用户名: 密码: 验证码:
天然气开采利用中若干热物理基础问题的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在天然气的开采、加工、储运过程中,存在诸多与热物理相关的问题亟需解决。例如:预测地壳中高温高压条件下,天然气流体的相行为特征;天然气中的杂质随环境改变,析出沉积在管道表面,造成设备堵塞及腐蚀问题;天然气在多孔介质中的表面特性;天然气水合物的热物理性质及其界面特性等。由于实验条件和理论基础受温度,压力,天然气分子种类等因素的限制,使得通过常规手段(宏观实验和理论分析)研究上述问题存在很大局限性。
     本文采用分子动力学方法,研究了天然气开采利用中的若干热物理基础问题。建立分子动力学研究天然气固体杂质溶解模型;模拟了元素硫在S/H2S体系中的核化生长过程;揭示了流体分子在纳米通道中与固体表面粒子作用的微观机理;并对甲烷水合物导热问题及水合物体系中水分子的微观构型进行了讨论。主要研究内容及结论如下:
     首先,基于分子动力学方法,建立了两种固体溶解模型,并分别对CO2在低温CH4中以及硫在H2S中的溶解机理进行了讨论。结果表明,提出的固液溶解模型,可以准确计算CO2在150K以下CH4中的溶解度。而H2S溶解模型研究结果表明,H2S溶剂化层模型可以得出硫在H2S中的溶解趋势。由于没有考虑到化学溶解作用,计算结果小于实验值。
     其次,应用化学反应势函数首次研究了硫在硫/硫化氢混合体系中的核化生长过程。得出元素硫沉积初期生长规律,发现硫核化生长的两种方式:雪球效应和硫团簇融合。核化初期,硫团簇以雪球效应生长方式为主。团簇生长超过相应的临界状态后,两种生长方式共同作用,加快硫团簇生长速率。在整个过程中,硫的聚合物(同素异形体)对整个核化过程以及H2S的分解起催化作用。
     然后,建立了流体分子在纳米通道中的作用模型,探讨流体分子在固体表面粒子影响下热物理相关性质的变化。研究了金红石型TiO2(110)纳米通道对CH4/H2S混合流体的吸附分离效果,结果表明TiO2纳米通道表面上吸附的CH4数量要多于H2S,但TiO2纳米通道对H2S的选择性较高。在吸附过程中施加电场,可以提高TiO2纳米通道对H2S的分离能力。CO2/N2混合流体在纳米通道中,固体表面对CO2的吸附能力强于对N2的吸附能力。当CO2浓度较高时,CO2在纳米通道表面上多层吸附,提高吸附效率。当CO2浓度较低时,CO2在固体壁面呈单层吸附,小孔径纳米通道有利于CO2的吸附。石墨壁面对CO2/N2混合流体具有强烈的分离作用,但在小孔径纳米通道中受到两壁面的共同吸引作用,分离效果反而降低。
     此外,理论研究了流体在不同晶面结构纳米通道中的吸附和导热性能,发现纳米通道内流体的导热性能受固体表面结构和温度共同影响。基于固体表面晶胞基本参数,定义了一个比值参数R,用于表征固体表面结构对流体相关性质的影响。固体表面材料R的增大将导致固体表面对流体吸附作用增强,固体表面上吸附的流体粒子增多,相应纳米通道中流体粒子的热导率也有所提高。这些现象在低温时表现明显,随温度升高逐渐减弱。流体与固体接触面存在界面热阻,限制固体表面粒子与流体粒子的能量传递。当体系温度较低时,界面热阻对固体表面粒子与流体粒子间的传热起主导作用,明显降低流体的热导率。随温度升高,流体粒子与固体表面粒子相互作用剧烈,克服界面热阻的影响,流体热导率增强。
     随后,讨论了多种I型甲烷水合物结构在高压下的导热性能,结果表明不同水合物结构中水分子的排布构型几乎相同,热导率各不相同。模拟中,空穴水合物结构的导热性能最好,晶格缺陷水合物结构的导热性能最差。进一步分析表明,高压可以促进水分子和甲烷分子的导热性能。高温能促进甲烷分子的导热性能,但会降低水分子的导热性能。水合物结构中的甲烷分子与水分子笼状结构存在耦合作用,共振散射声子。水合物结构的晶格缺陷导致大量声子散射。
     最后,研究了水合物溶解体系和水合物/冰/水混合体系中水分子的微观构型。发现水合物溶解后,大部分水分子的氧原子保持与水合物(或冰)晶体结构相近的排布构型,而水分子的其他性质则与常规液态水相近。推测溶解水中氧原子的排布构型可能是导致水合物溶解水记忆效应的原因之一。水合物/冰/水混合体系中,水分子的构型表明,水合物内部与冰/水混合体系中的水分子排布存在明显差异,这种差异在水合物体系与冰/水混合体系的界面连续变化。
During the process of mining, refinement and storage of natural gas, lots ofproblems, which are related to thermophysics, should be addressed timely. For instance,these problems include predicting the phase behavior of geological fluid under hightemperature and high pressure, solving the clogging and corrosion problems in theequipment and pipelines caused by the deposition of the impurities in natural gas as theenvironment changes during the natural gas production, studying the surfacecharacteristics of natural gas in the porous media, and researching the thermophysicalproperties and interfacial characteristics of natural gas hydrates. However, there aremany limitations of investigating the above issues by conventional methods, such asexperimental method, theoretical analysis and so on. The reason is that the experimentconditions and theoretical basis are limited by temperature, pressure, and molecularspecies.
     In this dissertation, several fundamental thermophysical problems in natural gasexploitation and utilization are investigated by molecular dynamics simulation (MD).During the process of researching, we establishes solvation models of solid impurities innatural gas system based on MD, simulates the nucleation processes of element sulfur inthe S/H2S system, uncovers the microscopic mechanism of interactions between thefluidmoleculesand surface particles of nano-channels, and discusses the thermal properties ofmethane hydrate and the microscopic configuration of water molecules in the methanehydrate system. The main research contents and conclusions are listed as follow:
     At first, twodissolution models of solid impurities are established based on MDmethods. The solubility of CO2in cryogenic methane and the solubility of sulfur inhydrogen sulfide are discussed respectively according to the solvation models. Theresults show that the solid-liquid dissolution model proposed in this dissertation couldaccurately calculate the solubility of CO2in cryogenic methane under150K. And thesimulation results of H2S solvation model indicate that the solvation shell model of H2Sproposed in this dissertation could calculate the dissolution behavior of sulfur in H2Swhich conforms to experimental data. Without considering the sulfur dissolving inchemical reaction, the simulation results are less than the experimental data.
     Then the sulfur nucleation in S/H2S system is investigated by reactive force fieldfor the first time. And the results elucidate the growth phenomena of the element sulfur deposition at the initial stage. There are two ways of nucleation: the snow ball effect andthe coalescence of small sulfur clusters into big clusters. At the beginning of thenucleation, the snow ball effect is predominant. Once the cluster exceed its critical state,both two ways works together and accelerates the nucleation of clusters. During thewhole process, the sulfur polymer (the sulfur allotropes) plays the role of catalysis in thenucleation and the decomposition of H2S.
     Next, the model of fluid molecules interplaying in the nano-channel is establishedfor discussing the thermophysical properties of fluid molecules under the influence ofsolid particles of nano-channel. The adsorption and separation properties of the mixedfluid of CH4/H2S in rutile TiO2(110) lattice nano-channel is studied. The resultsindicate that the adsorption of CH4on the TiO2surface is more than that of H2S. But theTiO2-based nano-channel has a high selectivity for H2S molecules. The electric field canbe used in the adsorption process, which can improve the selectivity of H2S moleculesto a certain degree. The result of the adsorption and separation of the CO2/N2mixedfluid in nano-channels elucidates that the surface of nano-channel has a strongeradsorbability for CO2than that for N2. When the concentration of CO2is heavy, the CO2will appear multilayer adsorption on the surface of nano-channel, so this mode canimprove the absorption efficiency. When the concentration of CO2is low, the CO2willpresent monolayer adsorption on the surface of nano-channel. At this time, the smallsize nano-channel is beneficial to the absorption. The surface of graphite has an intenseseparation of CO2/N2mixture. However, the interactions between the surfaces of thesmall aperture nano-channel can reduce the separation of CO2.
     In addition, thermal properties of the fluid in different lattice structures ofnano-channel are investigated in theory. The investigation reveals that the thermalproperties of fluid in nano-channel are influenced by the temperature andmicro-structures of the surface. An area ratio Rderived from the surface parameters isdefined to describe the fluid-lattice interaction. For a given material, a high ratio latticecan result in strong adsorbability of the solid surface and increase the number ofabsorbed particles. Meanwhile, the thermal conductivity of fluid particles in thecorresponding nano-channel will be higher than that of other lattices. However, theeffect of the lattices is decreased as the temperature increasing. The interfacialresistance is generated by the fluid–solid interactions, and has an effect on the energytransfer between the fluid particles and surface particles. As the temperature of thesystem is low, interfacial resistance plays a leading role in the heat transfer between the solid and the fluid, and can reduce the thermal conductivity of the fluid. With thetemperature increasing, the interactions between the fluid molecules and the surfaceparticles become intensive. As a consequence, the influence of the interfacial resistancecan be overcome, and the thermal conductivity of the fluid can be increased.
     The thermal properties of several sI methane hydrate structures under high pressureare discussed afterward. The results indicate the investigated hydrate structures presentalmost the same crystalline distribution of water molecules, but their thermalconductivities are different. In all the investigated hydrate structures, it is found that theguest-free hydrate owns highest thermal conductivity of the studied systems while thedefect hydrate has the lowest thermal properties. The high pressure can promote thethermal properties of methane and water molecules. And the high temperature canpromote the thermal properties of methane molecules, but it can weaken the thermalproperties of water molecules. There is a coupling effect between methane moleculesand cage structures of hydrates, which can cause the resonant scattering effect ofphonon. And the lattice defect of water molecules in hydrate causes the considerablescattering of phonons.
     Finally, the configurations of water molecules in the decomposition system ofhydrate and hydrate/ice/water mixture are investigated. It is found that someconfigurations of oxygen atoms in water molecules still remain the similar crystalstructurein the decomposition system of hydrate, while the other properties of watermolecule are similar to the liquid water. It can be speculated that the tetrahedralcoordination of oxygen atoms in water should be one of the factors associated with thememory effect of dissociated water from hydrate. The analysis of configuration of watermolecules in hydrate/ice/water system reveals that the configuration of water moleculesin the hydrate area has a significant difference with that in ice/water mixture. And thiskind of difference keeps sequential change through the interface between the hydratearea and the ice/water mixture.
引文
[1] BP statistical review of world energy2012. London: BP P.L.C,2012.
    [2] Shi GH, Jing YY, Wang SL, Zhang XT. Development status of liquefied natural gas industryin China [J]. Energy Policy,2010,38:7457-7465.
    [3] Lin W, Zhang N, Gu A. LNG (liquefied natural gas): A necessary part in China's future energyinfrastructure [J]. Energy,2010,35:4383-4391.
    [4] Kaplan IR, Bird KJ, Tailleur IL. Source of molten elemental sulfur and hydrogen sulfide fromthe Inigok well, northern Alaska [J]. AAPG Bulletin,2012,96(2):337-354.
    [5]姚金敏.用烷基二硫化物溶剂解决含硫气田的硫沉积问题[J].国外油田工程,1992,5:19.
    [6]陈中华,熊齐胜,张岛.高含硫气田不同井型元素硫沉积模型及应用研究[J].天然气勘探与开发,2007,30(1):54-57.
    [7]杜志敏,张勇,郭肖,杨学锋.高含硫气藏中的硫微粒运移和沉积[J].西安石油大学学报,2008,23(1):69-72.
    [8] Chesnoy AB, Pack DJ. S8threatens natural gas operations, environment [J]. The Oil and GasJournal,1997,95(17):74-79.
    [9] Kermani M, Harrop D. The impact of corrosion on the oil and gas industry [J]. SPEProduction and Facilities,1996,11(3):7-23.
    [10] Http://www.pet.hw.ac.uk/research/hydrate/hydrates_why.Cfm.
    [11] Makogon YF. Hydrates of natural gas [M]. PennWell Books,1981.
    [12]沈淘淘,林文胜.利用溶液理论计算饱和甲烷中二氧化碳溶解度[J].低温与超导,2010,38(9):17-21.
    [13] Prausnitz JM, Tavares FW. Thermodynamics of fluid-phase equilibria for standard chemicalengineering operations [J]. AIChE Journal,2004,50(4):739-761.
    [14] Frantz JD, Popp RK, Hoering TC. The compositional limits of fluid immiscibility in thesystem H2O-NaCl-CO2as determined with the use of synthetic fluid inclusions in conjunctionwith mass spectrometry [J]. Chemical Geology,1992,98(3–4):237-255.
    [15] Brodholt JP, Wood BJ. Measurements of the PVT properties of water to25kbars and1600°Cfrom synthetic fluid inclusions in corundum [J]. Geochimica et Cosmochimica Acta,1994,58(9):2143-2148.
    [16] Kerrick DM, Jacobs GK. Modified redlich-kwong equation for H2O, CO2, and H2O-CO2mixtures at elevated pressures and temperatures [J]. American Journal of Science,1981,281(6):735-767.
    [17] Jacobs GK, Kerrick DM. Methane: An equation of state with application to the ternary systemH2O-CO2-CH4[J]. Geochimica et Cosmochimica Acta,1981,45(5):607-614.
    [18] Bowers TS, Helgeson HC. Calculation of the thermodynamic and geochemical consequencesof nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems:Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures [J].Geochimica et Cosmochimica Acta,1983,47(7):1247-1275.
    [19] Span R, Wagner W. A new equation of state for carbon dioxide covering the fluid region fromthe triple-point temperature to1100K at pressures up to800MPa [J]. Journal of Physical andChemical Reference Data,1996,25(6):1509-1596.
    [20] Duan Z, Moller N, Weare JH. An equation of state for the CH4-CO2-H2O system: I. Puresystems from0to1000°C and0to8000bar [J]. Geochimica et Cosmochimica Acta,1992,56:2605-2617.
    [21] Duan Z, Moller N, Weare JH. An equation of state for the CH4-CO2-H2O system: II. Mixturesfrom50to1000°C and0to1000bar [J]. Geochimica et Cosmochimica Acta,1992,56:2619-2631.
    [22] Duan Z, Zhang Z. Equation of state of the H2O, CO2, and H2O-CO2systems up to10GPa and2573.15K: Molecular dynamics simulations with ab initio potential surface [J]. Geochimicaet Cosmochimica Acta,2006,70:2311-2324.
    [23] Duan Z, Mao S. A thermodynamic model for calculating methane solubility, density and gasphase composition of methane-bearing aqueous fluids from273to523K and from1to2000bar [J]. Geochimica et Cosmochimica Acta,2006,70:3369-3386.
    [24]段振豪.地质流体状态方程[J].中国科学:地球科学,2010,40(4):393-413.
    [25] Frenkel D, Smit B. Understanding molecular simulation: From algorithms to applications(Second edition)[M]. New York: Academic Press,2002.
    [26] Ungerer P, Nieto-Draghi C, Lachet V, Wender A, Di Lella A, Boutin A, Rousseau B, FuchsAH. Molecular simulation applied to fluid properties in the oil and gas industry [J]. MolecularSimulation,2007,33(4-5):287-304.
    [27] Harris JG, Yung KH. Carbon dioxide's liquid-vapor coexistence curve and critical propertiesas predicted by a simple molecular model [J]. Journal of Physical Chemistry,1995,99(31):12021-12024.
    [28] Kristof T, Liszi J. Effective intermolecular potential for fluid hydrogen sulfide [J]. Journal ofPhysical Chemistry B,1997,101(28):5480-5483.
    [29] Zhu A, Zhang X, Liu Q, Zhang Q. A fully flexible potential model for carbon dioxide [J].Chinese Journal of Chemical Engineering,2009,17(2):268-272.
    [30] Zhang Z, Duan Z. An optimized molecular potential for carbon dioxide [J]. The Journal ofChemical Physics,2005,122:214507.1-214507.15.
    [31] Moller D, Oprzynski J, Muller A, Fischer J. Prediction of thermodynamic properties of fluidmixtures by molecular dynamics simulations: Methane-ethane [J]. Molecular Physics,1992,75(2):363-378.
    [32] Duan Z, Moller N, Weare JH. Molecular dynamics simulation of PVT properties of geologicalfluids and a general equation of state of nonpolar and weakly polar gases up to2000K and20,000bar [J]. Geochimica et Cosmochimica Acta,1992,56:3839-3845.
    [33] Duan Z, Moller N, Weare JH. A general equation of state for supercritical fluid mixtures andmolecular dynamics simulation of mixture PVTx properties [J]. Geochimica et CosmochimicaActa,1996,60(7):1209-1216.
    [34] Duan Z, Moller N, Weare JH. Accurate prediction of the thermodynamic properties of fluidsin the system H2O-CO2-CH4-N2up to2000K and100kbar from a corresponding states/onefluid equation of state [J]. Geochimica et Cosmochimica Acta,2000,64(6):1069-1075.
    [35] Zhang Z, Duan Z. Phase equilibria of the system methane ethane from temperature scalingGibbs ensemble monte carlo simulation [J]. Geochimica et Cosmochimica Acta,2002,66(19):3431-3439.
    [36] Zhang Z, Duan Z. Prediction of the PVT properties of water over wide range of temperaturesand pressures from molecular dynamics simulation [J]. Physics of the Earth and PlanetaryInteriors,2005,149:335-354.
    [37] Zhang C, Duan Z, Zhang Z. Molecular dynamics simulation of the CH4and CH4-H2Osystems up to10GPa and2573K [J]. Geochimica et Cosmochimica Acta,2007,71:2036-2055.
    [38] Hyne J. Study aids prediction of sulfur deposition in sour-gas wells [J]. Oil and Gas Journal,1968,12(995):107-113.
    [39] Roof J. Solubility of sulfur in hydrogen sulfide and in carbon disulfide at elevatedtemperature and pressure [J]. Society of Petroleum Engineers Journal,1971,11(3).
    [40] Swift SC. Sulfur-bearing capacity of hydrogen sulfide gas [J]. Society of Petroleum EngineersJournal,1976,16(2).
    [41] Brunner E, Place MC, Woll WH. Sulfur solubility in sour gas [J]. Journal of petroleumtechnology,1988,40(12):1587-1592.
    [42] Gu MX, Li Q, Zhou SY, Chen WD, Guo TM. Experimental and modeling studies on thephase behavior of high H2S-content natural gas mixtures [J]. Fluid Phase Equilibria,1993,82(0):173-182.
    [43] Sun CY, Chen GJ. Experimental and modeling studies on sulfur solubility in sour gas [J].Fluid Phase Equilibria,2003,214(2):187-195.
    [44] Chrastil J. Solubility of solids and liquids in supercritical gases [J]. The Journal of PhysicalChemistry,1982,86(15):3016-3021.
    [45] Carroll JJ. Solubility of sulfur in sour gas mixtures [J]. Proceedings of the1st Annual GasProcessing Symposium,2009.
    [46] Karan K, Heidemann RA, Behie LA. Sulfur solubility in sour gas: Predictions with anequation of state model [J]. Industrial&Engineering Chemistry Research,1998,37(5):1679-1684.
    [47] Cezac P, Serin JP, Mercadier J, Mouton G. Modelling solubility of solid sulphur in natural gas[J]. Chemical Engineering Journal,2007,133(1-3):283-291.
    [48] Serin JP, Cezac P. Three thermodynamic paths to describe solid fugacity: Application tosulphur precipitation from supercritical natural gas [J]. The Journal of Supercritical Fluids,2008,46(1):21-26.
    [49] Cezac P, Serin JP, Reneaume JM, Mercadier J, Mouton G. Elemental sulphur deposition innatural gas transmission and distribution networks [J]. The Journal of Supercritical Fluids,2008,44(2):115-122.
    [50] Serin JP, Jay S, Cezac P, Contamine F, Mercadier J, Arrabie C, Legros-Adrian JM.Experimental studies of solubility of elemental sulphur in supercritical carbon dioxide [J]. TheJournal of Supercritical Fluids,2010,53(1-3):12-16.
    [51]陈俊,刘朝,曾丹苓.湿空气相平衡的分子动力学模拟研究[J].工程热物理学报,2008,29(3):366-368.
    [52] Lopez-Rendon R, Alejandre J. Molecular dynamics simulations of the solubility of H2S andCO2in water [J]. Journal of the Mexican Chemical Society,2008,52(1):88-92.
    [53] Kuznetsova T, Kvamme B. Atomistic computer simulations for thermodynamic properties ofcarbon dioxide at low temperatures [J]. Energy Conversion and Management,2002,43:2601-2623.
    [54] Stillinger FH, Weber TA, LaViolette RA. Chemical reactions in liquids: Molecular dynamicssimulation for sulfur [J]. The Journal of Chemical Physics,1986,85(11):6460-6469.
    [55] Stillinger FH, Weber TA. Molecular dynamics study of chemical reactivity in liquid sulfur [J].The Journal of Physical Chemistry,1987,91(19):4899-4907.
    [56] Venuti E, Cardini G, Castellucci E. A molecular dynamics simulation of crystalline S8[J].Chemical Physics,1992,165(2-3):313-322.
    [57] Jones RO, Ballone P. Density functional and monte carlo studies of sulfur. I. Structure andbonding in Sn rings and chains (n=2–18)[J]. The Journal of Chemical Physics,2003,118(20):9257-9265.
    [58] Ballone P, Jones RO. Density functional and monte carlo studies of sulfur. II. Equilibriumpolymerization of the liquid phase [J]. The Journal of Chemical Physics,2003,119(16):8704-8715.
    [59] Davis JA, Rodewald N, Kurata F. Solid-liquid-vapor phase behavior of the methane-carbondioxide system [J]. AIChE Journal,1962,8(4):537-539.
    [60] Stefani VD, Baba-Ahmed A, Valtz A, et al. Solubility measurements for carbon dioxide andnitrous oxide in liquid oxygen at temperatures down to90K [J]. Fluid Phase Equilibria,2002,200:19-30.
    [61] Preston GT, Prausnitz JM. Thermodynamics of solid solubility in cryogenic solvents [J].Industrial and Engineering Chemistry Process Design and Development,1970,9(2):264-271.
    [62]童景山.流体热物性学:基本理论与计算[M].中国石化出版社,2008.
    [63] Dysthe DK, Fuchs AH, Rousseau B. Prediction of fluid mixture transport properties bymolecular dynamics [J]. International Journal of Thermophysics,1998,19(2):437-448.
    [64] Dysthe DK, Fuchs AH, Rousseau B. Fluid transport properties by equilibrium moleculardynamics. I. Methodology at extreme fluid states [J]. The Journal of Chemical Physics,1999,110(8):4047-4059.
    [65] Dysthe DK, Fuchs AH, Rousseau B, Durandeau M. Fluid transport properties by equilibriummolecular dynamics. II. Multicomponent systems [J]. The Journal of Chemical Physics,1999,110(8):4060-4067.
    [66] Dysthe DK, Fuchs AH, Rousseau B. Fluid transport properties by equilibrium moleculardynamics. III. Evaluation of united atom interaction potential models for pure alkanes [J]. TheJournal of Chemical Physics,2000,112(17):7581-7590.
    [67] Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V. Molecular simulation of thethermophysical properties of fluids: From understanding toward quantitative predictions [J].Journal of Molecular Liquids,2007,134(1-3):71-89.
    [68] Nieto-Draghi C, Mackie AD, Avalos JB. Transport coefcients and dynamic properties ofhydrogen sulfide from molecular simulation [J]. The Journal of Chemical Physics,2005,123:014505.1-014505.8.
    [69] Nieto-Draghi C, Bruin TD, Perez-Pellitero J, Avalos JB, Mackie AD. Thermodynamic andtransport properties of carbon dioxide from molecular simulation [J]. The Journal of ChemicalPhysics,2007,126:064509.1-064509.8.
    [70] Galliero G, Nieto-Draghi C, Boned C, Avalos JB, Mackie AD, Baylaucq A, Montel F.Molecular dynamics simulation of acid gas mixtures: A comparison between severalapproximations [J]. Industrial&Engineering Chemistry Research,2007,46(15):5238-5244.
    [71] Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simpleapplications to magnetic and conduction problems [J]. Journal of the Physical Society ofJapan,1957,12(6):570-586.
    [72] Evans DJ, Murad S. Thermal conductivity in molecular fluids [J]. Molecular Physics,1989,68(6):1219-1223.
    [73] Daivis PJ, Evans DJ. Non-equilibrium molecular dynamics calculation of thermalconductivity of flexible molecules: Butane [J]. Molecular Physics,1994,81(6):1289-1295.
    [74] Rowley RL, Ely JF. Non-equilibrium molecular dynamics simulations of structured molecules[J]. Molecular Physics,1992,75(3):713-730.
    [75] Nieto-Draghi C, Avalos JB. Non-equilibrium momentum exchange algorithm for moleculardynamics simulation of heat flow in multicomponent systems [J]. Molecular Physics,2003,101(14):2303-2307.
    [76] Muller EA, Gelb LD. Molecular modeling of fluid-phase equilibria using an isotropicmultipolar potential [J]. Industrial&Engineering Chemistry Research,2003,42(17):4123-4131.
    [77]何雅玲,王勇,李庆.格子boltzmann方法的理论及应用[M].科学出版社,2009.
    [78] Rudd RE, Broughton JQ. Coarse-grained molecular dynamics and the atomic limit of finiteelements [J]. Physical Review B,1998,58(10):R5893-R5896.
    [79]宋齐有.具多物理耦合介面現象之微奈流.2009.重庆.
    [80] Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C.Natural gas treating by selective adsorption: Material science and chemical engineeringinterplay [J]. Chemical Engineering Journal,2009,155(3):553-566.
    [81] Akten ED, Siriwardane R, Sholl DS. Monte carlo simulation of single-and binary-componentadsorption of CO2, N2, and H2in zeolite Na-4A [J]. Energy&Fuels,2003,17(4):977-983.
    [82] Van Duin ACT, Dasgupta S, Lorant F, Goddard WA. Reaxff: A reactive force field forhydrocarbons [J]. The Journal of Physical Chemistry A,2001,105(41):9396-9409.
    [83] Chenoweth K, Van Duin ACT, Goddard WA. Reaxff reactive force field for moleculardynamics simulations of hydrocarbon oxidation [J]. The Journal of Physical Chemistry A,2008,112(5):1040-1053.
    [84] Aryanpour M, Van Duin ACT, Kubicki JD. Development of a reactive force field foriron oxyhydroxide systems [J]. The Journal of Physical Chemistry A,2010,114(21):6298-6307.
    [85] Jarvi TT, Van Duin ACT, Nordlund K, Goddard WA. Development of interatomic reaxffpotentials for Au–S–C–H systems [J]. The Journal of Physical Chemistry A,2011,115(37):10315-10322.
    [86] Narayanan B, van Duin ACT, Kappes BB, Reimains IE, Ciobanu CV. A reactive force fieldfor lithium–aluminum silicates with applications to eucryptite phases [J]. Modelling andSimulation in Materials Science and Engineering,2012,20(1):015002.1-015002.24.
    [87] Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron [J].Nature Materials,2012,12:145-151.
    [88] Xu L, Tsotsis TT, Sahimi M. Nonequilibrium molecular dynamics simulation of transport andseparation of gases in carbon nanopores. I. Basic results [J]. The Journal of Chemical Physics,1999,111(7):3252-3264.
    [89] Xu L, Sedigh MG, Tsotsis TT, Sahimi M. Nonequilibrium molecular dynamics simulation oftransport and separation of gases in carbon nanopores. II. Binary and ternary mixtures andcomparison with the experimental data [J]. The Journal of Chemical Physics,2000,112(2):910-922.
    [90] Chempath S, Krishna R, Snurr RQ. Nonequilibrium molecular dynamics simulations ofdiffusion of binary mixtures containing short n-alkanes in faujasite [J]. The Journal ofPhysical Chemistry B,2004,108(35):13481-13491.
    [91] Cosoli P, Ferrone M, Pricl S, Fermeglia M. Hydrogen sulphide removal from biogas byzeolite adsorption. Part I. Gcmc molecular simulations [J]. Chemical Engineering Journal,2008,145(1):86-92.
    [92] Cosoli P, Ferrone M, Pricl S, Fermeglia M. Hydrogen sulfide removal from biogas by zeoliteadsorption. Part II. MD Simulations [J]. Chemical Engineering Journal,2008,145(1):93-99.
    [93] Gupta A, Snurr RQ. A study of pore blockage in silicalite zeolite using free energyperturbation calculations [J]. The Journal of Physical Chemistry B,2005,109(5):1822-1833.
    [94]陈玉平,吕玲红,邵庆,黄亮亮,陆小华.烷烃在丝光沸石型分子筛中吸附和扩散行为[J].物理化学学报,2007,23(6):905-910.
    [95] E. Dendy Sloan J, Koh C. Clathrate hydrates of natural gases, third edition [M]. Boca Raton:Taylor&Francis,2007.
    [96] Hammerschmidt EG. Formation of gas hydrates in natural gas transmission lines [J].Industrial&Engineering Chemistry,1934,26(8):851-855.
    [97] Kelland MA. History of the development of low dosage hydrate inhibitors [J]. Energy&Fuels,2006,20(3):825-847.
    [98] Kvenvolden KA, Ginsburg GD, Soloviev VA. Worldwide distribution of subaquatic gashydrates [J]. Geo-Marine Letters,1993,13:32-40.
    [99] Strobel TA, Hester KC, Koh CA, Sum AK, Sloan Jr ED. Properties of the clathrates ofhydrogen and developments in their applicability for hydrogen storage [J]. Chemical PhysicsLetters,2009,478(4–6):97-109.
    [100] Kvenvolden KA. Methane hydrate-a major reservoir of carbon in the shallow geosphere?[J].Chemical Geology,1988,71(1-3):41-51.
    [101] Kvenvolden KA. Gas hydrates-geological perspective and global change [J]. Reviews ofGeophysics,1993,32(2):173-187.
    [102] Englezos P, Lee J. Gas hydrates: A cleaner source of energy and opportunity for innovativetechnologies [J]. Korean Journal of Chemical Engineering,2005,22(5):671-681.
    [103] Linga P, Kumar R, Englezos P. Gas hydrate formation from hydrogen/carbon dioxide andnitrogen/carbon dioxide gas mixtures [J]. Chemical Engineering Science,2007,62(16):4268-4276.
    [104] Ning F, Yu Y, Kjelstrup S, Vlugt TJH, Glavatskiy K. Mechanical properties of clathratehydrates: Status and perspectives [J]. Energy&Environmental Science,2012,5(5):6779-6795.
    [105] McMullan RK, Jeffrey GA. Polyhedral clathrate hydrates. IX. Structure of ethylene oxidehydrate [J]. The Journal of Chemical Physics,1965,42(8):2725-2732.
    [106] Mak TCW, McMullan RK. Polyhedral clathrate hydrates. X. Structure of the double hydrateof tetrahydrofuran and hydrogen sulfide [J]. The Journal of Chemical Physics,1965,42(8):2732-2737.
    [107] Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM. A new clathrate hydrate structure [J]. Nature,1987,325(6100):135-136.
    [108] Vysniauskas A, Bishnoi PR. A kinetic-study of methane hydrate formation [J]. ChemicalEngineering Science,1983,38(7):1061-1072.
    [109] Takeya S, Hori A, Hondoh T, Uchida T. Freezing-memory effect of water on nucleation ofCO2hydrate crystals [J]. The Journal of Physical Chemistry B,2000,104(17):4164-4168.
    [110] Buchanan P, Soper AK, Thompson H, Westacott RE, Creek JL, Hobson G, Koh CA. Searchfor memory effects in methane hydrate: Structure of water before hydrate formation and afterhydrate decomposition [J]. The Journal of Chemical Physics,2005,123(16):164507.1-164507.7.
    [111] Dong Lee J, Susilo R, Englezos P. Methane–ethane and methane–propane hydrate formationand decomposition on water droplets [J]. Chemical Engineering Science,2005,60(15):4203-4212.
    [112] Lee JD, Susilo R, Englezos P. Kinetics of structure H gas hydrate [J]. Energy&Fuels,2005,19(3):1008-1015.
    [113]宋永臣,杨明军,刘瑜,李清平.离子对甲烷水合物相平衡的影响[J].化工学报,2009,60(6):1362-1366.
    [114] Song Y, Yang M, Chen Y, Li Q. An improved model for predicting hydrate phase equilibriumin marine sediment environment [J]. Journal of Natural Gas Chemistry,2010,19(3):241-245.
    [115]刘瑜,赵佳飞,郭长松,宋永臣,刘卫国,程传晓,叶陈诚,薛铠华. Ⅰ型和II型结构气体水合物的记忆效应[J].物理化学学报,2011,27(6):1305-1311.
    [116] Yang M, Song Y, Liu Y, Lam WH, Li Q. Equilibrium conditions for CO2hydrate in porousmedium [J]. The Journal of Chemical Thermodynamics,2011,43(3):334-338.
    [117] Rodger PM, Forester TR, Smith W. Simulations of the methane hydrate/methane gas interfacenear hydrate forming conditions [J]. Fluid Phase Equilibria,1996,116(1-2):326-332.
    [118] Rodger PM. Methane hydrate: Melting and memory [J]. Annals of the New York Academy ofSciences,2000,912(1):474-482.
    [119] Moon C, Taylor PC, Rodger PM. Molecular dynamics study of gas hydrate formation [J].Journal of the American Chemical Society,2003,125:4706-4707.
    [120] Storr MT, Taylor PC, Monfort JP, Rodger PM. Kinetic inhibitor of hydrate crystallization [J].Journal of American Chemical Society,2004,126(5):1569-1576.
    [121] Moon C, Hawtin RW, Rodger PM. Nucleation and control of clathrate hydrates: Insights fromsimulation [J]. Faraday Discussions,2007,136:367-382.
    [122] Plummer PLM, Chen TS. A molecular dynamics study of water clathrates [J]. The Journal ofPhysical Chemistry,1983,87(21):4190-4197.
    [123] Walsh MR, Koh CA, Sloan ED, et al. Microsecond simulations of spontaneous methanehydrate nucleation and growth [J]. Science,2009,326(5956):1095-1098.
    [124] Guo GJ, Li M, Zhang YG, Wu CH. Why can water cages adsorb aqueous methane? Apotential of mean force calculation on hydrate nucleation mechanisms [J]. Physical ChemistryChemical Physics,2009,11(44):10427-10437.
    [125] Guo GJ, Zhang YG, Liu CJ, Li KH. Using the face-saturated incomplete cage analysis toquantify the cage compositions and cage linking structures of amorphous phase hydrates [J].Physical Chemistry Chemical Physics,2011,13(25):12048-12057.
    [126] Guo GJ, Rodger PM. Solubility of aqueous methane under metastable conditions:Implications for gas hydrate nucleation [J]. The Journal of Physical Chemistry B,2013,117(21):6498-6504.
    [127]颜克凤,李小森,陈朝阳,李刚,唐广良,樊栓狮.用分子动力学模拟甲烷水合物热激法分解[J].物理学报,2007,56(8):4994-5002.
    [128]李小森.用分子动力学模拟水合物储氢[J].高等学校化学学报,2007,28(3):552-555.
    [129]颜克凤,李小森,陈朝阳,李刚,李志宝.用分子动力学模拟甲烷水合物热激法结合化学试剂法分解[J].物理学报,2007,56(11):6727-6735.
    [130]万丽华,颜克凤,李小森,樊栓狮.热力学抑制剂作用下甲烷水合物分解过程的分子动力学模拟[J].物理化学学报,2009,25(3):486-494.
    [131]颜克凤,李小森,陈朝阳,徐纯钢.整体煤气化联合循环合成气水合物法分离CO2的分子动力学模拟[J].物理学报,2010,59(6):4313-4321.
    [132]颜克凤,密建国,仲崇立.用分子动力学模拟天然气水合物的抑制效应[J].化学学报,2006,64(3):223-228.
    [133] Bai D, Zhang X, Chen G, Wang W. Replacement mechanism of methane hydrate with carbondioxide from microsecond molecular dynamics simulations [J]. Energy&EnvironmentalScience,2012,5(5):7033-7041.
    [134] Bai D, Chen G, Zhang X, Wang W. Nucleation of the co2hydrate from three-phase contactlines [J]. Langmuir,2012,28(20):7730-7736.
    [135] Qi Y, Ota M, Zhang H. Molecular dynamics simulation of replacement of CH4in hydrate withCO2[J]. Energy Conversion and Management,2011,52(7):2682-2687.
    [136] Handa YP, Stupin DY. Thermodynamic properties and dissociation characteristics of methaneand propane hydrates in70-A-radius silica gel pores [J]. The Journal of Physical Chemistry,1992,96(21):8599-8603.
    [137] Slack GA. Thermal conductivity of ice [J]. Physical Review B,1980,22(6):3065-3071.
    [138] Ross RG, Andersson P, Backstrom G. Unusual pt dependence of thermal conductivity for aclathrate hydrate [J]. Nature,1981,290(5804):322-323.
    [139] Slack GA, Oliver DW, Horn FH. Thermal conductivity of boron and some boron compounds[J]. Physical Review B,1971,4(6):1714-1720.
    [140] Handa YP, Cook JG. Thermal conductivity of Xenon hydrate [J]. The Journal of PhysicalChemistry,1987,91(25):6327-6328.
    [141] Tse JS, White MA. Origin of glassy crystalline behavior in the thermal properties of clathratehydrates: A thermal conductivity study of tetrahydrofuran hydrate [J]. The Journal of PhysicalChemistry,1988,92(17):5006-5011.
    [142] Gupta A, Kneafsey TJ, Moridis GJ, Seol Y, Kowalsky MB, Sloan ED. Composite thermalconductivity in a large heterogeneous porous methane hydrate sample [J]. The Journal ofPhysical Chemistry B,2006,110(33):16384-16392.
    [143] Rosenbaum EJ, English NJ, Johnson JK, Shaw DW, Warzinski, RP. Thermal conductivity ofmethane hydrate from experiment and molecular simulation [J]. The Journal of PhysicalChemistry B,2007,111(46):13194-13205.
    [144] Krivchikov AI, Gorodilov BY, Korolyuk OA, Manzhelii VG, Romantsova OO, Conrad H,Press W, Tse JS, Klug DD. Thermal conductivity of Xe clathrate hydrate at low temperatures[J]. Physical Review B,2006,73(6):064203.1-064203.6.
    [145] Tse JS, Klein ML, McDonald IR. Molecular dynamics studies of ice ic and the structure Iclathrate hydrate of methane [J]. The Journal of Physical Chemistry,1983,87(21):4198-4203.
    [146] Inoue R, Tanaka H, Nakanishi K. Molecular dynamics simulation study of the anomalousthermal conductivity of clathrate hydrates [J]. The Journal of Chemical Physics,1996,104(23):9569-9577.
    [147] Jiang H, Myshakin EM, Jordan KD, Warzinski RP. Molecular dynamics simulations of thethermal conductivity of methane hydrate [J]. The Journal of Physical Chemistry B,2008,112(33):10207-10216.
    [148] English NJ. Effect of electrostatics techniques on the estimation of thermal conductivity viaequilibrium molecular dynamics simulation: Application to methane hydrate [J]. MolecularPhysics,2008,106(15):1887-1898.
    [149] English NJ, Tse JS, Carey DJ. Mechanisms for thermal conduction in various polymorphs ofmethane hydrate [J]. Physical Review B,2009,80(13):134306.1-134306.16.
    [150] English NJ, Tse JS. Perspectives on hydrate thermal conductivity [J]. Energies,2010,3(12):1934-1942.
    [151] English NJ, Gorman PD, MacElroy JMD. Mechanisms for thermal conduction in hydrogenhydrate [J]. The Journal of Chemical Physics,2012,136(4):044501.1-044501.10.
    [152]王璐琨,陈光进, Pratt RM,郭天民. H型气体水合物热导率的分子动力学模拟[J].化工学报,2001,52(4):354-356.
    [153] Wan L, Liang D, Wu N, Guan J. Molecular dynamics simulations of the mechanisms ofthermal conduction in methane hydrates [J]. Science China Chemistry,2012,55(1):167-174.
    [154] Alder BJ, Wainwright TE. Studies in molecular dynamics. I. General method [J]. The Journalof Chemical Physics,1959,31(2):459-466.
    [155] Allen MP, Tildesley DJ. Computer simulation of liquids [M]. Oxford: Clarendon Press,1989.
    [156] Daw MS, Foiles SM, Baskes MI. The embedded-atom method: A review of theory andapplications [J]. Materials Science Reports,1993,9(7–8):251-310.
    [157] Sun H. Compass: An ab initio force-field optimized for condensed-phaseapplicationsoverview with details on alkane and benzene compounds [J]. The Journal ofPhysical Chemistry B,1998,102(38):7338-7364.
    [158] John MP, Ruediger NL, Edmundo GDA. Molecular thermodynamics of fluid-phase equilibria(third edition)[M]. Englewood Cliffs, N.J.: Prentice-Hall,1986.
    [159] London F. The general theory of molecular forces [J]. Transactions of the Faraday Society,1937,33(0):8-26.
    [160] Amdur I, Mason EA. Scattering of high-velocity neutral particles. III. Argon-Argon [J]. TheJournal of Chemical Physics,1954,22(4):670-671.
    [161] Mie G. Zur kinetischen theorie der einatomigen k rper [J]. Annalen der Physik,1903,316(8):657-697.
    [162] Daw MS, Baskes MI. Embedded-atom method: Derivation and application to impurities,surfaces, and other defects in metals [J]. Physical Review B,1984,29(12):6443-6453.
    [163] Tersoff J. New empirical approach for the structure and energy of covalent systems [J].Physical Review B,1988,37(12):6991-7000.
    [164] Berendsen HJC, Postma JPM, Gunsteren WFV, Dinola A, Haak JR. Molecular dynamics withcoupling to an external bath [J]. Journal of Chemical Physics,1984,81(8):3684-3690.
    [165] Hoover WG. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical ReviewA,1985,31(3):1695-1697.
    [166]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].化学工业出版社,2007.
    [167] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal ofComputational Physics,1995,117(1):1-19.
    [168] Delhommelle J, Millie P. Inadequacy of the lorentz-berthelot combining rules for accuratepredictions of equilibrium properties by molecular simulation [J]. Molecular Physics,2001,99(8):619-625.
    [169] NIST. http://webbook.Nist.Gov/chemistry/fluid/
    [170] Ewald PP. Die berechnung optischer und elektrostatischer gitterpotentiale [J]. Annalen derPhysik,1921,369(3):253-287.
    [171] Hegg DA, Baker MB. Nucleation in the atmosphere [J]. Reports on Progress in Physics,2009,72:056801.1-056801.21.
    [172] Wolde PRT, Frenkel D. Computer simulation study of gas–liquid nucleation in a lennard-jonessystem [J]. Journal of Chemical Physics,1998,109(22):9901-9918.
    [173] Fidler J, Rodger PM. Solvation structure around aqueous alcohols [J]. The Journal of PhysicalChemistry B,1999,103(36):7695-7703.
    [174] Nath SK. Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and itsmixtures with alkanes [J]. Journal of Physical Chemistry B,2003,107(35):9498-9504.
    [175] Greenwood NN, Earnshaw A. Chemistry of the elements [M]. Second edition. Oxford;Boston: Butterworth-Heinemann,1997.
    [176] Lide DR, Bruno TJ. CRC handbook of chemistry and physics [M]. CRC PressI LLC,2012.
    [177] Stillinger FH. Rigorous basis of the frenkel-band theory of association equilibrium [J]. TheJournal of Chemical Physics,1963,38(7):1486-1494.
    [178] Sun C. Computational prediction of hydrogen sulfide and methane separation at roomtemperature by anatase titanium dioxide [J]. Chemical Physics Letters,2013,557(0):106-109.
    [179] Predota M, Bandura AV, Cummings PT, Kubicki JD, Wesolowski DJ, Chialvo AA, MacheskyML. Electric double layer at the rutile (110) surface.1. Structure of surfaces and interfacialwater from molecular dynamics by use of ab initio potentials [J]. The Journal of PhysicalChemistry B,2004,108(32):12049-12060.
    [180] Dushanov E, Kholmurodov K, Yasuoka K. The diffusion and concentration effects offormamide on a TiO2surface in the presence of a water solvent [J]. Natural Science,2012,4(5):313-323.
    [181] Mitchell MC, Gallo M, Nenoff TM. Computer simulations of adsorption and diffusion forbinary mixtures of methane and hydrogen in titanosilicates [J]. The Journal of ChemicalPhysics,2004,121(4):1910-1916.
    [182]刘育松,张欣欣,于帆.纳米尺度孔隙内气体热导率的分子动力学模拟[J].北京科技大学学报,2006,28(12):1182-1185.
    [183] Nagayama G, Tsuruta T, Cheng P. Molecular dynamics simulation on bubble formation in ananochannel [J]. International Journal of Heat and Mass Transfer,2006,49(23-24):4437-4443.
    [184] Ribeiro RP, Sauer TP, Lopes FV, Moreira RF, Grande CA, Rodrigues AE. Adsorption of CO2,CH4, and N2in activated carbon honeycomb monolith [J]. Journal of Chemical&EngineeringData,2008,53(10):2311-2317.
    [185] Soong CY, Yen TH, Tzeng PY. Molecular dynamics simulation of nanochannel flows witheffects of wall lattice-fluid interactions [J]. Physical Review E,2007,76:036303.1-036303.14.
    [186] Markvoort A, Hilbers P, Nedea S. Molecular dynamics study of the influence of wall-gasinteractions on heat flow in nanochannels [J]. Physical Review E,2005,71(6):066702.1-066702.9.
    [187] Gotsmann B, Lantz MA. Quantized thermal transport across contacts of rough surfaces [J].Nature Materials,2013,12(1):59-65.
    [188] Sofos F, Karakasidis T, Liakopoulos A. Transport properties of liquid argon in kryptonnanochannels: Anisotropy and non-homogeneity introduced by the solid walls [J].International Journal of Heat and Mass Transfer,2009,52(3-4):735-743.
    [189] Sun C, Lu W, Bai B, Liu J. Anomalous enhancement in thermal conductivity of nanofluidinduced by solid walls in a nanochannel [J]. Applied Thermal Engineering,2011,31(17-18):3799-3805.
    [190] Sun C, Lu W, Bai B, Liu J. Transport properties of Ar–Kr binary mixture in nanochannelpoiseuille flow [J]. International Journal of Heat and Mass Transfer,2012,55(5-6):1732-1740.
    [191] Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS,Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions [J].Nature Materials,2003,2(11):731-734.
    [192] Stoner R, Maris H. Kapitza conductance and heat flow between solids at temperatures from50to300K [J]. Physical Review B,1993,48(22):16373-16387.
    [193] Maruyama S, Kimura T. A study on thermal resistance over a solid-liquid interface by themolecular dynamics method [J]. Thermal Science&Engineering,1999,7(1):63-68.
    [194] Honjo G, Shimaoka K. Determination of hydrogen position in cubic ice by electrondiffraction [J]. Acta Crystallographica,1957,10(11):710-711.
    [195] Xu B, Li Y, Park T, Chen X. Effect of wall roughness on fluid transport resistance innanopores [J]. The Journal of Chemical Physics,2011,135(14):144703.1-144703.5.
    [196] Luzar A, Chandler D. Structure and hydrogen bond dynamics of water–dimethyl sulfoxidemixtures by computer simulations [J]. The Journal of Chemical Physics,1993,98(10):8160-8173.
    [197] Baez LA, Clancy P. Computer simulation of the crystal growth and dissolution of natural gashydrates [J]. Annals of the New York Academy of Sciences,1994,715(1):177-186.
    [198] Reed SK, Westacott RE. The interface between water and a hydrophobic gas [J]. PhysicalChemistry Chemical Physics,2008,10(31):4614-4622.
    [199] Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA,Whitelam S, Banfield JF, De Yoreo JJ. Microscopic evidence for liquid-liquid separation insupersaturated CaCO3solutions [J]. Science,2013,341(6148):885-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700