:119-21.
    [19]Lee K-H, Lee S-W, Vanfleet RR, Sigmund W. Amorphous silica nanowires grown by the vapor-solid mechanism. Chemical Physics Letters.2003;376:498-503.
    [20]Tong L, Gattass RR, Ashcom JB, He S, Lou J, Shen M, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature.2003;426:3.
    [21]Tong L, Hu L, Zhang J, Qiu J, Yang Q, Lou J, et al. Photonic nanowires directly drawn from bulk glasses. Optical Express.2006; 14:6.
    [22]Liang Z, Susha AS. Mesostructured Silica Tubes and Rods by Templating Porous Membranes. Chemistry-A European Journal.2004; 10:4910-4.
    [23]Jin K, Yao B, Wang N. Structural characterization of mesoporous silica nanowire arrays grown in porous alumina templates. Chemical Physics Letters.2005;409:172-6.
    [24]Zhang M, Bando Y, Wada K. Silicon dioxide nanotubes prepared by anodic alumina as templates. Journal of Materials Research.2000;15:387-92.
    [25]Fan R, Wu Y, Li D, Yue M, Majumdar A, Yang P. Fabrication of Silica Nanotube Arrays from Vertical Silicon Nanowire Templates. Journal of the American Chemical Society. 2003;125:5254-5.
    [26]Hu X, Wang X, Liu J, Zhang S, Jiang C, He X. Fabrication of mesoporous dendritic silica nanofibers by using dendritic polyaniline templates. Materials Chemistry and Physics. 2012;137:17-21.
    [27]Shirosaki Y, Yoshihara H, Chen S, Blevins M, Nakamura Y, Hanagata N, et al. Electrospun poly(vinyl alcohol) as a template of silica hollow and solid micro-fibrous mats. Journal of the Ceramic Society of Japan.2012; 120:520-4.
    [28]Huang Z, Chen Y, Zhou W, Nie H, Hu Y. Preparation of silica hollow fibers by surface-initiated atom transfer radical polymerization from electrospun fiber templates. Materials Letters.2009;63:1803-6.
    [29]Lin Y, Qiao Y, Gao C, Tang P, Liu Y, Li Z, et al. Tunable One-Dimensional Helical Nanostructures:From Supramolecular Self-Assemblies to Silica Nanomaterials. Chemistry of Materials.2010;22:6711-7.
    [30]Mullner M, Lunkenbein T, Breu J, Caruso F, Muller AHE. Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core-shell Polymer Brushes. Chemistry of Materials.2012;24:1802-10.
    [31]Adachi M, Harada T, Harada M. Formation processes of silica nanotubes through a surfactant-assisted templating:Mechanism in laurylamine hydrochloride/tetraethoxysilane system. Langmuir.2000; 16:2376-84.
    [32]Harada M, Adachi M. Surfactant-Mediated Fabrication of Silica Nanotubes. Advanced Materials.2000; 12:839-41.
    [33]Kim SS, Lee DK, Shah J, Pinnavaia TJ. Nanocasting of carbon nanotubes:in-situ graphitization of a low-cost mesostructured silica templated by non-ionic surfactant micelles. Chemical Communications.2003:1436-7.
    [34]Wypych F, Adad LB, Mattoso N, Marangon AAS, Schreiner WH. Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. Journal of Colloid and Interface Science. 2005;283:107-12.
    [35]Wang L, Lu A, Wang C, Zheng X, Zhao D, Liu R. Nano-fibriform production of silica from natural chrysotile. Journal of Colloid and Interface Science.2006;295:436-9.
    [36]Anton F. Process and apparatus for preparing artificial threads:United States,1934,1975504. 1934-10-02
    [37]Formhals A. Method and apparatus for spinning:United States,2349950.1939-05-30.
    [38]Anton F. Artificial thread and method of producing same:United States,2187306. 1940-01-16.
    [39]Taylor G. Electrically Driven Jets. Proceedings of the Royal Society of London A Mathematical and Physical Sciences.1969;313:453-75.
    [40]Buchko CJ, Chen LC, Shen Y, Martin DC. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer.1999;40:7397-407.
    [41]Baumgarten PK. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science.1971;36:71-9.
    [42]Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. Ⅰ. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition.1981;19:909-20.
    [43]Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. Ⅱ. Examination of the flow field in an electrically driven jet. Journal of Polymer Science: Polymer Physics Edition.1981;19:921-32.
    [44]Hayati I, Bailey AI, Tadros TF. Investigations into the mechanisms of electrohydrodynamic spraying of liquids:Ⅰ. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. Journal of Colloid and Interface Science.1987; 117:205-21.
    [45]Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Julius Vancso G. Electrospinning of ultra-thin polymer fibers. Macromolecular Symposia.1998; 127:141-50.
    [46]Srinivasan G, Reneker DH. Structure and morphology of small diameter electrospun aramid fibers. Polymer International.1995;36:195-201.
    [47]Darrell HR, Iksoo C. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology.1996;7:216.
    [48]Fang X, Reneker DH. DNA fibers by electrospinning. Journal of Macromolecular Science, Part B.1997;36:169-73.
    [49]Fong H, Reneker DH. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. Journal of Polymer Science Part B:Polymer Physics.1999;37:3488-93.
    [50]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585-92.
    [51]Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics.2001;90:4836-46.
    [52]Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. Journal of Applied Physics.2001;89:3018-26.
    [53]Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG. A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-gel Chemistry and Electrically Forced Liquid Jets. Journal of the American Chemical Society.2003;125:1154-5.
    [54]Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Materials Letters.2003;57:1579-84.
    [55]Chen L-J, Liao J-D, Lin S-J, Chuang Y-J, Fu Y-S. Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer.2009;50:3516-21.
    [56]Cheng S, Shen D, Zhu X, Tian X, Zhou D, Fan L-J. Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol-gel techniques. European Polymer Journal.2009;45:2767-78.
    [57]Ji L, Zhang X. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Materials Letters.2008;62:2161-4.
    [58]Chen Y-z, Zhang Z-p, Yu J, Guo Z-X. Poly(methyl methacrylate)/silica nanocomposite fibers by electrospinning. Journal of Polymer Science Part B:Polymer Physics.2009;47:1211-8.
    [59]Zhang X-C, Chen Y-Z, Yu J, Guo Z-X. Thermoplastic polyurethane/silica nanocomposite fibers by electrospinning. Journal of Polymer Science Part B:Polymer Physics. 2011;49:1683-9.
    [60]Xiong X, Li Q, Zhang X-C, Wang L, Guo Z-X, Yu J. Poly(vinylidene fluoride)/silica nanocomposite membranes by electrospinning. Journal of Applied Polymer Science. 2012;129:1089-95.
    [61]Poologasundarampillai G, Yu B, Jones JR, Kasuga T. Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter.2011;7:10241-51.
    [62]Choi S-S, Lee S, Im S, Kim S, Joo Y. Silica nanofibers from electrospinning/sol-gel process. Journal of Materials Science Letters.2003;22:891-3.
    [63]Kameoka J, Verbridge SS, Liu H, Czaplewski DA, Craighead HG. Fabrication of Suspended Silica Glass Nanofibers from Polymeric Materials Using a Scanned Electrospinning Source. Nano Letters.2004;4:2105-8.
    [64]Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, et al. Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. Journal of Colloid and Interface Science.2011;358:547-53.
    [65]Hou Z, Zhang C, Li C, Xu Z, Cheng Z, Li G, et al. Luminescent Porous Silica Fibers as Drug Carriers. Chemistry-A European Journal.2010; 16:14513-9.
    [66]Zhao Y, Wang H, Lu X, Li X, Yang Y, Wang C. Fabrication of refining mesoporous silica nanofibers via electrospinning. Materials Letters.2008;62:143-6.
    [67]Wu Y-n, Li F, Wu Y, Jia W, Hannam P, Qiao J, et al. Formation of silica nanofibers with hierarchical structure via electrospinning. Colloid and Polymer Science.2011;289:1253-60.
    [68]Chuang Y-J, Liao J-D, Chen L-J. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica nanofibers by electrospinning route. Journal of Composite Materials. 2011;46:227-36.
    [69]Katoch A, Kim SS. Synthesis of Hollow Silica Fibers with Porous Walls by Coaxial Electrospinning Method. Journal of the American Ceramic Society.2012;95:553-6.
    [70]Patel AC, Li S, Wang C, Zhang W, Wei Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chemistry of Materials. 2007;19:1231-8.
    [71]Shi W, Lu W, Jiang L. The fabrication of photosensitive self-assembly Au nanoparticles embedded in silica nanofibers by electrospinning. Journal of Colloid and Interface Science. 2009;340:291-7.
    [72]Xu X, Guo G, Fan Y. Fabrication and Characterization of Dense Zirconia and Zirconia-Silica Ceramic Nanofibers. Journal of Nanoscience and Nanotechnology.2010; 10:5672-9.
    [73]Lee SW, Kim YU, Choi S-S, Park TY, Joo YL, Lee SG. Preparation of SiO2/TiO2 composite fibers by sol-gel reaction and electrospinning. Materials Letters.2007;61:889-93.
    [74]Horzum N, Munoz-Espi R, Glasser G, Demir MM, Landfester K, Crespy D. Hierarchically Structured Metal Oxide/Silica Nanofibers by Colloid Electrospinning. ACS Applied Materials & Interfaces.2012;4:6338-45.
    [75]Taha AA, Wu Y-n, Wang H, Li F. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. Journal of Environmental Management.2012;112:10-6.
    [76]Li S, Yue X, Jing Y, Bai S, Dai Z. Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2011;380:229-33.
    [77]Wang M, Jing N, Su CB, Kameoka J, Chou CK, Hung MC, et al. Electrospinning of silica nanochannels for single molecule detection. Applied Physics Letters.2006;88:3.
    [78]Wang W, Zhou J, Zhang S, Song J, Duan H, Zhou M, et al. A novel method to fabricate silica nanotubes based on phase separation effect. Journal of Materials Chemistry. 2010;20:9068-72.
    [79]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials.2005;77:1-45.
    [80]Campelo JM, Luna D, Luque R, Marinas JM, Romero AA, Calvino JJ, et al. Synthesis of acidic Al-MCM-48:influence of the Si/Al ratio, degree of the surfactant hydroxyl exchange, and post-treatment in NH4F solution. Journal of Catalysis.2005;230:327-38.
    [81]Jana SK, Takahashi H, Nakamura M, Kaneko M, Nishida R, Shimizu H, et al. Aluminum incorporation in mesoporous MCM-41 molecular sieves and their catalytic performance in acid-catalyzed reactions. Applied Catalysis A:General.2003;245:33-41.
    [82]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews.1997;97:2373-420.
    [83]Kang H, Zhu Y, Yang X, Jing Y, Lengalova A, Li C. A novel catalyst based on electrospun silver-doped silica fibers with ribbon morphology. Journal of Colloid and Interface Science. 2010;341:303-10.
    [84]Ahmadi E, Haghighi MN, Mohamadnia Z, Ramazani A. Preparation of shish-kebab and nanofiber polyethylene with chromium/Santa Barbara amorphous silica-15 catalysts. Journal of Applied Polymer Science.2010;118:3658-65.
    [85]Hukkamaki J, Suvanto S, Suvanto M, Pakkanen TT. Influence of the Pore Structure of MCM-41 and SBA-15 Silica Fibers on Atomic Layer Chemical Vapor Deposition of Cobalt Carbonyl. Langmuir.2004;20:10288-95.
    [86]Anuar ST, Villegas C, Mugo SM, Curtis JM. The Development of Flow-through Bio-Catalyst Microreactors from Silica Micro Structured Fibers for Lipid Transformations. Lipids. 2011;46:545-55.
    [87]Li YJ, Zhou GW, Qiao WT, Wang YY. Immobilization of Porcine pancreas lipase on fiber-like SBA-15 mesoporous material. Materials Science and Engineering B-Advanced Functional Solid-State Materials.2009;162:120-6.
    [88]Hattori H. Heterogeneous Basic Catalysis. Chemical Reviews.1995;95:537-58.
    [89]Zhang DH, Zhang JZH. Quantum reactive scattering with a deep well:Time-dependent calculation for H+O2 reaction and bound state characterization for HO2. The Journal of Chemical Physics.1994; 101:3671-8.
    [90]Selvaraj M, Pandurangan A, Seshadri KS, Sinha PK, Krishnasamy V, Lal KB. Comparison of mesoporous Al-MCM-41 molecular sieves in the production of p-cymene for isopropylation of toluene. Journal of Molecular Catalysis A:Chemical.2002;186:173-86.
    [91]Kim HJ, Shul YG, Han HS, E. van Steen IMC, Callanan LH. TiO2 loaded mesoporous silica fiber for the photocatalytic application. Studies in Surface Science and Catalysis:Elsevier; 2004. p.581-7.
    [92]Chu Y-H, Kim H-J, Song K-Y, Shul Y-G, Jung K-T, Lee K, et al. Preparation of mesoporous silica fiber matrix for VOC removal. Catalysis Today.2002;74:249-56.
    [93]Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, et al. Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. Journal of Colloid and Interface Science.2011;358:547-53.
    [94]Jung H-R, Ju D-H, Lee W-J, Zhang X, Kotek R. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochimica Acta.2009;54:3630-7.
    [95]Ye Y-S, Liang G-W, Chen B-H, Shen W-C, Tseng C-Y, Cheng M-Y, et al. Effect of morphology of mesoporous silica on characterization of protic ionic liquid-based composite membranes. Journal of Power Sources.2011;196:5408-15.
    [96]Jin C, Kim H, Hong C, Kim H, Lee C. Preparation and photoluminescence properties of silica-coated CuO nanowires. Applied Physics A.2010;100:151-7.
    [97]Xue YL, Wu P, Liu Y, Zhang X, Lin L, Jiang Q. Highly Efficient Near-IR Photoluminescence of Er(3+) Immobilized in Mesoporous SBA-15. Nanoscale Research Letters. 2010;5:1952-61.
    [98]Feng J, Song SY, Xing Y, Zhang HJ, Li ZF, Sun LN, et al. Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41. Journal of Solid State Chemistry.2009; 182:435-41.
    [99]Manzano M, Vallet-Regi M. New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry.2010;20:5593-604.
    [100]Han Y-J, Stucky GD, Butler A. Mesoporous Silicate Sequestration and Release of Proteins. Journal of the American Chemical Society.1999;121:9897-8.
    [101]Katiyar A, Pinto NG. Visualization of Size-Selective Protein Separations on Spherical Mesoporous Silicates. Small.2006;2:644-8.
    [102]Lee C-H, Lin T-S, Mou C-Y. Mesoporous materials for encapsulating enzymes. Nano Today. 2009;4:165-79.
    [103]Gale DK, Gutu T, Jiao J, Chang C-H, Rorrer GL. Photoluminescence Detection of Biomolecules by Antibody-Functionalized Diatom Biosilica. Advanced Functional Materials. 2009;19:926-33.
    [104]Yan X, Huang X, Yu C, Deng H, Wang Y, Zhang Z, et al. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials.2006;27:3396-403.
    [105]Hou ZY, Zhang CM, Li CX, Xu ZH, Cheng ZY, Li GG, et al. Luminescent Porous Silica Fibers as Drug Carriers. Chemistry-a European Journal.2010;16:14513-9.
    [106]Huang SS, Li CX, Cheng ZY, Fan Y, Yang PP, Zhang CM, et al. Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. Journal of Colloid and Interface Science.376:312-21.
    [107]Lin HP, Mou CY, Liu SB. Formation of mesoporous silica nanotubes. Advanced Materials. 2000; 12:103-6.
    [108]Jin H, Wang L, Bing N. Mesoporous silica helical ribbon and nanotube-within-a-nanotube synthesized by sol-gel self-assembly. Materials Letters.2011;65:233-5.
    [109]Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, et al. In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chemical Communications.2011;47:3906-8.
    [110]Zhang Z, Shao C, Sun Y, Mu J, Zhang M, Zhang P, et al. Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry. 2012;22:1387-95.
    [111]Zhang X, Shao C, Zhang Z, Li J, Zhang P, Zhang M, et al. In situ Generation of Well-Dispersed ZnO Quantum Dots on Electrospun Silica Nanotubes with High Photocatalytic Activity. ACS Applied Materials & Interfaces.2012;4:785-90.
    [112]Kamegawa T, Yamahana D, Seto H, Yamashita H. Preparation of single-site Ti-containing mesoporous silica with a nanotube architecture and its enhanced catalytic activities. Journal of Materials Chemistry A.2013;1:891-7.
    [113]Bai W, Yang YJ, Tao X, Chen JF, Tan TW. Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol. Journal of Molecular Catalysis B-Enzymatic.2012;76:82-8.
    [114]Song CF, Zhang AF, Shi W, Jiang HR, Ge DT. Functionalized Silica Nanotubes As Affinity Matrices for Bilirubin Removal. Ieee Transactions on Nanotechnology.2011;10:626-31.
    [115]Hu KW, Hsu KC, Yeh CS. pH-Dependent biodegradable silica nanotubes derived from Gd(OH) 3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials. 2010;31:6843-8.
    [116]Chen S, Shi XT, Chinnathambi S, Wu HK, Hanagata N. Generation of microgrooved silica nanotube membranes with sustained drug delivery and cell contact guidance ability by using a Teflon microfluidic chip. Science and Technology of Advanced Materials.2013;14:8.
    [117]He B, Kim SK, Son SJ, Lee SB. Shape-coded silica nanotubes for multiplexed bioassay: rapid and reliable magnetic decoding protocols. Nanomedicine.2010;5:77-88.
    [118]Scheel H, Zollfrank C, Greil P. Luminescent silica nanotubes and nanowires:Preparation from cellulose whisker templates and investigation of irradiation-induced luminescence. Journal of Materials Research.2009;24:1709-15.
    [119]Zhang M, Ciocan E, Bando Y, Wada K, Cheng LL, Pirouz P. Bright visible photoluminescence from silica nanotube flakes prepared by the sol--gel template method. Applied Physics Letters.2002;80:491-3.
    [120]Le Y, Guo DP, Cheng B, Yu JG. Bio-template-assisted synthesis of hierarchically hollow SiO2 microtubes and their enhanced formaldehyde adsorption performance. Applied Surface Science.2013;274:110-6.
    [121]Labreche Y, Lively RP, Rezaei F, Chen G, Jones CW, Koros WJ. Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chemical Engineering Journal.2013;221:166-75.
    [122]Hench LL, Wilson J. An Introduction to Bioceramics:World Scientific Publishing Company Incorporated; 1993.
    [123]De Aza PN, De Aza AH, Pena P, De Aza S. Bioactive glasses and glass-ceramics. Boletin De La Sociedad Espanola De Ceramica Y Vidrio.2007;46:45-55.
    [124]Howlett CR, Zreioat H, O'Dell R, Noorman J, Evans P, Dalton BA, et al. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells. Journal of Materials Science:Materials in Medicine.1994;5:715-22.
    [125]Pascual C, DurAN P. Subsolidus Phase Equilibria and Ordering in the System ZrO2-Y2O3. Journal of the American Ceramic Society.1983;66:23-7.
    [126]Cleries L, Fernandez-Pradas JM, Morenza JL. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. Journal of Biomedical Materials Research.2001;57:473-.
    [127]Fernandez-Pradas JM, Cleries L, Sardin G, Morenza JL. Characterization of calcium phosphate coatings deposited by Nd:YAG laser ablation at 355 nm:influence of thickness. Biomaterials.2002;23:1989-94.
    [128]Hayek E, Newesely H, Rumpel ML. Pentacalcium Monohydroxyorthophosphate. Inorganic Syntheses:John Wiley & Sons, Inc.; 2007. p.63-5.
    [129]Welch JH, Gutt W.874. High-temperature studies of the system calcium oxide-phosphorus pentoxide. Journal of the Chemical Society (Resumed).1961;0:4442-4.
    [130]Nurse RW, Welch JH, Gutt W.220. High-temperature phase equilibria in the system dicalcium silicate-tricalcium phosphate. Journal of the Chemical Society (Resumed). 1959;0:1077-83.
    [131]Yuan H, De Bruijn JD, Li Y, Feng J, Yang Z, De Groot K, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs:a comparative study between porous a-TCP and β-TCP. Journal of Materials Science:Materials in Medicine.2001;12:7-13.
    [132]Miake Y, Yanagisawa T, Yajima Y, Noma H, Yasui N, Nonami T. High-resolution and analytical electron microscopic studies of new crystals induced by a bioactive ceramic (diopside). J Dent Res.1995;74:1756-63.
    [133]Nonami T, Tsutsumi S. Study of diopside ceramics for biomaterials. Journal of Materials Science:Materials in Medicine.1999;10:475-9.
    [134]N. De Aza P, Guitian F, De Aza S, J. Valle F. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Analyst.1998;123:681-5.
    [135]de Aza PN, Luklinska ZB, Anseau M, Guitian F, de Aza S. Morphological studies of pseudowollastonite for biomedical application. Journal of microscopy.1996; 182:24-31.
    [136]De Aza PN, Fernandez-Pradas JM, Serra P. In vitro bioactivity of laser ablation pseudowollastonite coating. Biomaterials.2004;25:1983-90.
    [137]De A, Luklinska, Martinez, Anseau, Guitian. Morphological and structural study of pseudowollastonite implants in bone. Journal of microscopy.2000; 197:60-7.
    [138]De Aza PN, Luklinska ZB, Anseau MR, Guitian F, De Aza S. Transmission electron microscopy of the interface between bone and pseudowollastonite implant. Journal of microscopy.2001;201:33-43.
    [139]Dufrane D, Delloye C, McKay IJ, De Aza PN, De Aza S, Schneider YJ, et al. Indirect cytotoxicity evaluation of pseudowollastonite. Journal of Materials Science:Materials in Medicine.2003;14:33-8.
    [140]Sarmento C, Luklinska ZB, Brown L, Anseau M, De Aza PN, De Aza S, et al. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. Journal of Biomedical Materials Research Part A.2004;69A:351-8.
    [141]De Aza PN, Guitian F, De Aza S. Phase Diagram of Wollastonite-Tricalcium Phosphate. Journal of the American Ceramic Society.1995;78:1653-6.
    [142]Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. Journal of Materials Science:Materials in Medicine. 2003;14:195-200.
    [143]Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomaterialia. 2011;7:16-30.
    [144]Hench L. The story of Bioglass. Journal of Materials Science:Materials in Medicine. 2006;17:967-78.
    [145]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research.1971;5:117-41.
    [146]Huang W, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. Journal of Materials Science-materials in Medicine.2006;17:583-96.
    [147]Brink M. The influence of alkali and alkaline earths on the working range for bioactive glasses. Journal of Biomedical Materials Research.1997;36:109-17.
    [148]Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. Ⅱ. In vitro and in vivo biological evaluation. Journal of Biomedical Materials Research Part A.2010;95A:172-9.
    [149]Jung SB, Day DE, Brown RF, Bonewald LF. Potential Toxicity of Bioactive Borate Glasses In-Vitro and In-Vivo. Advances in Bioceramics and Porous Ceramics Ⅴ:John Wiley & Sons, Inc.; 2012. p.65-74.
    [150]Huang W, Rahaman MN, Day DE, Li Y. Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B. 2006;47:647-58.
    [151]Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior. Journal of the American Ceramic Society.2007;90:303-6.
    [152]Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering:Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system. Biomaterials.2004;25:491-9.
    [153]Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering:Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system. Biomaterials.2004;25:501-7.
    [154]El-Ghannam A, Hamazawy E, Yehia A. Effect of thermal treatment on bioactive glass microstructure, corrosion behavior,ζ potential, and protein adsorption. Journal of Biomedical Materials Research.2001;55:387-95.
    [155]Ryu HS, Lee JK, Seo JH, Kim H, Hong KS, Kim DJ, et al. Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO-SiO2-B2O3 system. Journal of Biomedical Materials Research Part A.2004;68A:79-89.
    [156]Gong WL, Abdelouas A, Lutze W. Porous bioactive glass and glass-ceramics made by reaction sintering under pressure. Journal of Biomedical Materials Research.2001;54:320-7.
    [157]Xin R, Zhang Q, Chen J, Leng Y. Effects of porosity and crystallinity of glass ceramics on the in vivo bioactive response. Biomedical materials (Bristol, England).2008;3:041001.
    [158]Hu S, Chang J, Liu MQ, Ning CQ. Study on antibacterial effect of 45S5 Bioglass(A (R)). Journal of Materials Science-materials in Medicine.2009;20:281-6.
    [159]Mortazavi V, Nahrkhalaji MM, Fathi MH, Mousavi SB, Esfahani BN. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. Journal of Biomedical Materials Research Part A.2010;94A:160-8.
    [160]Delben JRJ, Pimentel OM, Coelho MB, Candelorio PD, Furini LN, dos Santos FA, et al. Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. Journal of Thermal Analysis and Calorimetry.2009;97:433-6.
    [161]Verne E, Di Nunzio S, Bosetti M, Appendino P, Brovarone CV, Maina G, et al. Surface characterization of silver-doped bioactive glass. Biomaterials.2005;26:5111-9.
    [162]Nezafati N, Moztarzadeh F, Hesaraki S. Surface reactivity and in vitro biological evaluation of sol gel derived silver/calcium silicophosphate bioactive glass. Biotechnology and Bioprocess Engineering.2012;17:746-54.
    [163]Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomaterialia.2011;7:2355-73.
    [164]Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. Journal of Biomedical Materials Research.1970;4:433-56.
    [165]Hollinger JO, Brekke J, Gruskin E, Lee D. Role of Bone Substitutes. Clinical Orthopaedics and Related Research.1996;324:55-65.
    [166]Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research.2002;59:340-8.
    [167]Jones JR, Poologasundarampillai G, Atwood RC, Bernard D, Lee PD. Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials. 2007;28:1404-13.
    [168]Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials.2006;27:964-73.
    [169]Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure:A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 2002;60:613-21.
    [170]Kim HW, Kim HE, Knowles JC. Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial. Advanced Functional Materials.2006;16:1529-35.
    [171]Lu H, Zhang T, Wang XP, Fang QF. Electrospun submicron bioactive glass fibers for bone tissue scaffold. J Mater Sci:Mater Med.2009;20:793-8.
    [172]Xie J, Blough ER, Wang C-H. Submicron bioactive glass tubes for bone tissue engineering. Acta Biomaterialia.2012;8:811-9.
    [173]Fu Q, Saiz E, Tomsia AP. Bioinspired Strong and Highly Porous Glass Scaffolds. Advanced Functional Materials.2011;21:1058-63.
    [174]Chu P-Y, Clark DE. Infrared Spectroscopy of Silica Sols-Effects of Water Concentration, Catalyst, and Aging. Spectroscopy Letters.1992;25:201-20.
    [175]St6ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science.1968;26:62-9.
    [176]Sakka S, Kamiya K. The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. Journal of Non-Crystalline Solids.1982;48:31-46.
    [177]Chen S-L, Dong P, Yang G-H, Yang J-J. Kinetics of Formation of Monodisperse Colloidal Silica Particles through the Hydrolysis and Condensation of Tetraethylorthosilicate. Industrial & Engineering Chemistry Research.1996;35:4487-93.
    [178]Brinker CJ. Hydrolysis and condensation of silicates:Effects on structure. Journal of Non-Crystalline Solids.1988;100:31-50.
    [179]Alexandridis P, Alan Hatton T. Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces:thermodynamics, structure, dynamics, and modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects.1995;96:1-46.
    [180]Nivaggioli T, Alexandridis P, Hatton TA, Yekta A, Winnik MA. Fluorescence Probe Studies of Pluronic Copolymer Solutions as a Function of Temperature. Langmuir.1995;11:730-7.
    [181]Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998;279:548-52.
    [182]Hwang YK, Chang J-S, Kwon Y-U, Park S-E. Microwave synthesis of cubic mesoporous silica SBA-16. Microporous and Mesoporous Materials.2004;68:21-7.
    [183]Dayal P, Kyu T. Porous fiber formation in polymer-solvent system undergoing solvent evaporation. Journal of Applied Physics.2006;100:043512-6.
    [184]Salinas AJ, Roman J, Vallet-Regi M, Oliveira JM, Correia RN, Fernandes MH. In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5-CaOSiO2-CaO·MgO·2SiO2 system. Biomaterials.2000;21:251-7.
    [185]Scott BJ, Wirnsberger G, Stucky GD. Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials.2001;13:3140-50.
    [186]Zhang S, Ni W, Kou X, Yeung MH, Sun L, Wang J, et al. Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers. Advanced Functional Materials.2007;17:3258-66.
    [187]Telbiz G, Shvets O, Boron S, Vozny V, Brodyn M, Stucky GD.22-P-20-Laser dye doped mesoporous silica fibers:host-guest interaction and fluorescence properties. In:A. Galarneau FFFDR, Vedrine J, editors. Studies in Surface Science and Catalysis:Elsevier; 2001. p.363.
    [188]Tsou P-H, Chou C-K, Saldana SM, Hung M-C, Kameoka J. The fabrication and testing of electrospun silica nanofiber membranes for the detection of proteins. Nanotechnology. 2008;19:445714.
    [189]Kruk M, Jaroniec M, Ko CH, Ryoo R. Characterization of the Porous Structure of SBA-15. Chemistry of Materials.2000;12:1961-8.
    [190]Gao C, Gao Q, Bao X, Li Y, Teramoto A, Abe K. Preparation and In Vitro Bioactivity of Novel Mesoporous Borosilicate Bioactive Glass Nanofibers. Journal of the American Ceramic Society.2011;94:2841-5.
    [191]Yamaguchi T, Sakai S, Kawakami K. Application of silicate electrospun nanofibers for cell culture. Journal of Sol-Gel Science and Technology.2008;48:350-5.
    [192]Yang P, Zhao D, Chmelka BF, Stucky GD. Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chemistry of Materials.1998;10:2033-6.
    [193]Wang J, Tsung C-K, Hong W, Wu Y, Tang J, Stucky GD. Synthesis of Mesoporous Silica Nanofibers with Controlled Pore Architectures. Chemistry of Materials.2004;16:5169-81.
    [194]Shao C, Kim H, Gong J, Lee D. A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology. 2002;13:635.
    [195]Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured Fibers via Electrospinning. Advanced Materials.2001; 13:70-2.
    [196]Hayati I, Bailey A, Tadros TF. Investigations into the mechanism of electrohydrodynamic spraying of liquids:Ⅱ. Mechanism of stable jet formation and electrical forces acting on a liquid cone. Journal of Colloid and Interface Science.1987;117:222-30.
    [197]Hayati I, Bailey AI, Tadros TF. Mechanism of stable jet formation in electrohydrodynamic atomization. Nature.1986;319:41-3.
    [198]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics.1995;35:151-60.
    [199]Roman J, Padilla S, Vallet-Regi M. Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chemistry of Materials.2003;15:798-806.
    [200]Galeener FL, Lucovsky G. Longitudinal Optical Vibrations in Glasses:GeO2 and SiO2. Physical Review Letters.1976;37:1474-8.
    [201]Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM. Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs. Journal of Non-Crystalline Solids.2005;351:372-9.
    [202]J. Gonzalez-Hernandez JFP-R, F. Ruiz, y J. R. Martinez. Vidrios SiO2 nanocompuestos preparados por sol-gel:revision. SUPERFICIES y VACIO.2000;11:1.
    [203]Serra J, Gonzalez P, Liste S, Serra C, Chiussi S, Leon B, et al. FTIR and XPS studies of bioactive silica based glasses. Journal of Non-Crystalline Solids.2003;332:20-7.
    [204]Pryce RS, Hench LL. Tailoring of bioactive glasses for the release of nitric oxide as an osteogenic stimulus. Journal of Materials Chemistry.2004;14:2303-10.
    [205]Osswald J, Fehr KT. FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination. Journal of Materials Science.2006;41:1335-9.
    [206]Muralidharan MN, Rasmitha CA, Ratheesh R. Photoluminescence and FTIR studies of pure and rare earth doped silica xerogels and aerogels. Journal of Porous Materials. 2009; 16:635-40.
    [207]Primeau N, Vautey C, Langlet M. The effect of thermal annealing on aerosol-gel deposited SiO2 films:a FTIR deconvolution study. Thin Solid Films.1997;310:47-56.
    [208]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics.2004;205:2327-38.
    [209]Koombhongse S, Liu W, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science Part B:Polymer Physics.2001;39:2598-606.
    [210]Shkadov VY, Shutov AA. Disintegration of a charged viscous jet in a high electric field. Fluid Dynamics Research.2001;28:23.
    [211]Kang H, Zhu Y, Jing Y, Yang X, Li C. Fabrication and electrochemical property of Ag-doped SiO2 nanostructured ribbons. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010;356:120-5.
    [212]Huang C, Chen S, Lai C, Reneker Darrell H, Qiu H, Ye Y, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology.2006;17:1558.
    [213]Innocenzi P, Malfatti L, Kidchob T, Falcaro P, Guidi MC, Piccinini M, et al. Kinetics of polycondensation reactions during self-assembly of mesostructured films studied by in situ infrared spectroscopy. Chemical Communications.2005:2384-6.
    [214]Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society.1998; 120:6024-36.
    [215]Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chemical Physics Letters.1998;288:243-7.
    [216]Sotiriou GA, Meyer A, Knijnenburg JTN, Panke S, Pratsinis SE. Quantifying the Origin of Released Ag+ Ions from Nanosilver. Langmuir.2012;28:15929-36.
    [217]Das MR, Sarma RK, Borah SC, Kumari R, Saikia R, Deshmukh AB, et al. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloids and Surfaces B:Biointerfaces.2013;105:128-36.
    [218]Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, et al. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. Journal of Materials Chemistry.2012;22:24132-8.
    [219]Grimm RL, Beauchamp JL. Dynamics of Field-Induced Droplet Ionization: Time-Resolved Studies of Distortion, Jetting, and Progeny Formation from Charged and Neutral Methanol Droplets Exposed to Strong Electric Fields. The Journal of Physical Chemistry B.2005;109:8244-50.
    [220]Ding B, Li C, Miyauchi Y, Kuwaki O, Shiratori S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology.2006; 17:3685.
    [221]Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH. Electrospun nanofibers:Internal structure and intrinsic orientation. Journal of Polymer Science Part A:Polymer Chemistry. 2003;41:545-53.
    [222]Tsai FJ, Torkelson JM. The roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes. Macromolecules. 1990;23:775-84.
    [223]Kim GM, Michler GH, Potschke P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer. 2005;46:7346-51.
    [224]Oh HJ, Pant HR, Kang YS, Jeon KS, Pant B, Kim CS, et al. Synthesis and characterization of spider-web-like electrospun mats of meta-aramid. Polymer International. 2012;61:1675-82.
    [225]Pant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W-i, et al. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids and Surfaces A:Physicochemical and Engineering Aspects. 2010;370:87-94.
    [226]Bin D, Chunrong L, Yasuhiro M, Oriha K, Seimei S. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology.2006;17:3685.
    [227]Wang X, Si Y, Wang J, Ding B, Yu J, Al-Deyab SS. A facile and highly sensitive colorimetric sensor for the detection of formaldehyde based on electro-spinning/netting nano-fiber/nets. Sensors and Actuators B:Chemical.163:186-93.
    [228]Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, et al. Electrospun composite nanofibers and their multifaceted applications. Journal of Materials Chemistry.2012;22:12953-7I.
    [229]Pant HR, Nam K-T, Oh H-J, Panthi G, Kim H-D, Kim B-i, et al. Effect of polymer molecular weight on the fiber morphology of electrospun mats. Journal of Colloid and Interface Science.2011;364:107-11.
    [230]Li XH, Shao CL, Liu YC. A Simple Method for Controllable Preparation of Polymer Nanotubes via a Single Capillary Electrospinning. Langmuir.2007;23:10920-3.
    [231]Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, et al. Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires. The Journal of Physical Chemistry B.2004; 108:12877-81.
    [232]Kaczmarek H, Kaminska A, Swiatek M, Rabek JF. Photo-oxidative degradation of some water-soluble polymers in the presence of accelerating agents. Die Angewandte Makromolekulare Chemie.1998;261-262:109-21.
    [233]Aguiar H, Serra J, Gonzalez P, Leon B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids.2009;355:475-80.
    [234]De G, Licciulli A, Massaro C, Tapfer L, Catalano M, Battaglin G, et al. Silver nanocrystals in silica by sol-gel processing. Journal of Non-Crystalline Solids.1996;194:225-34.
    [235]Kim YH, Lee DK, Cha HG, Kim CW, Kang YS. Synthesis and Characterization of Antibacterial Ag-SiO2 Nanocomposite. The Journal of Physical Chemistry C. 2007;111:3629-35.
    [236]Akhavan O, Ghaderi E. Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Current Applied Physics.2009;9:1381-5.
    [237]Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Applied and Environmental Microbiology. 2009;75:2973-6.
    [238]Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, et al. Nanosilver on nanostructured silica:Antibacterial activity and Ag surface area. Chemical Engineering Journal 2011;170(2-3):547-554.
    [239]Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y. Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation. Physical Review B.1992;45:586-91.
    [240]Tohmon R, Shimogaichi Y, Mizuno H, Ohki Y, Nagasawa K, Hama Y.2.7-eV luminescence in as-manufactured high-purity silica glass. Physical Review Letters.1989;62:1388-91.
    [241]Qin GG, Lin J, Duan JQ, Yao GQ. A comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO[sub 2] powder. Applied Physics Letters.1996;69:1689-91.
    [242]Phadke MA, Musale DA, Kulkarni SS, Karode SK. Poly(acrylonitrile) ultrafiltration membranes. I. Polymer-salt-solvent interactions. Journal of Polymer Science Part B:Polymer Physics.2005;43:2061-73.
    [243]Roy SK, Kyu T, Manley RSJ. Physical and dynamic mechanical properties of ultradrawn polypropylene films. Macromolecules.1988;21:499-504.
    [244]Wu XC, Song WH, Wang KY, Hu T, Zhao B, Sun YP, et al. Preparation and photoluminescence properties of amorphous silica nanowires. Chemical Physics Letters. 2001;336:53-6.
    [245]Zhang M, Ciocan E, Bando Y, Wada K, Cheng LL, Pirouz P. Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method. Applied Physics Letters.2002;80:491-3.
    [246]Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, et al. Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Letters.2005;5:1569-74.
    [247]Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, et al. Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10nm Gaps. Advanced Materials.2006; 18:491-5.
    [248]Evanoff DD, Chumanov G. Size-Controlled Synthesis of Nanoparticles.2. Measurement of Extinction, Scattering, and Absorption Cross Sections. The Journal of Physical Chemistry B. 2004;108:13957-62.
    [249]Haiyan H, Qian G, Xiwen Z, Gaorong H. Cold deposition of large-area amorphous hydrogenated silicon films by dielectric barrier discharge chemical vapor deposition. Thin Solid Films.2011;519:5038-42.
    [250]Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids.1992;143:84-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700