用户名: 密码: 验证码:
结构型吸波复合材料制备与吸波性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构型吸波复合材料是兼顾吸波性能和力学性能的雷达波隐身材料,具有可设计性强、吸波频带宽、承载与吸波有机结合、增重小、可避免表面涂层脱落等优点,是当前最受瞩目的研究领域之一。
     本文较系统地研究了结构型吸波复合材料层合板的设计、层合板制备技术、吸波剂制备技术与表征、玻璃纤维表面磁改性、环氧树脂磁改性、吸波剂/环氧树脂复合树脂电磁特性、S玻璃纤维/环氧树脂复合材料吸波性能和力学性能、复合材料吸波性能优化技术等内容,取得了很多有应用价值的研究成果。
     (1)在复合材料吸波性能设计方面,针对两种典型类型的结构型吸波复合材料的吸波性能和力学性能进行了设计。针对单层铺层的吸波性能设计难题,提出了等效网格法设计思想,将整体铺层抽象成一个由片状“环氧树脂粉体”均匀分布的复合材料,计算出铺层的等效电磁参数。
     (2)在吸波剂研制方面,采用“退火脆化+高能球磨”工艺制备了400目FeCuNbSiB非晶粉体,在非晶粉体基础上,通过晶化退火处理,得到软磁性能优异的FeCuNbSiB纳米晶粉体,粉体晶粒尺寸15nm左右,粉体呈现片状,粉体采用SiO2包覆;采用液相还原法制备了球形超细Ni粉体,单个粉体粒径60~100nm,团聚体粒径约250~300nm;采用碳还原法制备了氧化锌晶须;采用“化学共沉+高温助熔”工艺分别制备出六角晶系Ba(Zn0.75Co0.25)2Fe16O27铁氧体粉体和Ba(Zn0.25Co0.75)2Fe16O27铁氧体粉体,粉体经过400目筛分后得到粒径小于38μm的铁氧体粉体。比较分析了FeCuNbSiB纳米晶粉体、超细Ni粉体、FeSiAl粉体、六角晶系Ba(Zn0.75Co0.25)2Fe16O27铁氧体粉体和Ba(Zn0.25Co0.75)2Fe16O27铁氧体粉体吸波剂的电磁参数,每种吸波剂均具有特点。具有良好吸波性能的吸波剂是FeCuNbSiB纳米晶粉体、FeSiAl粉体、超细Ni粉体。
     (3)针对玻璃纤维表面磁改性,研究了一种具有良好电磁波吸收特性的玻璃纤维布的制备方法。采用液相还原法制备了纳米铁镍合金粉体,利用纳米粉体的物理吸附特性使粉体在玻璃纤维布中得到很好地分散,该粉体填充在玻璃纤维布表面和缝隙里,最终得到具有优良的电磁性能的玻璃纤维布。制备出的吸波玻璃纤维呈现出金属色泽,粉体与布结合力好,有一定的磁性。
     (4)开发了吸波剂梯度分布的结构型复合材料RTM成型技术。开发了应用于SMC成型方法的预浸料工艺,找到了环氧树脂触变剂和环氧树脂预浸料专用固化剂。制备的复合材料层合板,树脂基体与纤维界面结合牢固,尺寸稳定、表面光洁、阻燃。S玻璃纤维/环氧树脂复合材料层合板具有优良的力学性能:拉伸强度大于500MPa,弯曲强度大于400MPa。
     (5)研究了FeCuNbSiB纳米晶粉体、超细Ni粉体、铁氧体(0.25)、铁氧体(0.75)四种吸波剂在橡胶基体中的吸波性能。研究表明,FeCuNbSiB纳米晶粉体和超细Ni粉体具有良好的吸波性能,尤其是400目的FeCuNbSiB纳米晶粉体吸波性能最佳。
     吸波性能最佳和最具有实用价值的材料是“80wt%FeCuNbSiB纳米晶粉体(400目)/橡胶材料”,其tan e+tan m的值在2~12GHz频率范围内0.6~1.4,值0.23,材料与玻璃纤维/环氧树脂材料阻抗匹配。该材料可以作为玻璃纤维/环氧树脂复合材料层合板中的夹层,承担吸波功能。
     (6)研究了FeCuNbSiB纳米晶粉体、超细Ni粉体、铁氧体(0.25)、铁氧体(0.75)四种吸波剂在环氧树脂基体中的吸波性能。研究表明,FeCuNbSiB纳米晶粉体和超细Ni粉体具有良好的吸波性能,尤其是400目的FeCuNbSiB纳米晶粉体吸波性能最佳。
     FeCuNbSiB纳米晶粉体/环氧树脂材料的整体吸波特征为:在2~2.5GHz频率范围内随频率f增加而显著降低,值在2GHz时为4~6,在2.5GHz时大幅度降低到1.5,在大于4GHz时值约为1;吸波剂含量越高,值越大。值随频率的变化规律与值相同;材料在频率大于2.5GHz时与玻璃纤维/环氧树脂铺层的阻抗匹配,而在频率2~2.5GHz时与空气阻抗匹配;吸波剂含量越高,其磁损耗角正切值tan m值越大,而且在2.5~12GHz频带内一直非常稳定,显示了良好的宽频特性。
     FeCuNbSiB粉体/环氧树脂体系是最好的吸波基体材料。对于RTM成型、模压成型方法,选取50wt%FeCuNbSiB粉体/环氧树脂体系能够兼顾材料的成型性能和吸波性能;对于夹层层合板、SMC成型来说,可以选取80wt%FeCuNbSiB粉体/环氧树脂体系。
     50wt%FeCuNbSiB粉体/环氧树脂体系中粉体积含量很低(11%),整个体系具有良好的流动性;50wt%FeCuNbSiB粉体/环氧树脂体系的磁损耗角正切值tan m值在2~12GHz频带内一直波动在0.3左右,具有良好的宽频吸波性能。在阻抗匹配方面,在频率大于2.5GHz时与玻璃纤维/环氧树脂铺层的阻抗匹配(≈0.25),而在频率2~2.5GHz时与空气阻抗匹配(≈1)。较50wt%FeCuNbSiB粉体/环氧树脂体系,80wt%FeCuNbSiB粉体/环氧树脂体系的吸波性能更优,但树脂流动性较差,因此适合于夹层层合板、SMC成型。
     (7)以80wt%FeCuNbSiB粉体/环氧树脂为基体树脂,以S玻璃纤维为增强材料制备的复合材料层合板具有良好的综合吸波性能。板的表面反射系数衰减约为(-4)~(-5)dB,tan m值约为0.4~0.5,tan e+tan m值约为0.5~0.6,与空气的匹配厚度约为1.2~2mm。在层合板前方增加S玻璃纤维/环氧树脂铺层(即透波层)作为阻抗匹配层后,层合板的吸波性能显著增加。由透波层(1.62mm吸波玻璃纤维/环氧树脂)和吸波层(1.73mmFeCuNbSiB粉体/环氧树脂)组成的双层复合材料板具有优异的吸波特性:R≤-4dB的合格带宽达到了14.24GHz(3.76-18GHz),R≤-6dB的合格带宽达到了11.92GH(z4.4-8.8GHz,9.68-10.4GHz,11.2-18GHz)。
     (8)通过梯度铺层设计成功地进一步提高了复合材料层合板的吸波性能。当采用FeCuNbSiB纳米晶粉体为吸波剂,复合材料层合板的厚度为4mm时,在2~8GHz时R<-4dB、在8~18GHz时R<-8.5dB,具有良好的宽频吸波性能。当采用FeSiAl粉体为吸波剂,层合板由2.12mm的玻璃纤维/环氧树脂透波层和2mm的FeSiAl粉体/环氧树脂吸波层(0.5mmFeSiAl粉体/环氧树脂+0.5mm玻璃纤维/环氧树脂+1mmFeSiAl粉体/环氧树脂)组成,层合板厚度为4.1mm时,层合板吸波性能为:频率4.08-4.56GHz和15.6-16.48GHz范围内,R<-4dB;当频率在4.56-15.6GHz范围内,R<-6dB。
     (9)利用碳纤维和S型玻璃纤维按照1:1比例混编在一起的混杂纤维铺层技术可以有效调整层合板的吸波频带位置,起到定频段设计吸波性能的效果。
     (10)利用模块化设计可以有效拓宽层合板的吸波频带。
     模块化设计了厚度为4mm的FeSiAl粉体/环氧树脂复合材料层合板,层合板由(2.7mm玻璃纤维/环氧树脂+1.3mmFeSiAl/环氧树脂)和(2mm玻璃纤维/环氧树脂+2mmFeSiAl/环氧树脂)两部分组成。层合板具有优异的电磁吸收特性:当频率在2.24-3.76GHz,8.56-11.76GHz,和16.24-17.2GHz范围内,-6dB<R<-4dB;当频率3.76-8.56GHz和11.76-16.24GHz范围内,R<-6dB。
     模块化设计了厚度为4mm的FeSiAl粉体/环氧树脂复合材料层合板,层合板由(2.46mm透波层+1.56mmFeSiAl吸波层)和(2.11mmFeSiAl吸波层+1.5mmFeCuNbSiB吸波层+0.4mm透波层)两部分组成。层合板具有优异的电磁吸收特性:在2-18GHz范围内,R值均小于-4dB;R值小于-6dB的合格带宽达到了12.96GHz(2-6.48GHz,9.52-18GHz),在6.48-9.52GHz频率范围内,R值均接近-6dB。
     (11)本文设计和制备的结构型吸波复合材料层合板吸波性能和力学性能优异:在厚度不大于4mm时,吸波性能2-18GHz,R≤×××。层合板力学性能:拉伸强度≥500MPa、抗弯强度≥400MPa;复合材料密度≤2.5g/cm3;复合材料具有良好的成型性能。
Structural absorbing material is radar stealthy material which has waveabsorbing properties and mechanical properties. It has strong design, absorbing bandwidth, bearing and absorbing organic combination, small weight, avoiding surfacepeeling coating, etc, which is one of the most notable material.
     This paper systematically studies design of the structural absorbing compositelaminated plate, preparation technology of laminated plates, preparation technologyand characterization of absorbents, surface modification of glass fiber, magneticmodified of epoxy resin, electromagnetic characteristics of absorbing agent/epoxyresin composite resin, absorbing performance and mechanical properties of S glassfiber/epoxy resin composites, optimization techniques of absorbing performance, etc,which has made a lot of research achievements of application value.
     (1) In the aspect of wave absorption performance design of the composite: waveabsorption performance and mechanical performance of the two typical types ofstructural absorbing wave composite materials have been designed. For the designproblem of single layer absorbing performance, the method of equivalent grid designidea was put forward, overall layer was abstractively thought as composite material ofa flake “epoxy resin powder” uniform distribution, equivalent electromagneticparameters of the layer were calculated.
     (2) In terms of development of absorbing agent:400meshes FeCuNbSiBamorphous powders were prepared adopting "annealing embrittlement andhigh-energy ball mill" process. Based on the amorphous powder, FeCuNbSiBnanocrystalline powders of excellent soft magnetic performance were gotton bymeans of crystallization annealing treatment which are around15nm, flake, SiO2coated. The spherical ultrafine Ni powders were prepared by liquid phase reductionmethod, which particle size of a single powder is60~100nm, particle size ofaggregate is about250~300nm. Zinc oxide whisker was prepared by carbonreduction method. The hexagonal system Ba(Zn0.75Co0.25)2Fe16O27ferrite powdersand Ba(Zn0.25Co0.75)2Fe16O27ferrite powders were prepared by “chemical coprecipitation and high temperature to melt” process, particle size of the ferritepowder is less than38μm after400meshes selected. Electromagnetic parameters ofFeCuNbSiB nanocrystalline powder, ultrafine Ni powder, FeSiAl powder, hexagonalsystem Ba(Zn0.75Co0.25)2Fe16O27ferrite powder and Ba(Zn0.25Co0.75)2Fe16O27ferritepowder were analyzed. Every absorbing agent has characteristics. Good absorbingproperties of the absorbing agents are FeCuNbSiB nanocrystalline powders, FeSiAlpowder, ultrafine Ni powder.
     (3) In terms of surface modification of magnetic glass fibers, a preparationmethod of glass fiber cloth of good electromagnetic wave absorption properties hasbeen studied. Nanometer iron nickel alloy powders were prepared by liquid phasereduction process. Nano powders are well dispersed in glass fiber cloth using thephysical adsorption properties. Powders are filled in the cracks and the surface of theglass fiber cloth. Finally glass fiber cloths of good electromagnetic performance weregotton. Absorbing glass fiber is metal color, excellent adhesion, of a certainmagnetism.
     (4) The RTM molding technology of structural composites of the gradientdistribution of absorbent have been developed. The prepreg process was applied tothe SMC forming method, and the thixotropic agent of epoxy resin and the specialcuring agent of epoxy resin presoak were found. The interface combination of resinmatrix and fiber is strong in the composite material laminated plates, which are madein this study, with dimensional stability and smooth and clean surface and inflamingretarding. S glass fiber/epoxy composite laminates have excellent mechanicalproperties which tensile strength is greater than500MPa and bending strength isgreater than400MPa.
     (5) Absorbing performance of rubber matrix with four kind of absorbing agent,named FeCuNbSiB nanocrystalline powders, ultrafine Ni powders, ferrite(0.25) andferrite(0.75), have been studied. Researches show that FeCuNbSiB nanocrystallinepowders and ultrafine Ni powders have good absorbing performance, especiallyabsorbing performance of FeCuNbSiB nanocrystalline powders with400meshes isbest.
     The material with the best absorbing performance and the most practical value is 80wt%FeCuNbSiB nanocrystalline powders (400meshes)/rubber compositematerial, which value of tan eand tan mis between0.6and1.4in2~12GHzand which μ/ε is0.23. And the impedance of material and glass fiber/epoxy resinmaterial is matching. And this material can be used as interlining of glass fiber/epoxyresin composite material laminated plates, with its good absorbing function.
     (6) The Absorbing properties of four kinds of absorbing agents in epoxy resinmatrix have been studied in this paper. The absorbing agents are FeCuNbSiBnanocrystalline powder, ultrafine Ni powder, ferrite(0.25) and ferrite(0.75). Studiesshow that FeCuNbSiB nanocrystalline powder and ultrafine Ni powder have goodabsorbing properties, especially the performance of400meshes FeCuNbSiBnanocrystalline powder is best.
     The integral absorbing characteristics of FeCuNbSiB nanocrystallinepowder/epoxy materials: when frequency is in the range of2~2.5GHz, it decreasessignificantly with increase of frequency. The value is4~6when the frequency is2GHz, and it reduces to1.5when the frequency is2.5GHz. And the value isabout1when the frequency is higher than4GHz. The value is greater when theabsorbing agent content is higher. The material matches with impedance of fiberglass/epoxy plies when the frequency is higher than2.5GHz. It matches with theimpedance of the air in2~2.5GHz frequency range. The tan mvalue becomeslager with increasing levels of absorbing agent, which has been very stable within2.5~12GHz band, shows excellent broadband characteristics.
     FeCuNbSiB nanocrystalline powder/epoxy material is the best absorbingmaterial. Formability and absorbing properties of50wt%FeCuNbSiB powder/epoxysystem can be very good by RTM molding or compression molding method. Forplywood sandwiched layers by SMC molding method, we can select80wt%FeCuNbSiB powder/epoxy system.
     Powder volume content of50wt%FeCuNbSiB powder/epoxy system is verylow (11%). The whole system has good mobility, the tan mof50wt%FeCuNbSiBpowder/epoxy system has been fluctuating around0.3within2~12GHz band, whichshows a good broadband absorbing properties. In the aspect of impedance matching:when the frequency is above2.5GHz, it matchs with the impedance of glass/epoxy laminate (≈0.25). When frequency is2~2.5GHz, it matches with impedance ofair (≈1).
     Compared50wt%FeCuNbSiB powder/epoxy resin system, absorbingperformance of80wt%FeCuNbSiB powder/epoxy resin system is better, butliquidity of resin is poorer, therefore it is suitable for SMC molding layers ofplywood.
     (7) The composite laminated plates with80wt%FeCuNbSiB powder/epoxyresin as matrix resin, and S glass fiber as reinforced material have goodcomprehensive absorbing properties.The attenuation of the surface reflectioncoefficient of the panels is about (-4)~(-5) dB, the value of the tan mis0.4~0.5, thevalue of the tan e+tan mis0.5~0.6, and the matching thickness with the air is1.2~2mm. After increasing S glass fiber/epoxy resin layer (that is through wavelayers) in front of the laminated plates as the impedance matching layer, theabsorbing properties of the laminated plates improve significantly. The doublecomposite materials which composed of through wave layer (1.62mm absorbingglass fiber/epoxy resin) and absorbing layer (1.73mm FeCuNbSiB powder/epoxyresin) have excellent electromagnetic absorbing properties: the qualified bandwidth ofR≤-4dB reaches14.24GHz (3.76-18GHz), the qualified bandwidth of R≤-6dBreaches11.92GHz (4.4-8.8GHz,9.68-10.4GHz,11.2-18GHz).
     (8) The absorbing properties of the composite laminated plates were improvedsuccessfully by the gradient layer design. When using the FeCuNbSiBnanocrystalline powders as the absorbing agent, and the thickness of the compositelaminated plates is4mm, R<-4dB within2~8GHz, R<-8.5dB within8~18GHz,have a good broadband absorbing properties. When using the FeSiAl powders as theabsorbing agent, laminated platescomposed of2.12mm glass fiber/epoxy resinthrough wave layers and2mm FeSiAl powder/epoxy resin absorbing layer (0.5mmFeSiAl powder/epoxy resin and0.5mm glass fiber/epoxy resin and1mm FeSiAlpowder/epoxy resin), and the thickness of the laminated plates is4.1mm, theabsorbing properties of the laminated plates is: R<-4dB within the frequency4.08-4.56GHz and15.6-16.48GHz, R<-6dB within the frequency4.56-15.6GHz.
     (9) The hybrid fiber layer technology using carbon fiber and S type glass fiber according to the proportion of1:1mix together to achieve the effect of designingabsorbing properties at a fixed frequency, can effectively adjust the absorbing bandposition of the laminated plates.
     (10) Using the modular design can effectively broaden absorbing band of thelaminated plates.
     The thickness of4mm FeSiAl powder/epoxy resin composite laminated boardwas designed by modular method. Laminated plate is composed by (2.7mm glassfiber/epoxy resin+1.3mm FeSiAl/epoxy resin) and (2mm glass fiber/epoxy resin+2mm FeSiAl/epoxy resin) of two parts. Laminated plates have excellentelectromagnetic absorption properties:6dB     Composite material plate formed by one part (2.46mm through wave layer+1.56mm FeSiAl absorbing layer) and the other part (2.11mm FeSiAl absorbing layer+1.5mm FeCuNbSiB absorbing layer absorbing layer+0.4mm through wave layer)shows the excellent electromagnetic absorption characteristics: R values are less than-4dB in2~18GHz range, qualified bandwidth of R value less than-6dB reachs12.96GHz (2~6.48GHz and9.52~18GHz), R values are close to-6dB within thescope of6.48to9.52GHz.
     (11) Structural absorbing composite laminated plate is of excellent waveabsorption performance and mechanical performance: no greater than4mm inthickness. The absorbing performances: R≤×××in2~18GHz range. The mechanicalproperties: tensile strength≥500MPa, flexural strength≥400MPa, density ofcomposite material≤2.5g/cm3. Composite material is of good formability.
引文
[1]孟建华,杨桂琴,严乐美,等.吸波材料研究进展[J].磁性材料及器件,2004,35(4):11~14.
    [2]徐国亮,蒋刚,朱正和.吸波材料研究现状及碳团簇型吸波材料设计[J].原子与分子物理学报,2004,(51):216~218.
    [3]吴明忠.雷达吸波材料的现状和发展趋势[J].磁性材料及器件,1997,28(2):26.
    [4]步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):14~17.
    [5] Praveen S, Babbar V, Archana R, et al. Complex Permeability and Permittivity, andMicrowave Absorption Studies of Ca(CoTi)xFe12-2xO19Hexaferrite Composites in X-bandMicrowave Frequencies[J]. Materials Science Engineering,1999,(67):132~138.
    [6]阳开新.铁氧体吸波材料及其应用[J].磁性材料及器件,1996,27(3):19~23.
    [7]王海.雷达吸波材料的研究现状和发展方向[J].上海航天,1999,(1):55~59.
    [8]万梅香.一种导电高聚物微波吸波剂及其制法[P]. ZL1263114A,2000.
    [9]高建平等.视黄基席夫碱铁配合物微波吸波剂及制备方法[P]. ZL1320602A,2001.
    [10]王璟. W型钡铁氧体吸波材料的制备及其性能研究[D].湖南:国防科技大学,2005.
    [11] Yusoff A N, Abdullah M H. Microwave electromagnetic and absorption properties of someLiZn ferrites [J]. Journal of Magnetism and Magnetic Materials,2004(269):271~280.
    [12] Donglin Zhao, Qiang Lv, Zengming Shen. Fabrication and microwave absorbing propertiesof Ni-Zn spinel ferrites [J]. Journal of Alloys and Compounds,2009,408:634~638.
    [13]黄啸谷,陈娇,王丽熙,等.钡铁氧体吸波涂层的制备及其影响因素研究[J].电子元件与材料,2010,29(4):27~30.
    [14] Wang Jing, Zhang Hong, Bai Shuxin, et al. Microwave Absorbing Properties of Rare-earthElements Substituted W-type Barium Ferrite [J]. Journal of Magnetism and MagneticMaterials,2007,312:310~313.
    [15] Sugimoto S, Kondo S, Okayama K, et al. M-type ferrite composite as a microwave absorberwith wide bandwidth in the GHz range [J]. IEEE Transaction on Magnetism,1999,135(5):3154~3156.
    [16]徐劲峰,郭方方,徐政.六角晶系铁氧体纳米晶微波吸波剂的微结构和磁性能[J].磁性材料与器件,2005,36(1):20~28.
    [17]沈国柱,徐政,张先如.铁氧体和碳纤维双层复合材料吸波性能研究[J].同济大学学报(自然科学版),2008,36(3):379~383.
    [18]王璟,张虹,白书欣,等.铁氧体/羰基铁粉体复合吸波材料研究[J].兵器材料科学与工程,2007,30(1):39~41.
    [19]毛卫民,方鲲,吴其晔,等.导电聚苯胺/羰基铁粉体复合吸波材料[J].复合材料学报,2005,22(1):11~14.
    [20]傅晓玲.金属磁性超细粉体吸波性能研究[J].山西师大学报(自然科版),1999,13(1):30~31.
    [21]何华辉.关于积极开展纳米吸波材料研究的若干建议[R].武汉:华中科技大学,2001.HE
    [22] Sugimoto S, Maeda T, Book D, et al. GHz microwave absorption of a fine α-Fe structureproduced by the disproportion of Sm2Fe17in hydrogen[J]. Journal of Alloys and Compounds.2002,330~332:301~306.
    [23] Liu J R, Itoh M, Machida K I. GHz range absorption properties of α-Fe/Y2O3nanocomposites prepared by melt-spun technique [J].Chemistry letters.2003,32:394~395.
    [24] Liu J R, Itoh M, Machida K I. Electromagnetic wave absorption properties of α-Fe/FeB/YOnanocompsites in gigahertz range [J]. Applied Physics Letters,2003,83:4017~4019.
    [25] Zhang X F, Dong X L, Huang H, et al. Microwave absorption properties of the carbon-coatednickel nanocapsules [J]. Applied Physics Letters,2006,89:053115.
    [26] Liu X G, Geng D Y, Meng H, et al. Microwave-absorption properties of porous carbon/Conanocomposites [J]. Applied Physics Letters,2008,92:173117.
    [27] Liu Q L, Zhang D, Fan T X. Electromagnetic wave absorption properties of porouscarbon/Co nanocomposites [J]. Applied Physics Letters,2008,93:013110.
    [28] Liu X G, Geng D Y, Zhang Z D. Microwaves-absorption properties of FeCo microspheresself-assembled by AlO-coated FeCo nanocapsules [J]. Applied Physics Letters,2008,92:243110.
    [29] Wen F S, Zhang F, and Liu Z Y.Investigation on Microwave Absorption Properties forMultiwalled Carbon Nanotubes/Fe/Co/Ni Nanopowders as Lightweight Absorbers [J]. TheJournal of Physical Chemistry, C2011,115:14025~14030.
    [30] Liu X G, Geng D Y, Meng H, et al. Electromagnetic-wave-absorption properties of wire-likestructures self-assembled by FeCo nanocapsules [J]. Journal of Applied Physics,41(2008)175001(6pp):1~6.
    [31] Yoshida S, Ono H, Ando S, et al. High-frequency noise suppression in downsized circuitsusing magnetic granularfilms [J]. IEEE Transaction on Magnetism,2001,37(4):2401~2403.
    [32] Liu X M, Rantschler J O, Alexander C, et al. High-frequency behavior of electrodepositedFe-Co-Ni alloys[J]. IEEE Transaction on Magnetism,2003,39(5):2362~2364.
    [33] Ikeda K, Kobayashi K, Ohta K, et al. Thin-film inductor for gigahertz band withCoFeSiO-SiO2multilayer granular films and its application for power amplifier module [J].IEEE Transaction on Magnetism,2003,39(5):3057~3061.
    [34] Perrin G, Peuzin J C, Acher O. Control of the resonance frequency of soft ferromagneticamorphous thin films by strip patterning [J]. Journal of Applied Physics,1997,81(8):5166~5168.
    [35] Shin J M, Kim Y M, Kim J, et al. Fabrication of nanocrystalline Fe-Co-Ta-N magnetic filmswith high saturation magnetization and excellent high-frequency characteristics [J]. Journalof Applied Physics,2003,93(10):6677~6679.
    [36] Kim K H, Jeong J H, Kim J, et al. High moment and high frequency permeability Fe-B-Nnanocrystalline soft magnetic films [J]. Journal of Magnetism and Magnetic Material,2002,239:487~489.
    [37] Gao M S, Qin R H, Qiu C J, et al. Matching design and mismatching analysis towards radarabsorbing coatings based on conducting plate [J]. Material and Design,2003,24(5):391~396.
    [38] Chambers B. Optimum design of a Salisbury screen radar absorber [J]. Electronics Letters,1994,30(16):1353~1354.
    [39] Knott E F, Lunden C D. The two-sheet capacitive Jaumann absorber [J]. IEEE Transactionson Antennas and Propagation.1995,43(11):1339~1343.
    [40] Chambers B, Tennant A. Optimised design of Jaumann radar absorbing materials using agenetic algorithm [J]. IEE Proc.-Radar, Sonar Naving.1996,143(1):23~30.
    [41]车孟刚,杨建生,聂嘉阳,等.多层蜂窝夹芯结构吸波材料电匹配设计研究[J].宇航材料工艺,1989,19(5):74~78.
    [42]何燕飞,龚荣洲,何华辉.双层吸波材料吸波特性研究[J].功能材料,2004,35(6):782~784.
    [43]张晨.多层结构吸波复合材料设计与制备[D].北京:北京交通大学,2007.
    [44]王相元,钱鉴,伍瑞新,等.微波吸收材料的分块设计方法[J].南京大学学报(自然科学),2001,37(5):625~629.
    [45]何燕飞,龚荣洲,李享成,等.多层复合吸波材料的制备及其吸波性能[J].无机材料学报,2006,21(6):1451~1452.
    [46]刑丽英,蒋诗才,李斌太.含电路模拟结构吸波复合材料力学性能研究[J].航空材料学报,2004,24(2):22~26.
    [47]曹茂盛,刘海涛,张铁夫.双峰响应结构型吸波材料动静力学性能研究[J].材料工程,2002,10:26~28.
    [48]王晨,顾家琳,康飞宇.吸波材料理论设计的研究进展[J].材料导报,2009,23(3):5~8.
    [49] Yu X, Lin G, et al. An optimizing method for design of microwave absorbing materials [J].Materials&Design,2006,27:700~704.
    [50] Chin W S, Lee D G. Binary mixture rule for predicting the dielectric properties ofunidirectional E-glass/epoxy composite [J]. Composite Structures,2006,74(3):153~159.
    [51] Meshrama M R, Nawal K A, et al. Characterization of M2type barium hexagonal ferritebased wide band micro-wave absorber [J]. Journal of Magnetism and Magnetic Materials,2004,271(4):207~210.
    [52]李江海. SRAM材料及其结构的隐身特性计算与优化设计[D].西安:西北工业大学,2003.
    [53] Peterson A F. Absorbing boundary conditions for the vector wave equation [J]. MicrowaveOptical Technology Letters,1988,12(1):62-64.
    [54] Keiburtz R B, Ishimaru A. Scattering by a periodically aperture conducting screen [J]. IEEETrans on Antennas and Propagation,1961,9(11):504.
    [55] Ulrich R. Interference filters for the far infrared [J]. Appl Opt,1968,7(10):1987.
    [56]冯林,阮颖铮.介质层中频率选择表面特性分析[J].航空学报,1994,15(9):1122.
    [57] Compton R C, Rutledge D B. Approximation techniques for planar periodic structures [J].IEEE Trans on Microwave Theory and Techniques,1985,33(11):1083.
    [58] Lee S W, Zarrillo G, Law C L. Simple formulas for transmission through periodic metal gridsor plates [J]. IEEE Trans on Antennas and Propagation,1982,30(1):904.
    [59] Chen C C. Scattering by a two-dimensional periodic array of conducting plates [J]. IEEETrans on Antennas and Propagation,1970,18(5):660.
    [60]侯新宇,万伟,万国宾.周期性Y形缝隙阵列和多层介质复合结构的分析[J].系统工程与电子技术,1998,9:14
    [61] Tsay W J, Pozar D M. Application of the FDTD technique to periodic problems in thescattering and radiation [J]. IEEE Microwave and Guided Wave Letters,1993,3(8):250.
    [62] Harms P, Mittra R, Ko W L. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures [J]. IEEE Antennas and Propagation,1994,42(9):1317.
    [63]陈彬,方大纲,周璧华. FD-TD在分析FSS中的应用[J].微波学报,1995,11(2):92.
    [64] Turner G M, Christodoulou C. FDTD analysis of phased array antennas [J]. IEEE Antennasand Propagation,1999,47(4):861.
    [65]马嘉骏,卢万铮,肖志文.介质频率选择表面FDTD法分析[J].陕西工学院学报,2004,20(4):60.
    [66]黄家康.聚酯模塑料生产与成型技术[M].化学工业出版社,2002.
    [67]毕向军,李宗慧,唐泽辉,等. SMC制品的模压工艺设计[J].工程塑料应用,2010,28(2):30~32.
    [68]付恒,陈玉廷. SMC的现状与发展[J].纤维复合材料,2005,22(3):58~60.
    [69]孔宪青,季仲林.热固性树脂SMC片材制作工艺探讨[J].玻璃钢/复合材抖,1993(4):32~36.
    [70] Papargyris D A, Day R J, Nesbitt A, et al. Comparison of the mechanical and physicalproperties of a carbon fiber epoxy composite manufactured by resin transfer molding usingconventional and microwave heating [J]. Composites Science and Technology,2008,68(7~8):1854~1861.
    [71]张成龙. SMC专用热固性树脂系统[J].热固性脂树脂,1991,2:29~32.
    [72]林茂青,张玉军,刘胜平. SMC中不饱和聚酯树脂增稠及贮存性能的研究[J].纤维复合材料,2002,19(3):14~16.
    [73]张玉军,巩桂芬,陶鑫,等.不饱和聚酯片状模塑料的研究[J].工程塑料应用,2004,32(5):7~9.
    [74]张凤翻.复合材料用预浸料[J].高科技纤维与应用,1999,24(5):28~32.
    [75] Blanc R, Agassant J F, Vincent M. Injection molding of unsaturated polyester compounds [J].Polymer Engineering Science,1993,32(19):1440~1450.
    [76]贾宝富,刘述章,林为干.复合铁氧体吸波材料电磁特性的研究[J].电子学报,1991,19(6):99~101.
    [77]吴明忠,赵振声,何华辉.多晶铁纤维吸波剂微波复磁导率和复介电常数的理论计算[J].功能材料,1999,30(1):91~93.
    [78]杨华军,饶克谨,赵伯琳.纤维布层板吸波材料的等效电磁参数[J].电子科技大学学报,1998,27(3):280~283.
    [79]王丹勇,陈以蔚,李树虎,等.碳纳米管/连续纤维增强树脂基复合材料力学性能设计[J].材料科学与工程学报,2013,31(3):156.
    [80]周克省,黄可龙,孔德明,等.吸波材料的物理机制及其设计[J].中南工业大学学报,2001,32(6):617~621.
    [81]秦柏,秦汝虎,金崇军.广义匹配规律的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(3):115~117.
    [82] Ferandez A, Valenzuela A. General design theory for single-layer homogeneous absorbers [J].IEEE Transactions on Plasma Science,1996,4(7):822~826.
    [83]李晓敏. FeCuNbSiB/SiR复合薄膜正应力条件下的力敏特性研究[D].南昌大学,2013.
    [84] Li Xiaomin, Zhu Zhenghou, Hui Song, et al. Absorbing properties and optimization of Nipowder/M-glass fiber feinforced epoxy composite film panels [J]. International Journal ofModern Physics,2012,6:73~78.
    [85]张永清,阴生毅,黄云平,等. FeSiAl微波衰减涂层电磁特性分析[J].真空电子技术,2006,6:39~41.
    [86] Zhang Y, Jia H, Luo X, et al. Synthesis, microstructure, and growth mechanism of dendriteZnO nanowires [J]. The Journal of Physical Chemistry B,2003,107(33):8289.
    [87] Jin C, Fu W Y, Yang H B, et al. Fabrication, characterization and application inelectromagnetic wave absorption of flower-like ZnO/Fe3O4nanocomposites. MaterialsScience and Engineering B,2010,175:56.
    [88] Zhang Y S, Wang L S, Liu X H, et al. Synthesis of nano/micro zinc oxide rods and arrays bythermal evaporation approach on cylindrical shape substrate [J]. The Journal of PhysicalChemistry B,2005,109(27):13091.
    [89]刑丽英.隐身材料[M].北京:化学工业出版社,2005:20~21.
    [90] Gangopadhyay S, Hadjipanayis G C, Dale B, et al. Magnetic properties of ultrafine ironparticles [J]. Physical Review B,1992,45(17):9778.
    [91] Wu M Z, Zhang Y D, Hui S, et al. Magnetic properties of SiO2-coated Fe nanoparticles [J].Journal of Applied Physics,2002,92(11):6809.
    [92] Aharoni A. Effect of surface anisotropy on the exchange resonance modes [J]. Journal ofApplied Physics,1997,81(2):832.
    [93] Michielssen E, Sajer J, Ranjithan S, et al. Design of lightweight, broad-band microwaveabsorbers using genetic algorithms [J]. Microwave Theory and Techniques,1993,41(6):1024.
    [94] Cao M S, Shi X L, Fang X Y, et al. Microwave absorption properties and mechanism ofcagelike ZnO/SiO2nanocomposites [J]. Applied Physical Letters,2007,91(20):2031101.
    [95] Zhou J H, He J P, Li G X, et al. Direct incorporation of magnetic constituents within orderedmesoporous carbon silica nanocomposites for highly efficient electromagnetic waveabsorbers [J]. Journal of Physical Chemistry C,2010,114(17):7614.
    [96] Ibusuki T, Kojima S, Kitakami O, et al. Magnetic anisotropy and behaviors of Fenanoparticles [J]. IEEE Transactions on Magnetics,2001,37(4):2223.
    [97]王文婷,李巧玲,常传波.锶铁氧体包覆碳纳米管吸波材料的制备及表征[J].化工新型材料.2011,39(2):69~71.
    [98]沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究[J].新型炭材料,2001,16(1):1~4.
    [99]杜波,袁华,刘俊峰,等.镀钴碳纳米管/环氧树脂复合材料吸波性能研究[J].兵器材料科学与工程,2008,31(6):30~33.
    [100]王玲玲,赵立华,黄桂芳,等.化学镀Ni-Fe-P及Ni-Fe-P-B合金膜的磁性[J].材料导报,2001,15(3):65~67.
    [101]黄英,时刻,廖梓,等.玻璃纤维表面化学镀镍–钴–磷合金[J].硅酸盐学报,2006,34(12):1485~1490.
    [102]熊文纲,卢忠铭.化学镀Ni-P与Ni-Mo-P合金镀层的耐蚀性能[J].广州化工,2005,33(3):42~43.
    [103]李丽波,刘波,吴宝华.玻璃纤维表面化学镀镍的工艺研究[J].稀有金属材料与工程,2011,40(2):360~363.
    [104]孙军,姜田,冯一军.玻璃纤维上镀敷纳米铁磁薄膜的工艺研究[J].云南大学学报(自然科学版),2005,27(3A):155~158.
    [105]李鹏,黄英,熊佳,等.玻璃纤维化学镀Ni-Fe-P合金的研究[J].功能材料,2005,36(2):263-266.
    [106]万里鹏.超细镍粉体及其复合材料研究[D].南昌大学,2007.
    [107]杨咏来,宁桂玲,吕秉玲.液相法制备纳米粉体时防团聚方法概述[J].材料导报,1998,12(2):11~13.
    [108]张婵,郑爽英.超声空化效应及其应用[J].水资源与水工程学报,2009,20(1):136.
    [109] Roess E, Hanke I, Moser E. MnZn ferrite with initial permeability of over20000and theirstructure [J]. Zeitschrift fur Angewandte Mathmatik und Physik,1964,17(7):504~508.
    [110] Roess E. Magnetic properties and microstructure of high permeability MnZn ferrites [J].Ferrites Proceeding of the International Conference,1966:105~108.
    [111] TDK, Inc. Handbook of Product,2007.
    [112]姚礼华.我国MnZn铁氧体的现状及发展前景[J].新材料产业,2004,130(9):41~44.
    [113]焦明春,李国栋.纳米镍铜铁氧体粒子的制备微波吸收特性研究[J].功能材料.2005,36(2):295~297.
    [114] Liu L D, Duan Y P, Guo J B, et al. Influence of particle size on the electromagnetic andmicrowave absorption properties of FeSi/paraffin composites [J]. Physica B.2011,406:2261~2265.
    [115] Zhu H, Lin H, Guo H, et al. Microwave absorbing property of Fe-filled carbon nanotubessynthesized by a practical route [J]. Materials Science and Engineering B,2007,138:101~104.
    [116]步文博,徐洁,丘泰,等.吸波材料的基础研究及微波损耗机理的探讨[J].材料导报,2001,15(5):14~17.
    [117]杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005:93.
    [118]陈烈民,杨宝宁.复合材料的力学分析[M].北京:中国科学技术出版社,2006.
    [119] Bouvet C, Castanie B, Barraul M B. Low velocity impact modeling in laminate compositepanels with discrete interface elements [J]. International Journal of Solids and Structures,2009,46:2809~2821.
    [120]王仁鹏,陈普会,沈真.准静态压痕力作用下复合材料层压板的损伤阻抗分析[J].复合材料学报,2008,3:149~153.
    [121] Hashin Z. Failure criteria for unidirectional composites [J]. Journal of Applied Mechanics,1980,47:329~334.
    [122] Dano M L, Gendron G, Picard A. Stress and failure analysis of mechanically fastened jointsin composite laniinates [J]. Composite Structures,2000,50:287~296.
    [123]刘志宾,朱正吼,徐雪娇,颜日成.铁氧体Ba(Zn0.65Co0.35)2Fe16O27/环氧树脂复合材料板吸波性能与优化[J].功能材料,2011,1(42):124~127.
    [124]段跃新,肇研,马琳等.羰基铁粉体在8mm波段吸波性能的研究[J].功能材料,2006(37):1053.
    [125]黄军福.橡胶基电磁屏蔽复合材料的制备及屏蔽性能研究[D].南昌大学,2010.
    [126]宋渊.多层结构吸波复合材料的研究[D].北京交通大学,2009.
    [127]王相元,钱鉴,伍瑞新,等.微波吸收材料的分块设计方法[J].南京大学学报(自然科学),2001,37(5):625.
    [128]王相元,钱鉴,盛玉宝,等.微波频率下复介电常数和导磁率的测量[J].电子测量与仪器学报,1990,(4):43~49.
    [129]王相元,盛玉宝,钱鉴,等.吸波材料电磁参量与吸波剂百分体积关系[J].南京大学学报(自然科学),1992,28(4):551~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700