用户名: 密码: 验证码:
基于SPM的纳米电刻蚀加工实验和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于SPM(Scanning Probe Microscope,扫描探针显微镜)的纳米电刻蚀加工技术具有成本低,操作灵活,精度高,加工尺寸可控,加工去除能力与材料强度和硬度无关等优势,适用于各种金属,非金属导体和半导体材料表面的纳米尺度加工和改性,因此在纳米尺度器件的加工领域中具有广阔的应用前景。目前该加工方法尚处于实验室研究阶段,还需要进行大量相关的基础实验和机理研究才能可靠和高效地应用于实际纳米尺度结构的加工中。本文针对基于SPM的电刻蚀加工方法进行了系统的实验研究和相关的机理研究,分别采用了STM(Scanning TunnelingMicroscope,扫描隧道显微镜)和AFM(Atomic Force Microscope,原子力显微镜)两种系统装置,致力于解决三方面的关键性问题,即研究基于SPM纳米电刻蚀加工方法在加工石墨样品中的实验规律,优化加工参数,从而提高加工的可控性,成像精度,加工效率和加工稳定性;有效区分基于SPM纳米电刻蚀加工方法在电化学和放电两种原理下进行加工的实验条件,从而在指定加工原理下获得可控的纳米结构;探究材料加工蚀除的微观过程,对局域纳米加工间隙中的电场和热场分布进行有限元计算和分析,并且采用分子动力学方法对基于放电原理的加工中热源作用下材料蚀除过程的原子运动轨迹进行模拟。主要完成的工作有以下几个方面:
     1.采用基于STM的电刻蚀加工方法在大气环境中对石墨样品表面进行了系统的加工实验研究,加工间隙控制在0.6nm至3nm间。在样品正极性下可以进行样品材料的蚀除加工和改性,而在样品负极性下,样品表面材料无法被去除或改性,但是可以对针尖进行尖锐化的修整,有效地提高针尖的使用寿命。实验还研究了加工偏压幅值,脉宽,加工间距,针尖几何构型,大气湿度等加工参数对电刻蚀加工结果的影响规律,同时通过研究加工过程中检测出的实时电流来进一步地分析加工状态和机理。在加工实验中可以获得深径比为0.04~0.4的蚀坑结构,其中加工获得最小尺寸的蚀坑直径为10nm,深度约为1nm。而加工获得最浅线槽结构的深度约为1nm,相当于几个石墨片层的厚度。
     2.采用基于AFM的电刻蚀加工方法在大气环境中对石墨样品表面进行了系统的加工实验研究,针尖和样品间处于接触模式下,相互作用力控制在10nN以内。在样品正极性下,对AFM探针几何构型,加工偏压幅值,加工速度和大气湿度等过程参数进行了系统的实验研究。这种加工方式不仅可以获得各种尺寸的纳米蚀坑和蚀槽结构,还可以在电化学原理下可控地获得凸起或凹陷的纳米线结构,其中线凸起结构具有绝缘特性,加工宽度约为40~60nm,高度约为1~3nm。并且检测出电化学和放电原理下的实时电加工电流具有明显差异。还对比了基于STM和AFM两种电刻蚀加工方法的特点,加工精度以及针尖寿命等。
     3.通过J.G. Simmons的通用计算公式获得了纳米尺度加工间隙中的电流密度-电压曲线,结合实验加工结果,获得了不同原理加工区域的加工电流密度阈值,并由此得到不同加工间隙下的加工电压阈值。并且采用有限元方法对基于SPM的纳米电刻蚀加工进行建模,计算得到不同针尖几何构型下纳米尺度间隙中的电场分布,获得了最佳电加工状态下的针尖曲率半径值。还通过有限元热电耦合计算获得了样品表面的温度场分布,并根据相变计算结果估算出纳米放电加工中,不同的加工偏压,加工间隙,针尖几何构型和样品材料下局域材料蚀除量的大小。将有限元模拟预测结果与实际加工结果进行对比,一致性较好。
     4.采用分子动力学方法对纳米放电加工中热效应作用下原子尺度的材料蚀除过程进行了模拟。分别以石墨和铜样品材料作为模拟对象,研究了在放电焦耳热源作用下局域样品表面的原子运动轨迹,从而确定了材料蚀除的纳观机理。并且研究和分析了热源能量大小以及不同样品晶格结构对于材料蚀除过程的影响。
The SPM (Scanning Probe Microscope)-based nano scale electrical machiningtechnique is of numerous advantages, such as low cost, flexible operation, high accuracy,controllable feature size and its material removal capability has nothing to do with thematerial strength and hardness. The machining method is applicable to a variety of metals,non-metallic conductive materials and the semiconductor materials to achieve thenanoscale surface modification and processing. Therefore, it has broad applicationprospects in the nanoscale device fabrication fields. Presently the SPM-based electricfabrication method is in the laboratory stage and still requires a lot of the relevantexperimental and mechanism researches to be reliably and efficiently applied to the actualnanoscale structure fabrication. In this dissertation, the two system devices of STM(Scanning Probe Microscope) and AFM (Atomic Force Microscope) are utilizedrespectively to perform the systematic experimental study and the mechanism research.This work is committed to address three key issues. That is firstly, through the study ofthe experimental laws and optimal processing parameters in the SPM-based electriclithography of the graphite sample, the enhancement of fabrication controllability,imaging precision, machining efficiency and reliability is achieved. Secondly, theexperimental conditions for determining the electrochemical-caused fabrication and theelectro discharge-caused fabrication during the SPM-based electric lithography areobtained and the controllable nanoscale structures are fabricated under the specificmachining mechanism. Finally, to explore the microscopic process of the local materialremoval and modifications, both of the FEM (finite element method) analysis of theelectric and thermal field distribution in the nanoscale machining gap and the MD(molecular dynamics) simulation of the atom trajectory under the heat sourcecorresponding to the electro spark-caused SPM-based fabrication are carried out. Major work completed in the dissertation is in the following areas:
     1. The experimental research of the STM-based electrical machining is performed onthe graphite surface in the ambient conditions with the machining gap controlled between0.6to3nm. For the fabrication conducted under the positive polarity of the sample, thesample material removal and modification can be obtained, while under the negativepolarity fabrication, the sample surface cannot be effectively removed or modified.However, the probe tip could be sharpened to effectively improve the lifetime of the tooltip. The machining parameters involving the bias voltage amplitude, pulse width,machining gap, tip geometry and the atmospheric humidity are experimentally studied todetermine their influence on the fabrication results. Furthermore, the real-time currentduring the machining process is also detected to analyze the machining status andmechainism. The nanoscale pits in the aspect ratio between0.04and0.4are obtained.The smallest pits fabricated are in the diameter of10nm and the depth of1nm or so. Theshallowest groove structure obtained is in the depth of1nm, equivalent to severalgraphite layer thicknesses.
     2. The experimental study of the AFM-based electric lithography is carried out on thegraphite sample in the atmosphere. The AFM probe tip and the sample are kept in thecontact mode and the interaction force is controlled within10nN. Under the positivepolarity fabrication, the process parameters including the AFM probe geometry, biasvoltage magnitude, scanning speed and the relative humidity are systematicallyinvestigated in the experiments. Not only the nanoscale pits and grooves of various sizescan be obtained, but also the bulged or the grooved nanowire sturcutres can becontrollably achieved in the electrochemical principle. The bulged nanolines possessingthe insulation properties are in the width of40~60nm and the height of1~3nm or so.And it can be observed that the current under the electrochemical-caused fabrication andthe electro discharge-caused machining has a significant difference. Moreover, theSTM-based and the AFM-based electrical machining methods are compared in theaspects of machining charateristics, machining accuracy, life time of the probe tip and soon.
     3. The current density-voltage (J-V) curve in the nanocale machining gap is obtainedthrough the J.G. Simmons general formula. Combined with the experimental results, thethreshold current density values for performing the machining under distinct mechanisms are acquired and thus to get the threshold voltage values under different machining gaps.The electric field distribution in the nanoscale gap is calculated under various tipgeometries using the FEM (finite element method) and the tip curvature radius forachieving optimal electro machining status is determined. Furthermore, through the FEMthermoelectric coupling calculation, the temperature distribution is obtained. The materialremoval size of the local sample surface during the electro discharge machining can beestimated through the phase change calculation under distinct bias voltages, machininggaps, tip geometries and sample materials. It is found out that the FEM calculation resultsare in good accordance with the experimental results.
     4. The MD (molecular dynamics) simulation method is utilized to simulate theatomic-scale thermal response and material removal process during the electro dischargemachining. The graphite sample and copper sample are taken as the simulation objectrespectively. The atomic trajectories under the Joule heating effect of the nanoscaleelectro discharge phenomena are studied to determine the microscopic mechanism ofmaterial removal and ablation. Moreover, the role of the heat source energy and thesample material in the material machining process are investigated in detail.
引文
[1]王国彪,黎明,丁玉成,等.重大研究计划“纳米制造的基础研究”综述[J].中国科学基金,2010,2:70-77
    [2] Sajjad, M., Morell, G., Feng, P. Advance in novel boron nitride nanosheets tonanoelectronic device applications[J]. ACS Appl. Mater. Interfaces.2013,5(11):5051–5056.
    [3]王丽江,陈松月,刘清君,等.纳米技术在生物传感器及检测中的应用[J].传感技术学报,2006,19(3):581-587.
    [4] Craighead, H.G. Nanoelectromechanical systems[J]. Science.2000,290(5496):1532-1535.
    [5] Cui, Z., Gu, C. Nanofabrication challenges for NEMS[C]. Nano/Micro Engineered andMolecular Systems. NEMS'06.1st IEEE International Conference on. IEEE,2006:607-610.
    [6] Chung, S.H., Choi, B.J., Lee, S.W., et al. Recent research trends in nanoscaleelectro-mechanical systems for bio-medical applications[J]. Biomedical Engineering Letters.2011,1(1):7-10.
    [7] Vieu, C., Carcenac, F., Pepin, A., et al. Electron beam lithography: resolution limits andapplications[J]. Applied Surface Science.2000,164(1-4):111-117.
    [8] Tseng, A.A., Kuan, C., Chen, C.D., et al. Electron beam lithography in nanoscalefabrication: recent development[J]. Electronics Packaging Manufacturing, IEEE Transactionson.2003,26(2):141-149.
    [9]陈宝钦,赵珉,吴璇,等.电子束光刻在纳米加工及器件制备中的应用[J].微纳电子技术.2008,45(12):683-688.
    [10]Tseng, A.A. Recent developments in nanofabrication using focused ion beams[J]. Small.2005,10(1):924-939.
    [11]Watt, F., Bettiol, A.A., Van Kan, et al. Ion beam lithography and nanofabrication: areview[J]. International Journal of Nanoscience.2005,4(3):269-286.
    [12]钱海霞.微米/纳米加工中的聚焦离子束技术[J].广东化工.2009,36(7):84-86.
    [13]Shimotsuma, Y., Hirao, K., Kazansky, P.G., et al. Three-dimensional micro-andnano-fabrication in transparent materials by femtosecond laser[J]. Japanese Journal ofApplied Physics.2005,44(7A):4735-4748.
    [14]董贤子,陈卫强,赵震声,等.飞秒脉冲激光双光子微纳加工技术及其应用[J].科学通报.2008,53(1):2-13.
    [15]Zhang, Y.D., Chen, Q.D., Xia, H., et al. Designable3D nanofabrication by femtosecondlaser direct writing[J]. Nanotoday.2010,5(5):435-448.
    [16]Gates, B.D., Xu, Q., Love, J.C., et al. Unconventional nanofabrication[J]. Annual Reviewof Materials Research.2004,34(1):339-372.
    [17]Xie, X.N., Chung, H.J., Sow, C.H., et al. Scanning Probe Microscopy Based NanoscalePatterning and Fabrication[M]. Singapore: World Scientific Publishing,2009.
    [18]Malshe, A.P., Rajurkar, K.P., Virwani, K.R., et al. Tip-based nanomanufacturing byelectrical, chemical, mechanical and thermal processes[J]. CIRP Annals-ManufacturingTechnology.2010,59(2):628-651.
    [19]Ruetschi, M., Guetter, P., Fuenfschilling, J., et al. Creation of liquid crystal waveguideswith scanning force microscopy[J]. Science.1994,265(5171):512-514.
    [20]Yan, Y., Hu, Z., Zhao, X., et al. Top-down nanomechanical machining ofthree-dimensional nanostructures by atomic force microscopy[J]. Small.2010,6(6):724-728.
    [21]Hu, Z.J., Yan, Y.D., Zhao, X.S., et al. Fabrication of large scale nanostructures based on amodified atomic force microscope nanomechanical machining system[J]. Review of ScientificInstruments.2011,82(12):125102-125102-8.
    [22]Suda, R., Ohyama, T., Tseng A.A., et al. In-situ control of quantum point contacts usingscanning probe microscopy scratch lithography[C].201212th IEEE Conference onNanotechnology (IEEE-NANO).2012:1-5.
    [23]Suda, R., Saito, T., Tseng, A.A., et al. Nanoscale mechanical scratching of graphene usingscanning probe microscopy[C].2013IEEE5th International Nanoelectronics Conference(INEC).2013:285-287.
    [24]Snow, E.S., Campbell, P.M., McMarr, P.J. Fabrication of silicon nanostructures with ascanning tunneling microscope[J]. Applied Physics Letters.1993,63(6):749-751.
    [25]Snow, E.S., Campbell, P.M. AFM fabrication of sub-10-nanometer metal-oxide deviceswith in situ control of electrical properties. Science.1995,270(5242):1639-1641.
    [26]Liu, J.F., Miller, G.P. Field-assisted nanopatterning of metals, metal oxides and metalsalts[J]. Nanotechnology.2009,20(5):055303.
    [27]Tseng, A.A. Advancements and challenges in development of atomic force microscopyfor nanofabrication[J]. Nano Today.2011,6(5):493-509.
    [28]Hu, W., Bain, J., Ricketts, D. An AFM/STM multi-mode nanofabrication approachallowing in situ surface modification and characterisation[J]. Micro&Nano Letters.2013,8(1):43-46.
    [29]Lee, W.K., Whitman, L.J., Lee, J., et al. The nanopatterning of a stimulus-responsivepolymer by thermal dip-pen nanolithography[J]. Soft Matter.2008,4(9):1844-1847.
    [30]Duvigneau, J., Schonherr, H., Vancso, G.J. Atomic force microscopy based thermallithography of Poly(tert-butylacrylate) block copolymer films for bioconjugation[J]. Langmuir.2008,24(19):10825-10832.
    [31]Wang, D., Kim, S., Underwood, W.D., et al. Direct writing and characterization ofpoly(p-phenylene vinylene) nanostructures[J]. Applied Physics Letters.2009,95(23):233108.
    [32]Maoz, R., Sidney, E.F., Cohen, R., et al. Constructive nanolithography: Inert monolayersas patternable templates for in-situ nanofabrication of metal-semiconductor-organic surfacestructures-A generic approach[J]. Advanced Materials.2000,12(10):725-731.
    [33]Liu, S., Maoz, R., Sagiv, J. Planned nanostructures of colloidal gold via self-assembly onhierarchically assembled organic bilayer template patterns with in-situ generated terminalamino functionality[J]. Nano Letters.2004,4(5):845-851.
    [34]Hoeppener, S., Schubert, U.S. Fabrication via electrochemical oxidation ofself-assembled monolayers and site-selective derivatization of surface templates[J]. Small.2005,1(6):628-632.
    [35]Lee, S.W., Sankaran, R.M. Direct writing via electron-driven reactions[J]. MaterialTodays.2013,16(4):117-122.
    [36]Rajurkar, K.P., Yu, Z.Y.3d micro-EDM using CAD/CAM[J]. CIRPAnnals-Manufacturing Technology.2000,49(1):127-130.
    [37]Kock, M., Kirehner, V., Schuster, R. Electrochemical micromachining with ultrashortvoltage pulses a versatile method with lithographical precision[J]. Electrochimica Acta.2003,48(20-22):3213-3219.
    [38]贾宝贤,赵万生,王振龙,等.微细电火花机床及其关键技术研究[J].哈尔滨工业大学学报,2006,38(003):402-405.
    [39]Rajurkar, K.P., Levy, G., Malshe, A., et al. Micro and nano machining by electro-physicaland chemical processes[J]. CIRP Annals-Manufacturing Technology.2006,55(2):643-666.
    [40]Hu, W., Bain, J.A., Ricketts, D.S. In situ quantification of electrical isolation inSTM-fabricated TiOx nanostructures[J]. Micro&Nano Letters.2012,7(4):334-336.
    [41]Baturin, A.S., Chouprik, A.A., Sheshin, E.P., et al. Modification of ultrathin α-C:H filmsby short voltage pulses in STM[J]. Carbon Nanomaterials in Clean Energy Hydrogen Systems,NATO Science for Peace and Security Series C: Environmental Security.2009:269-274.
    [42]Grishin, M.V., Kovalevskii, S.A., Dalidchik, F.I, et al. Formation of titanium nanooxidesuperclusters under the tip of a scanning tunneling microscope[J]. Nanotechnologies in Russia.2010,5(7-8):450-453.
    [43]Hiroyuki, S., Tatsuya, U., Noboru, K., et al. Tip-induced anodization of titanium surfacesby scanning tunneling microscopy: A humidity effect on nanolithography[J]. Applied PhysicsLetters.1993,63(9):1288-1290.
    [44]Abdullah, A.M., Hutagalung, S.D., Lockman, Z. Influence of room humidity on theformation of nanoscale silicon oxide patterned by AFM lithography[J]. International Journalof Nanoscience.2010,9(4):251-255.
    [45]Ageev, O.A., Smirnov, V.A., Solodovnik, M.S., et al. A study of the formation modes ofnanosized oxide structures of gallium arsenide by local anodic oxidation[J]. Semiconductors.2012,46(13):1616-1621.
    [46]Abadal, G., Pérez-Murano, F., Barniol, N., et al. Field induced oxidation of silicon bySPM: study of the mechanism at negative sample voltage by STM, ESTM and AFM[J].Applied Physics A.1998,66(1): S791-S795.
    [47]Park, J.G., Zhang, C., Liang, R., et al. Nano-machining of highly oriented pyrolyticgraphite using conductive atomic force microscope tips and carbon nanotubes[J].Nanotechnology.2007,18(40):405306.
    [48]Virwani, K.R., Malshe, A.P., Rajurkar, K.P. Understanding dielectric breakdown andrelated tool wear characteristics in nanoscale electro-machining process[J]. CIRPAnnals-Manufacturing Technology.2007,56(1):217-220.
    [49]Park, S.W., Soh, H.T., Quate, C.F., et al. Nanometer scale lithography at high scanningspeeds with the atomic force microscope using spin on glass[J]. Applied Physics Letters.1995,67(16):2415-2417.
    [50]Kumar, K., Strauf, S., Yang, E.H. A systematic study of graphite local oxidationlithography parameters using an atomic force microscope[J]. Nanoscience andNanotechnology Letters.2010,2(2):185-188.
    [51]Jahan, M.P., Virwani, K.R., Rajurkar, K.P. A comparative study of the dry and wetnano-scale electro-machining[J]. Procedia CIRP.2013,6:627-632.
    [52]Johannes, M.S., Cole, D.G., Clark, R.L. Three-dimensional design and replication ofsilicon oxide nanostructures using an atomic force microscope[J]. Nanotechnology.2007,18(34):345304.
    [53]Xie, X.N., Chung, H.J., Sow, C.H., et al. Electrical discharge in a nanometer-sizedair/water gap observed by atomic force microscopy[J]. J. Am. Chem. Soc.2005,127(44):15562-15567.
    [54]Malshe, A.P., Virwani, K., Rajurkar, K.P., et al. Investigation of nanoscale electromachining (nano-EM) in dielectric oil[J]. CIRP Annals-Manufacturing Technology.2005,54(1):175-178.
    [55]Lorenz, C.D., Chandross, M., Grest, G.S. Large scale molecular dynamics simulations ofvapor phase lubrication for MEMS[J]. Journal of Adhesion Science and Technology.2010,24(15-16):2453-2469.
    [56]Fang, F. Z., Wu, H., Liu, Y. C. Modelling and experimental investigation on nanometriccutting of monocrystallinesilicon[J]. International Journal of Machine Tools and Manufacture.2005,45(15):1681-1686.
    [57]Zhang, J.J., Sun, T., Yan, Y.D., et al. Molecular dynamics simulation of subsurfacedeformed layers in AFM-based nanometric cutting process[J]. Applied Surface Science.2008,254(15):4774-4779.
    [58]Pei, Q.X., Lu, C., Lee, H.P., et al. Study of materials deformation in nanometric cuttingby large-scale molecular dynamics simulations[J]. Nanoscale Research Letters.2009,4(5):444-451.
    [59]Binnig, G., Rohrer, H. Scanning tunneling microscopy[J]. Surface Science.1983,126(1-3):236-244.
    [60]Eigler, D.M.,Schweizer, E. K. Positioning single atoms with a scanning tunnelingmicroscope[J]. Nature.1990,344(6266):524-526.
    [61]Eigler, D.M., Lutz, C.P., Rudge, W.E. An atomic switch realized with the scanningtunneling microscope[J]. Nature.1991,352(6336):600-603.
    [62]Moresco, F., Meyer, G., Rieder, K.-H., et al.Low temperature manipulation of bigmolecules in constant height mode[J]. Applied Physics Letters.2001,78(3):306-308.
    [63]Hla, S.-W. Scanning tunneling microscopy single atom/molecule manipulation and itsapplication to nanoscience and technology[J]. Journal of Vacuum Science&Technology B.2005,23(4):1351-1360.
    [64]Dagata, J.A., Tseng, W.F., Bennett, J.A., et al. Nanolithography on III-V semiconductorsurfaces using a scanning tunneling microscope operating in air[J]. Journal of Applied Physics.1991,70(7):3661-3665.
    [65]Dagata, J.A., Schneir, J., Harary, H.H., et al. Pattern generation on semiconductorsurfaces by a scanning tunneling microscope operating in air[J]. Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures.1991,9(2):1384-1388.
    [66]Sugimura, H., Kitamura, N., Masuhara H. Modification of n-Si (100) surface by scanningtunneling microsocpe tip-induced anodization under nitrogen atmosphere[J]. Japanese Journalof Applied Physics.1994,33(1B): L143-L145.
    [67]Sugimura, H., Yamamoto, T., Nakagiri, N., et al. Maskless patterning of silicon surfacebased on scanning tunneling microscope tip-induced anodization and chemical etching[J].Applied Physics Letters.65(12):1569-1571.
    [68]Campbell, P.M., Snow, E.S., McMarr, P.J. Fabrication of nanometer-scale conductingsilicon wires with a scanning tunneling microscope[J]. Solid-State Electronics.1994,37(4):583-586.
    [69]McCord, M.A., Pease, R.F.W. Exposure of calcium fluride resist with the scanningtunneling microscope. Journal of Vacuum Science&Technology B.1987,5(1):430-433.
    [70]McCord, M.A., Pease, R.F.W. Lithography with the scanning tunneling microscope[J].Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures.1986,4(1):86-88.
    [71]McCord, M.A., Pease, R.F.W. Lift-off metallization using poly (methyl methacrylate)exposed with a scanning tunneling microscope[J]. Journal of Vacuum Science&TechnologyB: Microelectronics and Nanometer Structures,1988,6(1):293-296.
    [72]Kleineberg, U., Brechling, A., Sundermann, M., et al. STM lithography in an organicself-assembled monolayer[J]. Advanced Functional Materials.2001,11(3):208-212.
    [73]严学俭,邱伟民,李旭,等.利用STM制作有机LB膜超高密度存储器[J].功能材料.2004,1(35):1364-1370.
    [74]Li, Y.Z., Vazquez, L., Piner, R., et al. Writing nanometer-scale symbols in gold using thescanning tunneling microscope[J]. Applied Physics Letters.1989,54(15):1424-1426.
    [75]Chang, T.C., Chang, C.S., Lin, H.N., et al. Creation of nanostructures on gold structuresin nonconducting liquid[J]. Applied Physics Letters.1995,67(7):903-905.
    [76]Campbell, P.A., Farnan, G.A., Walmsley, D.G. Field enhanced fabrication of metallicnanostructures using millisecond-pulsed scanning tunnelling microscopy[J]. Nanotechnology.2002,13(1):69-74.
    [77]Zhang, H.L., Li, H.L., Liu, Z.F. Study on the delicate nanostructures formed on Au (111)by scanning tunneling microscopy (STM)[J]. Microelectronic Engineering.2002,63(4):381-389.
    [78]Sugimura, H., Uchida, T., Kitamura, N., et al. Tip-induced anodization of titaniumsurfaces by scanning tunneling microscopy: A humidity effect on nanolithography[J]. AppliedPhysics Letters.1993,63(9):1288-1290.
    [79]Sugimura, H., Uchida, T., Kitamura, N., et al. Nanofabrication of titanium surface bytip-induced anodization in Scanning Tunneling Microscopy[J]. Japanese Journal of AppliedPhysics.1993,32(4A): L553-L555.
    [80]Hu, X., Yu, J., Chen, J., et al. Analysis of electric field-induced fabrication on Au and Tiwith an STM in air[J]. Applied Surface Science.2002,187(3):173-178.
    [81]Zhang, L., Bain, J.A., Zhu, J.G., et al. A model of heat transfer in STM-based magneticrecording on CoNi/Ptmultilayers[J]. Physica B: Condensed Matter.2006,381(1):204-208.
    [82]Zhang, L., Bain, J.A., Zhu, J.G., et al. Heat-assisted magnetic probe recording on agranular CoNi/Pt multilayered film[J]. Journal of Physics D: Applied Physics.2006,39(12):2485-2457.
    [83]Mizutani, W., Inukai, J., Ono, M. Making a monolayer hole in a graphite surface bymeans of a scanning tunneling microscope[J]. Japanese Journal of Applied Physics.1990,29(5): L815-L817.
    [84]Wang, C., Li, X., Shang, G., et al. Threshold behavior of nanometer scale fabricationprocess using scanning tunneling microscopy[J]. Journal of Applied Physics.1997,81(3):1227-1230.
    [85]Wang, C., Shang, G., Qiu, X., et al. STM studies of the characteristics of the surfacefabrication process using chemical and electrical methods[J]. Applied Physics A.1999,68(2):181-185.
    [86]Hiura H. Tailoring graphite layers by scanning tunneling microscopy[J]. Applied SurfaceScience.2004,222(1):374-381.
    [87]Park, J., Kim, K.B., Park, J.Y., et al. Graphite patterning in a controlled gasenvironment[J]. Nanotechnology.2011,22(33):335304.
    [88]Mühl, T., Myhra, S. Electro-oxidative lithography by STM as a proximity electrode ofelectrically conducting DLC[J].2007,61(61):841-846.
    [89]Tapasztó, L., Dobrik, G., Lambin, P., et al. Tailoring the atomic structure ofgraphenenanoribbons by scanning tunnelling microscope lithography[J]. NatureNanotechnology.2008,3(7):397-401.
    [90]Biró, L.P., Lambin, P. Nanopatterning of graphene with crystallographic orientationcontrol[J]. Carbon.2010,48(10):2677-2689.
    [91]Dobrik, G., Tapasztó, L., Nemes-Incze, P., et al. Crystallographically oriented highresolution lithography of grapheme nanoribbons by STM lithography[J]. Phys. Status Solidi B.2010,247(4):896-902.
    [92]Biró, L.P., Nemes-Incze, P., Lambin, P. Graphene: nanoscale processing and recentapplications[J]. Nanoscale.2012,4(6):1824-1839.
    [93]Binnig, G., Quate, C. F., Gerber, C. Atomic force microscope[J]. Physical review letters.1986,56(9):930-933.
    [94]Minne, S.C., Soh, H.T., Flueckiger, P., et al. Fabrication of0.1μm metal oxidesemiconductor field-effect transistors with the atomic force microscope[J]. Applied PhysicsLetters.1995,66(6):703-705.
    [95]Bo, X.Z., Rokhinson, L.P., Yin, H., et al. Nanopatterning of Si/SiGe electrical devices byatomic force microscopy oxidation[J]. Applied Physics Letters.2002,81(17):3263-3265.
    [96]Tello, M., García, R. Nano-oxidation of silicon surfaces: Comparison of noncontact andcontact atomic-force microscopy methods[J]. Applied Physics Letters.2001,79(3):424-426.
    [97]Kim, H.C., Yu, J.S., Ryu, S.H. Nano-dot and nano-pit fabrication on a GaAs substrate bya pulse applied AFM[J]. Journal of Micromechanics and Microengineering.2012,22(12):125021.
    [98]胡晓东,郭彤,胡小唐.利用AFM动态电场在Si表面实现纳米氧化结构[J].半导体学报,2002,23(11):1182-1186.
    [99]Wilder, K., Quate, C.F., Adderton, D. Noncontact nanolithography using the atomic forcemicroscope[J]. Applied Physics Letters.1998,73(17):2527-2529.
    [100] Soh, H.T., Guarini, K.W., Quate, C.F. Scanning probe lithography[M]. Boston: KluwerAcademic Publishers,2001.
    [101] Rolandi, M., Quate, C.F., Dai, H. A new scanning probe lithography scheme with anovel metal resist[J]. Advanced Materials.2002,14(3):191-194.
    [102] Sugimura, H., Nakagiri, N. AFM lithography in constant current mode[J].Nanotechnology.1999,8(3A): A15-A18.
    [103] Maynor, B.W., Filocamo, S.F., Grinstaff, M.W., et al. Direct-writing of polymernanostructures: poly (thiophene) nanowires on semiconducting and insulating surfaces[J].Journal of the American Chemical Society.2002,124(4):522-523.
    [104] Lyuksyutov, S.F., Vaia, R.A., Paramonov, P.B., et al. Electrostatic nanolithography inpolymers using atomic force microscopy[J]. Nature Materials.2003,2(7):468-472.
    [105] Shirakashi, J., Matsumoto, K., Miura, N., et al. Nb/Nb oxide-based planar-typemetal/insulator/metal (MIM) diodes fabricated by atomic force microscope (AFM)nano-oxidation process[J]. Jpn. J. Appl. Phys.1997,36(8B): L1120-L1122.
    [106] Lopour, F., Kalousek, R., kod, D., et al. Application of AFM in microscopy andfabrication of micro/nanostructures[J]. Surface and Interface Analysis.2002,34(1):352-355.
    [107] Fang, T.H., Wang, T.H., Wu, K.T. Local oxidation of titanium films by non-contactatomic force microscopy[J]. Microelectronic Engineering.2008,85(7):1616-1623.
    [108]匡登峰,刘庆纲,胡小唐,等.大气状态下AFM针尖诱导氧化加工Ti膜的机理分析[J].半导体学报,2003,24(012):1303-1306.
    [109] Dengfeng, K., Qinggang, L., Weilian, G., et al. Method to detect the property ofcomplex oxide structure formed by AFM anodic oxidation completely[J]. Ultramicroscopy.2005,105(1):111-114.
    [110]匡登峰,刘庆纲,方志良,等. AFM加工的Ti纳米氧化钛线的直线度分析[J].光电子激光.2005,16(12):1417-1420.
    [111]匡登峰,刘庆纲,郭维廉,等.相对湿度对AFM针尖阳极氧化金属薄膜的影响[J].微纳电子技术.2008(8):142-144.
    [112] Shen, Z., Hou, S., Sun, H., et al. Local oxidation of titanium thin films using an atomicforce microscope under static and pulsed voltages[J]. Journal of Physics D: Applied Physics.2004,37(9):1357-1361.
    [113] Kim, B.M., Min, Y.S., Lee, N.S., et al. In-situ electrical study of a reversible surfacemodification and a nanomachining of gold microstrips by the voltage-biased atomic forcemicroscope tip in air[J]. Japanese Journal of Applied Physics.2001,40(6B):4340-4343.
    [114] Park, K.H., Kim, J., Ha, J.S., et al. Field emission induced fabrication of nanostructureson Au thin films using a noncontact mode atomic force microscope[J]. Journal of VacuumScience and Technology B.2003,21(4):1357-1360.
    [115] Parkhi, A., Gross, T.S. Impact of I-V behavior and estimated temperature rise onsurface and tip modification of the nanocontact between a highly doped silicon scanningprobe microscope tip and gold surface under ambient conditions[J]. Journal of AppliedPhysics.2011,109(1):014323.
    [116] Shingubara, S., Murakami, Y., Morimoto, K., et al. Formation of aluminum nanodotarray by combination of nanoindentation and anodic oxidation of aluminum[J]. SurfaceScience.2003,532:317-323.
    [117] Lee, G., Jung, H., Son, J., et al. Experimental and numerical study of electrochemicalnanomachining using an AFM cantilever tip[J]. Nanotechnology.2010,21(18):185301.
    [118] Watanabe, K., Takemura, Y., Shimazu, Y., et al. Magnetic nanostructures fabricated bythe atomic force microscopy nano-lithography technique[J]. Nanotechnology.2004,15(10):S566-S569.
    [119] Hirooka, M., Tanaka, H., Li, R., et al. Nanoscale modification of electrical andmagnetic properties of FeO thin film by atomic force microscopy lithography[J]. Appliedphysics letters.2004,85:1811.
    [120] Yoshimizu, N., Hicks, B., Lal, A., et al. Scanning probe nanoscale patterning of highlyordered pyrolytic graphite[J].2010,21(9):095306.
    [121] Hicks, B.T., Yoshimizu, N., Connell, C.O., et al. Tip-based patterning of HOPG andCVD graphene[J]. SPIE Proceedings.2011,8031:803104.
    [122] Kumar, K., Strauf, S., Yang, E.H. A systematic study of graphite local oxidationlithography parameters using an atomic force microscope[J]. Nanoscience andNanotechnology Letters.2010,2(2):185-188.
    [123] Kurra, N., Prakash, G., Basavaraja, S., et al. Charge storage in mesoscopic graphiticislands fabricated using AFM bias lithography[J]. Nanotechnology.2011,22(24):245302.
    [124] Jiang, Y., Guo, W. Convex and concave nanodots and lines induced on HOPG surfacesby AFM voltages in ambient air[J].2008,19(34):345302.
    [125] Jiang, Y., Guo, W. Convex–concave nanostructure transition on highly orientedpyrolitic graphite surface induced by atomic force microscope tip under bias voltage[J].Journal of Experimental Nanoscience.2011,6(2):96-101.
    [126] Giesbers, A.J.M., Zeitler, U., Neubeck, S., et al. Nanolithography and manipulation ofgraphene using an atomic force microscope[J]. Solid State Communications.2008,147(9):366-369.
    [127] Weng, L., Zhang, L., Chen, Y.P., et al. Atomic force microscope local oxidationnanolithography of graphene[J]. Applied Physics Letters.2008,93(9):093107.
    [128] Masibichi, S., Ono, M., Yoshida, K, et al. Fabrication of graphene nanoribbon by localanodic oxidation lithography using atomic force microscope[J]. Applied Physics Letters.2009,94(8):082107.
    [129] Puddy, R.K., Scard, P.H., Tyndall, D., et al. Atomic force microscope nanolithographyof graphene: Cuts, pseudocuts, and tip current measurements[J]. Applied Physics Letters.2011,98(13):133120.
    [130] Konov, V.I., Frolov, V.D., Zavedeev, E.V., et al. Fabrication of graphene nanostructuresby probe nanoablation[J]. Bulletin of the Lebedev Physics Institute.2012,39(12):330-333.
    [131] Lu, G., Zhou, X., Li, H., et al. Nanolithography of single-layer graphene oxide films byatomic force microscopy[J]. Langmuir.2010,26(9):6164-6166.
    [132] He, Y., Dong, H., Li, T., et al. Graphene and graphene oxide nanogap electrodesfabricated by atomic force microscopy nanolithography[J]. Applied Physics Letters.2010,97(13):133301.
    [133] Park, J.Y., Yaish, Y., Brink, M., et al. Electrical cutting and nicking of carbon nanotubesusing an atomic force microscope[J]. Applied Physics Letters.2002,80(23):4446-4448.
    [134] Kim, D.H., Koo, J.Y. Cutting of multiwalled carbon nanotubes by a negative voltage tipof an atomic force microscope: A possible mechanism[J]. Physical Review B.2003,68(11):113406.
    [135] Kumar, K., Sul, O., Strauf, S., et al. A Study on Carbon-Nanotube Local OxidationLithography Using an Atomic Force Microscope[J]. Nanotechnology, IEEE Transactions on.2011,10(4):849-854.
    [136] Myhra, S. Manipulation of Si oxide and electrically conducting carbon films byscanning probe microscopy (SPM): nano-lithography and nano-machining[J]. Thin SolidFilms.2004,459(1-2):90-94.
    [137] Myhra, S. Tip-induced oxidative nano-machining of conducting diamond-like carbon(DLC)[J]. Applied Physics A.2005,80(5):1097-1104.
    [138] Toma, C., Volodin, A., Bogdan, G., et al. Tip voltage controlled local modification ofhydrogenated diamond surface with an atomic force microscope[J]. Physica Status Solidi (a).2007,204(9):2920-2924.
    [139] Gordon, A.E., Fayfield, R.T., Litfin, D.D., et al. Mechanisms of surface anodizationproduced by scanning probe microscopes[J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures.1995,13(6):2805-2808.
    [140] Avouris, P., Martel, R., Hertel, T., et al. AFM-tip-induced and current-induced localoxidation of silicon and metals[J]. Applied Physics A.1998,66(1S): S659-S667.
    [141] Calleja, M., Anguita, J., García, R., et al. Nanometre-scale oxidation of silicon surfacesby dynamic force microscopy: reproducibility, kinetics and nanofabrication[J].Nanotechnology.1999,10(1):34-38.
    [142] Snow, E.S., Jernigan, G.G., Campbell, P.M. The kinetics and mechanism of scannedprobe oxidation of Si[J]. Applied Physics Letters.2000,76(13):1782-1784.
    [143] Dagata, J.A., Perez-Murano, F., Abadal, G., et al. Predictive model for scanned probeoxidation kinetics[J]. Applied Physics Letters.2000,76(19):2710-2712.
    [144] Pérez-Murano, F., Martín, C., Barniol, N., et al. Measuring electrical current duringscanning probe oxidation[J]. Applied Physics Letters.2003,82(18):3086-3088.
    [145] Kuramochi, H., Ando, K., Shikakura, Y., et al. Nano-oxdiation and in situ faradaiccurrent detection using dynamic carbon nanotube probes[J]. Nanotechnology.2004,15(9):1126-1130.
    [146] Kuramochi, H., Ando, K., Tokizaki, T., et al. Large scale high precision nano-oxidationusing an atomic force microsope[J]. Surface Science.2004,566(1):343-348.
    [147] Xie, X.N., Chung, H.J., Liu, Z.J., et al. A new scenario in probe local oxidation:transient pressure-wave-assisted ionic spreading and oxide pattern formation[J]. AdvancedMaterials.2007,19(18):2618-2623.
    [148] Cambel, V., Martaus, J., oltys, J., et al. AFM nanooxidation process-Technologyperspective for mesoscopic structures[J]. Surface Science.2007,601(13):2717-2723.
    [149] Kalinin, S.V., Jesse, S., Tselev, A., et al. The role of electrochemical phenomena inscanning probe microscopy of ferroelectric thin films[J]. ACS nano.2011,5(7):5683-5691.
    [150] Matsumoto, M., Manako, T., Imai, H. Electrochemical STM investigation of oxidativecorrosion of the surface of highly oriented pyrolytic graphite[J]. Journal of theElectrochemical Society.2009,156(10): B1208-B1211.
    [151] Barto ík, M., koda, D., Tomanec, O., et al. Role of humidity in local anodic oxidation:A study of water condensation and electric field distribution[J]. Physical Review B.2009,79(19):195406.
    [152] Virwani, K.R., Malshe, A.P., Rajurkar, K.P. Understanding sub-20nm breakdownbehavior of liquid dielectrics[J]. Physical Review Letters.2007,99(1):17601(4pp).
    [153] Virwani, K.R., Malshe, A.P., Rajurkar, K.P. Pulse breakdown in sub-20nm organicdielectrics for nanoscale-electromachining (nano-EM)[J]. Journal of Manufacturing Scienceand Engineering.2010,132(3):030915.
    [154] Lyuksyutov, S.F., Paramonov, P.B., Dolog, I., et al. Peculiarities of an anomalouselectronic current during atomic force microscopy assisted nanolithography on n-typesilicon[J]. Nanotechnology.2003,14(7):716-722.
    [155] Toutam,V., Pandey, H., Singh, S., et al. Formation of double ring patterns on Co2MnSiHeusler alloy thin film by anodic oxidation under scanning probe microscope[J]. AIPAdvances.2013,3(2):022124.
    [156] Zhigilei, L.V., Garrison, B.J. Mechanisms of laser ablation from molecular dynamicssimulations: dependence on the initial temperature and pulse duration[J]. Applied Physics A.1999,69(1S): S75-S80.
    [157] Wang, X., Xu, X. Molecular dynamics simulation of thermal and thermomechanicalphenomena in picosecond laser material interaction[J]. International Journal of Heat and MassTransfer.2003,46(1):45-53.
    [158] Perez, D., Lewis, L.J. Molecular-dynamics study of ablation of solids underfemtosecond laser pulses[J]. Physical Review B.2003,67(18):184102.
    [159]王丽梅.飞秒激光烧蚀硅的分子动力学模拟[博士论文].长沙:国防科技大学.2008.
    [160] Shimada, S., Tanaka, H., Mohri, N., et al. Molecular dynamics analysis ofself-sharpening phenomenon of thin electrode in single discharge[J]. Journal of MaterialsProcessing Technology[J].2004,149(1-3):358-362.
    [161] Kalyanasundaram, V., Virwani, K.R., Spearot, D.E., et al. Understanding behavior ofmachining interface and dielectric molecular medium in nanoscale electro-machining[J].CIRP Annals-Manufacturing Technology.2008,57(1):199-202.
    [162]崔景芝.微细电火花加工的基本规律及其仿真研究[博士论文].哈尔滨:哈尔滨工业大学.2007.
    [163] Yang, X., Guo, J., Chen, X., et al. Molecular dynamics simulation of the materialremoval mechanism in micro-EDM[J]. Precision Engineering.2011,35(1):51-57.
    [164] Yang, X., Han, X., Zhou, F., et al. Molecular dynamics simulation of residual stressgenerated in EDM[J]. Procedia CIRP.2013,6:433-438.
    [165] Fujita, D., Jiang, Q., Nejoh, H. Fabrication of gold nanostructures on a vicinal Si(111)7×7surface using ultrahigh vacuum scanning tunneling microscope and a gold-coatedtungsten tip[J]. Journal of Vacuum Science&Technology B.1996,14(6):3413-3419.
    [166] Sun, Y., Mortensen, H., Sch r, S., et al. From tunneling to point contact: Correlationbetween forces and current[J]. Physical Review B.2005,71(19):193407.
    [167] Sinitsyna, O.V., Meshkov, G.B., Yaminsky, I.V. A novel tool for the local anodicoxidation of graphite[J]. Proc. IMechE Part N: J. Nanoengineering and Nanosystems.2010,223:133-138.
    [168] Simmons, J.G. Generalized formula for the electric tunnel effect between similarelectrodes separated by a thin insulating film[J]. Journal of Applied Physics.1963,34(6):1793-1803.
    [169] Simmons, J.G. Electric tunnel effect between dissimilar electrodes separated by a thininsulating film[J]. Journal of Applied Physics.1963,34(9):2581-2590.
    [170] Hass, G.A., Thomas, R.E. Techniques of Metal Research, Vol.6[M]. New York:Interscience,1972. pp.91.
    [171] Michaelson, H.B. The work function of the elements and its periodicity[J]. Journal ofApplied Physics.1977,48(11):4729-4733.
    [172] Glass, R.C., Spellman, L.M., Davis, R.F. Low energy ion-assisted deposition oftitanium nitride ohmic contacts on alpha (6H)-silicon carbide[J]. Applied Physics Letters.1991,59(22):2868-2801.
    [173] Terreault, B. Modeling of pulsed-laser-induced gas detrapping, chemical reactions,diffusion, and desorption[J]. Journal of Applied Physics.1987,62(1):152-158.
    [174] Marton, Zs., Hopp, B., Kantor, Z., et al. Surface phenomena during ArF laser heating ofgraphite Model calculations, fast photographic and electron microscopic imaging[J]. AppliedSurface Science.2000,168(1-4):154-157.
    [175] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal ofComputational Physics.1995,117(1):1-19.
    [176] Daw, M.S., Baskes, M.I. Semiempirical, quantum mechanical calculation of hydrogenembrittlement in metals[J]. Physical Review Letters.1983,50(17):1285-1288.
    [177] Daw, M.S., Baskes, M.I. Embedded-atom method: Derivation and application toimpurities, surfaces, and other defects in metals[J]. Physical Review B.1984,29(12):6443-6453.
    [178] Finnis, M.W., Sinclair, J.E. A simple empirical N-body potential for transition metals[J].Philosophical Magazine A.1984,50(1):45-55.
    [179] Ackland, G.J., Mendelev, M.I., Srolovitz, D.J., et al. Development of an interatomicpotential for phosphorus impurities in α-iron[J]. Journal of Phyiscs: Condensed Matter.2004,16(27): S2629-S2642.
    [180] Tersoff, J. New empirical approach for the structure and energy of covalent systems[J].Physical Review B.1988,37(12):6991-7000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700