用户名: 密码: 验证码:
乙醇和青霉素工业生物过程中微生物的代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模发酵过程中细胞行为和生产特性与其所处的环境因素关系密切,细胞的环境响应行为是涉及转录、蛋白、代谢及相互作用的一个基于生化反应和物质传递的复杂、非线性的多层次网络体系,传统研究方法和手段难以全面揭示其规律性。本文以乙醇和青霉素两个工业生物过程为研究体系,从代谢组学和磷脂组学的角度系统地比较分析了不同工业模式、不同规模工业过程中微生物细胞的代谢差异。试图在分子水平上更好的理解不同模式、不同规模工业生物过程中细胞对复杂工业环境的响应行为,为工业生物过程优化与放大提供科学依据。
     首先选取大规模乙醇工业分批过程和连续过程作为研究体系,分析了酿酒酵母在不同工业模式中细胞响应行为的差异性。分批过程发酵前期的细胞活力和乙醇的产量明显低于连续过程。代谢组学分析表明,渗透压和氧胁迫是引起酵母细胞在两个过程中响应行为差异的两个主要环境因素。连续过程发酵初期甘油的大量积累表明高糖浓度形成渗透压,在高渗刺激下甘油积累以调节细胞渗透压。分批过程发酵后期乳酸的积累显示在这个过程细胞受到的氧胁迫逐渐增加。环境胁迫响应行为的不同也造成了细胞在两个过程中氨基酸代谢和三羧酸循环代谢的差异。进一步分析了两种工业过程细胞磷脂组成和含量变化情况。细胞磷脂链长的变化可能是酵母细胞对复杂工业环境的一个重要响应。PS和PG的LCUFA含量在分批过程中明显高于连续过程;对于连续过程胞内LCUFA磷脂含量在发酵初期明显高于其他两个阶段,并且随发酵进行含量呈显著下降的趋势。
     其次以青霉素中试过程和大规模工业过程为研究对象,系统比较分析了产黄青霉胞内小分子代谢、磷脂组代谢以及次生代谢在工业生物放大过程中的表达差异。探索了产黄青霉在放大过程中的适应性响应过程。工业放大过程中青霉素的生产与胞内氨基酸的代谢密切相关,在发酵中期氨基酸的显著积累促进了青霉素的合成。不同规模青霉素发酵过程中产黄青霉糖酵解和TCA循环路径的代谢特征差异显著,这种差异和青霉素的产量具有一定的相关性,工业放大过程中次级代谢的生物合成受到初级代谢的影响显著。在中试过程发酵前期产黄青霉的初级代谢更为活跃,导致发酵过程中青霉素合成速率的降低。通过比较不同规模发酵过程中次级代谢产物表达的差异,表明次生代谢产物的相互转化和对合成酶的影响导致青霉素工业放大过程中代谢的差异。进一步磷脂组学研究显示多不饱和磷脂分子在中试过程表达明显高于工业过程。磷脂分子的不饱和度变化直接反应出在发酵过程中菌丝体形态的差异性;相比中试过程,工业过程受到的较大环境胁迫造成菌丝分裂的加剧,放大过程适当的环境胁迫更有利于青霉素产量的提高。
In large-scale fermentation process, cells behaviour and producing characters areclosely related with the environment factors. The behaviours of cells in environmentresponse are a process of involved in transcription, protein metabolism and interactioncomplex, multi-level network system based on biochemical reaction and mass transfer.Traditional research methods and tools are difficulty to fully reveal its regularity. Inthis paper, we choose ethanol and penicillin of industrial biological processes forstudy systems. From the point of phospholipids and metabolomics, we systematicallycompare and analyse the differences of the microbial cells in different industrialmodels and different industrial scales. We try to get a better understanding of cellsbehaviour to the complex industrial environment in different industrial models anddifferent industrial scales on molecular level and provide a scientific basis foroptimizing and amplificating the bio-process.
     First, choosing the batch process and continuous process in large-scale ethanolindustry as study system, we analyse the similarities and differences of cells responsebehaviour of yeast fermentation patterns in different industry fermentation scales.Although, the trend of reducing sugar was similar in the two processes, the cellsviability and ethanol production in the pre-fermentation are significantly lower thanthese in continuous process. Metabolomics analysis shows that osmotic and oxidativestresses are two main environmental factors of causing yeast cells response behaviourdifferences between the two processes. In continuous per-fermentation process,massive accumulation of glycerol shows that high sugar concentration forms osmoticpressure. In hypersonic stimulation, glycerol accumulation adjusts cell osmoticpressure. In the later stage of batch fermentation process, the lactic acid accumulationshows that cellular oxidative stress is increasing. Different environmental stressresponse behaviour causes the differences of amino acid metabolism and TCA cyclemetabolic in the two processes. We further analyse the changes of cell phospholipidcomposition and content in the two processes. The synthetization of Phospholipid inLCUFA in industrial yeast shows the extension of Intracellular enzymes inpolyunsaturated fats, enzymes. The length changes of cellular phospholipid chain maybe an important response of yeast cells to complex industrial environment. Thecontents of PS and PG of LCUFA in batch process are higher than these in continuousprocess. In continuous process, the contents of intracellular phospholipid in LCUFAin early fermentation are higher than the other two stages and show a downward trend with the process of fermentation.
     Secondly, choosing penicillin processes in pilot and large-scale industrial processfor study, we analyse the expression differences in biomagnification in the industrialprocess of Penicillium chrysogenum intracellular small-molecule metabolism,phospholipid metabolism and secondary metabolism group comparatively andsystematically. We get a further research response process of penicillin chrysogenumin amplification process. Studies show that the early fermentation and mediumfermentation are critical for the accumulation of penicillin. In the industrialamplification process, penicillin production is closely related to intracellular aminoacid metabolism. In the medium fermentation, amino acid significantly accumulationpromotes the synthesis of penicillin. The results also show that Penicilliumchrysogenum glycolysis and TCA cycle paths have significantly different metaboliccharacteristics in different scales of penicillin fermentation. These differences arerelated to penicillin production and in the industrial amplification process thebiosynthesis of secondary metabolism is significantly influenced by primarymetabolism. In the early stage of pilot process, the primary metabolism of penicilliumchrysogenum is more active which leads to the rate reducing of penicillin synthesis inthe fermentation process. By comparing the differences of secondary metabolites indifferent scales of fermentation processes, we found that the mutual transformation ofsecondary metabolites and the influence of synthetic enzymes are the reasons ofcausing penicillin metabolic differences in industrial amplification process. Furtherstudies of phospholipid show that polyunsaturated phospholipids in the pilot processwere higher than that in industrial process. The changes of unsaturated phospholipidmolecules directly show the differences of mycelium patterns in fermentationprocesses. In the early pilot process, the high unsaturated reduces the cells viscosityand increases the rate of gas-liquid oxygen transfer which can promote more myceliliagrowth and also lead to the rate reducing of penicillin synthesis in fermentationprocess. Compared with pilot process, the industry process suffers heavierenvironmental stresses and cause mycelium divided. And in amplification process theenvironmental stress make for the increasing of penicillin production.
引文
[1] Alford JS, Bioprocess control: Advances and challenges. Computers andChemical Engineering,2006,30:1464~1475
    [2] Jose-Maria Gonzalez-Saiz, Diego Garrido-Vidal, Consuelo Pizarro, Scale upand design of processes in aerated-stirred fermenters for the industrialproduction of vinegar. Journal of Food Engineering,2009,93:89~100
    [3] Jensen A L,Schultz J S,Shu P, Scale-up of antibiotic fermentations by controlof oxygen utilization, Biotechnol Bioengineering,1966,8:525~537
    [4] Zhang SL, Chu J, Zhuang YP, A multi-scale study of industrial fermentationprocesses and their optimization. Advances in Biochemical Engineering/Biotechnology,2004,87:97~150
    [5] Hewitt CJ, Lewis G, Onyeaka H, et al, A comparison of high cell densityfed-batch fermentations involving both induced and non-induced recombinantEscherichia coli under well-mixed small-scale and simulated poorly mixedlarge-scale conditions, Biotechnol Bioeng,2007,96,495~505
    [6] Zhou X, Hang HF, Chu J, et al, Oxygen up-take rate optimization with nitrogenregulation for erythromyein production and scale up from50L to372m3scale.Bioresource Technology,2009,100: l406~14l2
    [7] Beth HJ, Scale-up methodologies for Escherichia coli and Yeast fermentationprocesses. Journal of Bioscience and Bioengineering,2004,97(6):347~364
    [8] Eggeling L, Bott M. Handbook of Corynebacterium glutamicum. CRC Verlag,Boca Raton, USA,2005, ISBN-10:0-8493-1821-1.
    [9] Bailey JE, Towards a science of metabolic engineering, Science,1991,(252):1674~1688
    [10] Visser D, Heijnen JJ, The mathematics of metabolic control analysis revisited,Metab Eng,2002(4):114~123
    [11] Zhang XY, Three basic viewpoint of industrial fermentation In: China lightindustry Press Food of21st Century, Beijing:中国轻工业出版社,2000,95~100
    [12] Nishio Y, Nakamura Y, Kawarabayasi Y, et al, Comparative complete genomesequence analysis of the amino acid replacements responsible for thethermostability of Corynebacterium efficiens, Genome Res,2003,13(7):1572~1579
    [13] Jong HC, Sang JL, Seok JL, el al, Enhanced production of insulin-like growthfactor I fusion protein in Escherichia coli by co expression of the downregulatedgenes identified by transcriptome profiling, Appl Microbiol Biotehnol,2003,69(8):4737~4742
    [14] Mee JH, Ki JJ, Jong SY, et al, Engineering Escherichia coli for increasedproductivity of serine-rieh proteins based on proteome profiling, Appl EnvironMierobiol,2003,69(10):5772~5781
    [15] Sang YL, Dong YL, Rrae YK, Systems biotechnology for strain improvement,Trends in biotehnology,2005,23(7):349~358
    [16] Yuan YJ, Wei ZJ, Miao ZQ, et al, Acting paths of elicitors on taxol biosynthesispathway and their synergistic effect, Biochemistry Engineering Journal,2002,10:77~83
    [17] Cheng JS, Yuan YJ, Proteomic analysis reveals the spatial heterogeneity ofimmobilized Taxus cuspidata cells in support matrices. Proteomics,2006,6:2199~2207
    [18] Aurora Zuzuarregui, Marcel del Olmo, Expression of stress response genes inwine strains with different fermentative behavior, FEMS Yeast Research,2004(4):699~710
    [19] A. Zuzuarregui1, P. Carrasco, A. Palacios, et al, Analysis of the expression ofsome stress induced genes in several commercial wine yeast strains at thebeginning of vinification, Journal of Applied Microbiology,2005(98):299~307
    [20] Nigam JN, Ethanol production from wheat straw hemicellulose hydrolysate byPichia stipitis, Journal of Biotechnology,2001,87:17~27
    [21] Mattanovich D, Gasser B, Hohenblum H, et al, Stress in recombinant proteinproducing yeasts, Journal of Biotechnology,2004,113:121~135
    [22] Christoph Wittmann, Jan Weber, Eriola Betiku, et al, Response of fluxome andmetabolome to temperature-induced recombinant protein synthesis inEscherichia coli, Journal of Biotechnology,2007,(132):375~384
    [23] Champomier-Vergb. s MC, et al, Lactic acid bacteria and pro, Teomiea: currentknowledge and perspectives, J Chromatography B,2002,771(1-2):329~342
    [24] You L, Cox RS, Weiss R, et al, Programmed population control by cell–cellcommunication and regulated killing, Nature,2004,428:868~871
    [25] Basu S, Gerchman Y, Collins CH, et al, A synthetic multicellular system forprogrammed pattern formation.[J]Nature2005,434:1130-1134
    [26] Qi WT, Zhang Y, Ma XJ, et al, Optimization of the cell seeding density andmodeling of cell growth and metabolism using the modified Gompertz modelfor microencapsulated animal cell culture, Biotechnology and Bioengineering,2006,93:887~895
    [27] Cheng JS, Yuan YJ. Proteomic analysis reveals the spatial heterogeneity ofimmobilized Taxus cuspidata cells in support matrices, Proteomics,2006,6:2199~2207
    [28] Zhang ZY, Zhong JJ, Scale-up of centrifugal impeller bioreactor forhyperproduction of ginseng saponin and polysaccharide by high-densitycultivation of Panax notoginseng cells, Biotechnology Progress,2004,20:1076~1081
    [29] Cheng XY, Zhou HY, Cui X, et al, Improvement of phenylethanoid glycosidesbiosynthesis in Cistanche deserticola cell suspension cultures by chitosanelicitor, Journal of Biotechnology,2006,121:253~260
    [30] Askenazi M, Driggers EM, Hohzman DA, et al, Integrating transcriptional andmetabolite profiles to direct the engineering of lovastatin-producing fungalstrains, Nature Biotechnology,2003,21:150~156
    [31] Wohlgemuth R, The locks and keys to industrial biotechnology, NewBiotechnology,2009,25(4):204~213
    [32]黄星,李寅,杨光等,生物产业发展中的系统论,化工学报,200859(8):1884~1893
    [33] Deekwer WD, Jahn D, Hemper D, et al, System biology approaches tobioprocess development, Engineering in Life Sciences,2006,6:455~469
    [34] Oldiges M, Lotz S, P Flug S, et al. Metabolomics: current state and evolvingmethodologies and tools, Applied Microbiology and Biotechnology,2007,76(3):495~511
    [35] Werf MJ, Jellema RH, Hankemeier T, Microbial metabolomics: replacingtrial-and-error by the unbiased selection and ranking of targets, Journal ofIndustrial Microbiology&Biotechnology,2005,32(6):234~252
    [36] Fiehn O, Metabolomics-the link between genotypes and phenotypes, PlantMolecular Biology,2002,48:155~171
    [37] Dettmer K, Aronov PA, Hammock BD, Mass spectrometry-based metabolomics,Mass Spectrometry Reviews,2007,26(1):51~78
    [38] Keseler IM, Collado-Vides J, Gama-Castro S, et al, EcoCyc: a comprehensivedatabase resource for Escherichia coli, Nucleic Acids Res,2005,33:D334~D337
    [39] Forster J, Famili I, Fu P, et al, Genome-scale reconstruction of theSaccharomyces cerevisiae metabolic network, Genome Res,2003,13:244~253
    [40] Wang QZ, Wu CY, Chen T, et al, Integrating metabolomics into systemsbiology framework to exploit metabolic complexity: strategies and applicationsin microorganisms, Appl Microbiol Biotechnol,2006,70:151-161
    [41] Shellie RA, Welthagen W, Zrostlikova J, et al, Statistical methods forcomparing comprehensive two-dimensional gas chromatography-time-of-flightmass spectrometry results: metabolomic analysis of mouse tissue extracts, JChromatogr A,2005,1086:83~90
    [42] Welthagen W, Shellie RA, Spranger J, et al, Comprehensive two dimensionalgas chromatography-time of flight mass spectrometry, GC×GC-TOF for highresolution metabolomics: biomarker discovery on spleen tissue extracts of obeseNZO compared to lean C57BL/6mice, Metabolomics,2005,1:65~73
    [43] Bajad SU, Lu WY, Kimball EH, et al, Separation and quantitation of watersoluble cellular metabolites by hydrophilic interaction chromatography-tandemmass spectrometry, J Chromatography A,2006,1125:76~-88
    [44] Wenyun Lu, Elizabeth Kimball, Joshua D, et al, A High-Performance LiquidChromatography-Tandem Mass Spectrometry Method for Quantitation ofNitrogen-Containing Intracellular Metabolites, J Am Soc Mass Spectrom,2006,17:37~50
    [45] De Graaf AA, Striegel K, Wittig RM, et al, Metabolic state of Zymomonasmobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysedby C-13-and P-31-NMR spectroscopy, Arch Microbiol,1999,171:371~385
    [46] Neves AR, Ramos A, Nunes MC, et al, In vivo nuclear magnetic resonancestudies of glycolytic kinetics in Lactococcus lactis, Biotechnol Bioeng,1999,64:200~212
    [47] Teleman A, Richard P, Toivari M, et al, Identification and quantitation ofphosphorus metabolites in yeast neutral pH extracts by nuclear magneticresonance spectroscopy, Anal Biochem,1999,272:71~79
    [48] Winson MK, Goodacre R, Timmins EM, et al, Diffuse reflectance absorbancespectroscopy taking in chemometrics (DRASTIC), A hyperspectralFT-IR-based approach to rapid screening for metabolite overproduction, AnalChim Acta,1997,348:273~282
    [49] Kaderbhai NN, Broadhurst DI, Ellis DI, et al, Functional genomics viametabolic footprinting: monitoring metabolite secretion by Escherichia colitryptophan metabolism mutants using FT-IR and direct injection electrospraymass spectrometry, Comparative and Functional Genomics,2003,4:376~391
    [50] Kanehisa M, Goto S, Kawashima S, et a1, The Kegg databases at GenomeNet,Nucleic Acids Res,2002,30:42~46
    [51] Karp PD, Riley M, Saier M, et a1, The EcoCyc database, Nucleic Acids Res,2002,30:56~58
    [52] Ellis LBM, Hershberger CD, Wackett LP, The university of minnesotabiocatalysis/biodegradation database: specialized metabolism for functionalgenomics, Nucleic Acids Res,1999,27:373~376
    [53] Overbeek R, Larsen N, Pusch GD, et a1, WIT: integrated system forhigh-throughput genome sequence analysis and metabolic reconstruction,Nucleic Acids Res,2000,28:123~125
    [54] GAlper H, Moxley J, Exploiting biological complexity for strain improvementthrough systems biology, Nat Biotechnol,2004,22:1261~267
    [55] Buchholz A, Hurlebaus J, Wandrey C, et al, Metabolomics: quantification ofintracellular metabolite dynamics, Biomol. Eng,2002,19(1):5~15
    [56] Dalluge JJ, Smith S, Sanchez-Riera F, et al, Potential of fermentation profilingvia rapid measurement of amino acid metabolism by liquidchromatography-tandem mass spectrometry J, Chromatography. A,2004,1043(1):3~7
    [57] Luo B, Groenke K, Takors R, et al, Simultaneous determination of multipleintracellular metabolites in glycolysis, pentose phosphate pathway andtricarboxylic acid cycle by liquid chromatography-mass spectrometry, JChromatography A,2007,1147:153~164
    [58] Gianni Panagiotou, Paul Christakopoulos, Lisbeth Olsson, The influence ofdifferent cultivation conditions on the metabolome of Fusarium oxysporum,Article Journal of Biotechnology,2005,118:304~315
    [59] Lars M. Blank, Frank Lehmbeck, Uwe Sauer, Metabolic-flux and networkanalysis in fourteen hemiascomycetous yeasts, FEMS Yeast Research,2005,5:545~558
    [60] Van Hellemond JJ, Retra K, Brouwers JF, Functions of the tegument ofschistosomes: Clues from the proteome and lipidome, Int. J. Parasitol,2006,36(6):691~699
    [61] Ilaria Mannazzu, Daniele Angelozzi, Simona Belviso, et al, Behaviour ofSaccharomyces cerevisiae wine strains during adaptation to unfavourableconditions of fermentation on synthetic medium: Cell lipid composition,membrane integrity, viability and fermentative activity, International Journal ofFood Microbiology2008,121:84~91
    [62] You, K.M., Rosenfield, C.L., Knipple, D.C,. Ethanol tolerance in the yeastSaccharomyces cerevisiae is dependent on cellular oleic acid content, Appliedand Environmental Microbiology,2003,69(3):1499~1503
    [63] Keiko Kishimoto, Reiko Urade, Tadashi Ogawa, et al, NondestructiveQuantification of Neutral Lipids by Thin-Layer Chromatography andLaser-Fluorescent Scanning: Suitable Methods for “Lipidome” Analysis,Biochemical and Biophysical Research Communications,2001,281:657~662
    [64] Jia LW, Wang C, Zhao SM, et al, Metabolomic identification of potentialphospholipid biomarkers for chronic glomerulonephritis by using highperformance liquid chromatography–mass spectrometry, Journal ofChromatography B,2007,860:134~140
    [65] Kui Yang, Zhongdan Zhao, Richard W, et al, Systematic analysis ofcholine-containing phospholipids using multi-dimensional massspectrometry-based shotgun lipidomics, Journal of Chromatography B,2009,877:2924~2936
    [66] Bisson, L.F, Stuck and sluggish fermentations, American Journal of Enologyand Viticulture,1999,50:107~119
    [67] Benchekroun K, Bonaly R, Physiological properties and plasma membranecomposition of Saccharomyces cerevisiae grown in sequential batch culture andin presence of surfactant, Applied Microbiology and Biotechnology,1992,36:673~678
    [68] Garnier M, Dufourc EJ, Larijani B, Characterisation of lipids in cell signallingand membrane dynamics by nuclear magnetic resonance spectroscopy and massspectrometry, Signal Transduction2006,6,133~143
    [69] Czabany T, Athenstaedt K, Daum G, Synthesis, storage and degradation ofneutral lipids in yeast, Biochim. Biophys. Acta,2007,1771:299~309
    [70] Alessenko AV, Burlakova EB, Functional role of PL in the nuclear events,Bioelectrochemistry,2005,58:13~21
    [71] Vance JE, Steenbergen R, Metabolism and functions of phosphatidylserine,Prog. Lipid. Res,2005,44:207~234
    [72] Choi JY, Martin, WE, Murphy RC, et al, Phosphatidylcholine andN-methylated phospholipids are nonessential in Saccharomyces cerevisiae, J.Biol. Chem,2004,279:42321~42330
    [73] Karhumaa K, Pahlman AK, Hahn-Hagerdal B et al, Proteome analysis of thexylose-fermenting mutant yeast strain TMB3400, Yeast,2009,26:371~382
    [74] Xia JM, Yuan YJ, Comparative Lipidomics of Four Strains of Saccharomycescerevisiae Reveals Different Responses to Furfural, Phenol, and Acetic Acid,Journal of Agricultural and Food Chemistry,2009,57(1):99~108
    [75] Jette T, Kanchana R, Henk N, et al, Disruption of the NADPH-dependentglutamate dehydrogenase affects the morphology of two industrial strains ofPenicillium chrysogenum, Journal of Biotechnology,2009139(4):280~282
    [76] Roelco J. K, Feng L, Wouter A, et al, Cytosolic NADPH metabolism inpenicillin-G producing and non-producing chemostat cultures of Penicilliumchrysogenum, Metabolic Engineering,20079(1):112~123
    [77] Nasution U, van Gulik WM, Ras C, et al, A metabolome study of thesteady-state relation between central metabolism, amino acid biosynthesis andpenicillin production in Penicillium chrysogenum, Metab Eng,2008,10(1):10~23
    [78] Wu XB, Fan KQ, Wang QH, et al, C-terminus mutations of Acremoniumchrysogenum deacetoxy/deacetylcephalosporin C synthase with improvedactivity toward penicillin analogs, FEMS Microbiology Letters,2005246(1):103~110
    [79] Folch J, Lees M, Stanley GHS, A simple method for the isolation andpurification of total lipids from animal tissues, J. Biol. Chem,1957,226:497~509
    [80] Brejning J, Arneborg N, Jespersen L, Identification of genes and proteinsinduced during the lag and early exponential phase of lager brewing yeasts,Journal of Applied Microbiology,2005,98:261~271
    [81] James TC, Campbell S, Donnelly D, et al, Transcription profile of breweryyeast under fermentationconditions, Journal of Applied Microbiology,2003,94:432~448
    [82] Kobi D, Zugmeyer S, Potier S, et al, Two dimensional protein map of an‘‘ale’’-brewing yeast strain: Proteome dynamics during fermentation, FEMSYeast Research,2004,5:213~230
    [83] Trabalzini L, Paffetti A, Scaloni A, et al, Proteomic response to physiologicalfermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae,The Biochemical Journal,2003,370:35~46
    [84] Devantier R, Scheithauer B, Villas-Bo as SG, et al, Metabolite profiling foranalysis of yeast stress response during very high gravity ethanol fermentations,Biotechnology and Bioengineering,2005,90:703~714
    [85] Pham TK, Chong PK, Gan CS, et al, Proteomic analysis of Saccharomycescerevisiae under high gravity fermentation conditions, Journal of ProteomeResearch,2006,5:3411~3419
    [86] Cavalieri D, Townsend JP, Hartl DL, Manifold anomalies in gene expression ina vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarrayanalysis, Proceedings of the National Academy of Sciences of the United Statesof America,2000,97:12369~12374
    [87] Backhus LE, DeRisi JPO, Bisson LF, Functional genomic analysis of acommercial wine strain of Saccharomyces cerevisiae under differing nitrogenconditions, FEMS Yeast Research,2001,1:111~125
    [88] Hansen R, Pearson SY, Brosnan JM, et al, Proteomic analysis of a distillingstrain of Saccharomyces cerevisiae during industrial grain fermentation,Applied Microbiology and Biotechnology,2006,72:116~125
    [89] Cheng JS, Qiao B, Yuan, YJ, Comparative proteome analysis of robustSaccharomyces cerevisiae insights into industrial continuous and batchfermentation, Applied Microbiology and Biotechnology,2008,81:327~338
    [90] Marks VD, HoSui, SJ, Erasmus D, et al, Dynamics of the yeast transcriptomeduring wine fermentation reveals a novel fermentation stress response. FEMSYeast Research,2008,8:35~52
    [91] Fiehn O, Metabolomics—the link between genotypes and phenotypes, PlantMolecular Biology,2002,48,155~171
    [92] Kell B, Westerhoff HV, Metabolic control theory: Its role in microbiology andbiotechnology, FEMS Microbiology Letters,1986,39,305~320
    [93] Fiehn O, Kopka J, Dormann P, et al, Metabolite profiling for plant functionalgenomics. Nature Biotechnology,2000,18:1157~1161
    [94] Roessner U, Luedemann A, Brust D, et al, Metabolic profiling allowscomprehensive phenotyping of genetically or environmentally modified plantsystems, The Plant Cell,2001,13,11~29
    [95] Lenz E, Wilson ID, Analytical strategies in metabonomics, Journal of ProteomeResearch,2007,6:443
    [96] Blomberg A, Adler L, Roles of glycerol and glycerol-3-phosphatedehydrogenase in acquired osmotolerance of Saccharomyces cerevisiae,Journal of Bacteriology,1989,171:1087~1092
    [97] Van Dijken JP, Scheffers WA, Redox balances in the metabolism of sugars byyeast. FEMS Microbiology Reviews,1986,32:199~224
    [98] Blomberg A, Adler L, Physiology of osmotolerance in fungi, Advances inMicrobial Physiology,1992,33:145~212
    [99] Brewster JL, De Valoir T, Dwyer ND, et al, An osmosensing signaltransduction pathway in yeast, Science,1993,259:1760~1763
    [100] Hohmann S, Osmotic stress signaling and osmoadaptation in yeasts,Microbiology and Molecular Biology Reviews,2002,66:300~372
    [101] Gancedo C, Gancedo JM, Sols A, Glycerol metabolism in yeasts Pathways ofutilization and production, European Journal of Biochemistry,1968,5:165~172
    [102] Davenport KR, Sohaskey M, Kamada, Y, et al, A second osmosensing signaltransduction pathway in yeast: Hypotonic shock activates the PKC1proteinkinase-regulated cell integrity pathway, The Journal of Biological Chemistry,1995,270:30157~30161
    [103] Kamada Y, Jung US, Piotrowski J, et al, The protein kinase C-activated MAPkinase pathway in Saccharomyces cerevisiae mediates a novel aspect of the heatshock response, Genes&Development,1995,9:1559~1571
    [104] Hohl LA, Joslyn MA, Lactic acid formation in alcoholic fermentation by yeast,Plant Physiology,1941,16:343~360
    [105] Krebs, HA, Lowenstein JM, Greenberg DM, Metabolic pathways (Vol.1, p.129), New York/London: Academic Press,1960
    [106] Villas-Boas SG, Moxley JF, Akesson M, et al, High-throughput metabolic stateanalysis: The missing link in integrated functional genomics of yeasts, TheBiochemical Journal,2005,388:669~677
    [107] Nissen TL, Schulze U, Nielsen J, Flux distributions in anaerobic,glucose-limited continuous cultures of Saccharomyces cerevisiae, Microbiology,1997,143:203~218
    [108] Franzen CJ, Metabolic flux analysis of RQ-controlled microaerobic ethanolproduction by Saccharomyces cerevisiae, Yeast (Chichester, England),2003,20:117~132
    [109] Wiebe MG, Rintala E, Tamminen A, et al, Central carbon metabolism ofSaccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobicsteady-state conditions and following a shift to anaerobic conditions, FEMSYeast Research,2008,8:140~154
    [110] Abrams R, Hammarsten E, Shemin D, Glycine as a precursor of purines in yeast,The Journal of Biological Chemistry,1948,173:429
    [111] Dickinson JR, Scheweizer M, Stress responses in the metabolism and molecularphysiology of Saccharomyces cerevisiae, New York: Taylor and Francis,1999,343
    [112] ATTFIELD PV, Stress tolerance: the key to effective strains of industrialbaker’s yeast, Nat. Biotechnol,1997,13:1351~1357
    [113] Bauer FF, Pretorius IS, Yeast stress response and fermentation efficiency: howto survive the making of wine–a review, S. Afr. J. Enol. Vitic,2000,27~51
    [114] Gasch AP, Spellman PT, KAO CM, et al, Genomic expression programs in theresponse of yeast cells to environmental changes, Mol. Biol. Cell,2000,11:4241~4257
    [115] Riou C, Nicaud M, BARRE P, et al, Stationary-phase gene expression inSaccharomyces cerevisiae during wine fermentation, Yeast,1997,13:903~915
    [116] Xu TJ, Zhao XQ, Bai FW, Continuous ethanol production usingself-flocculating yeast in a cascade of fermentors, Enzyme. Microb. Technol,2005,37:634~640
    [117] Monte, AR, Rigo, M, Joekes I, Ethanol fermentation of a diluted molassesmedium by Saccharomyces cerevisiae immobilized on chrysotile, Bra. Arch.Biol. Tech,2003,46:751~757
    [118] Alfenore S, Cameleyre, Benbadis L, et al, Aeration strategy: a need for veryhigh ethanol performance in Saccharomyces cerevisiae fed-batch process,Appl. Microbiol. Biotech,2004,63:537~542
    [119] Laluce C, Souza CS, Abud, CL, et al, Continuous ethanol production in anonconventional five-stage system operating with yeast cell recycling atelevated temperatures, J. Indl. Microbiol&Biotech,2002,29:140~144
    [120] Hojo O, Hokka CO, SOUTO, et al, Ethanol production by a flocculant yeaststrain in a CSTR type fermentor with cell recycling, Appl. Biochem. Biotech,1999,77:535~545
    [121] Ratledge C, Evans CT, Lipids and their metabolism, The Yeast, Academic Press,London,1989
    [122] Karin AZB, Robert CM, Electrospray ionization tandem mass spectrometry ofglycerophosphoethanolamine plasmalogen phospholipids, J. Am. Soc. Mass.Spectrum,2004,15:1499~1508
    [123] Fang J, Barcelona MJ, Structural determination and quantitative analysis ofbacterial phospholipids using liquid chromatography/electrosprayionization/mass spectrometry, J. Microbiol. Meth,1998,33:23~35
    [124] Wang C, Xie S, Yang J, et al, Structural identification of human bloodphospholipids using liquid chromatography/quadrupole-linear ion trap massspectrometry, Anal. Chem. Acta,2004,525:1~10
    [125] Domingues P, Amado, FML, Graca M, et al, Constant neutral loss scanning forthe characterization of glycerol phosphatidycholine phospholipids, J. Am. Soc.Mass. Spectrum,1998,9:1189~1195
    [126] Yang S, Qiao B, Lu SH, et al, Comparative lipidomics analysis of cellulardevelopment and apoptosis in two Taxus cell lines, Biochem. Biophys. Acta,2007,1771:600~612
    [127] Yang S, Lu SH, Yuan YJ. Lipidomics analysis reveals different defenseresponses of Taxus cuspidate cells to two elicitors, methyl jasmonate and cerium(Ce4+), Biochim. Biophys. Acta,2008,1781:123~134
    [128] Valero E, Millan C, ORTEGA JM, Changes in the Lipid Composition ofSaccharomyces cerevisiae Race Capensis (G-1) during alcoholic fermentationand flor film formation, Lebensm. Wiss.u. Technol,2002,35:593~599
    [129] Yokoyam K, Saitoh S, et al, Very-long-chain fatty acid-containing PLaccumulate in fatty acid synthase temperature-sensitive mutant strains of thefission yeast Schizosaccharomyces pombe fas2/lsd1, Biochim. Biophys. Acta,2001,1532:223~233
    [130] Fleming A, On the antibacterial action of cultures of a Penicillium, with specialreference to their use in the isolation of B. Influenza, Br J Exp Pathol,1929,10:226~236
    [131] Nielsen J, Physiological engineering aspects of Penicillium chrysogenum,World Scientific, Singapore,1997,139
    [132] MacCabe AP, van Liempt H, Palissa H, et al,Delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillusnidulans. Molecular characterization of the acvA gene encoding the firstenzyme of the penicillin biosynthetic pathway, J Biol Chem,1991,266(19):12646~12654
    [133] Gunnarsson N, Eliasson A, Nielsen J, Control of fluxes towards antibiotics andthe role of primary metabolism in production of antibiotics, Adv Biochem EngBiotechnol,2004,88:137~178
    [134] Christensen B, Thykaer J, Nielsen J, Metabolic characterization of high-andlow-yielding strains of Penicillium chrysogenum,. Appl Microbiol Biotechnol,2000,54(2):212~217
    [135] Van Gulik WM, de Laat WT, Vinke JL, et al, Application of metabolic fluxanalysis for the identification of metabolic bottlenecks in the biosynthesis ofpenicillin-G, Biotechnol Bioeng,2000,68(6):602~618
    [136] Nasution U, van Gulik WM, Proell A, et al, Generating short-term kineticresponses of primary metabolism of Penicillium chrysogenum through glucoseperturbation in the bioscope mini reactor, Metab Eng,2006,8(5):395~405
    [137] Rokem JS, Lantz AE, Nielsen J, Systems biology of antibiotic production bymicroorganisms, Nat Prod Rep,2007,24(6):1262~1287
    [138] Cheng JS, Ding MZ, Tian HC, et al, Inoculation density-dependent responsesand pathway shifts in Saccharomyces cerevisiae, Proteomics,2009,9(20):4704~4713
    [139] Cheng JS, Zhou X, Ding MZ, Yuan YJ, Proteomic insights into adaptiveresponses of Saccharomyces cerevisiae to the repeated vacuum fermentation,Appl Microbiol Biotechnol,2009,83(5):909~923
    [140] Han PP, Yuan YJ, Lipidomic analysis reveals activation of phospholipidsignaling in mechanotransduction of Taxus cuspidata cells in response to shearstress, FASEB J,2009,23(2):623~630
    [141] Li BZ, Cheng JS, Qiao B, et al, Genome-wide transcriptional analysis ofSaccharomyces cerevisiae during industrial bioethanol fermentation, J IndMicrobiol Biotechnol,2010,37(1):43~55
    [142] Garcia DE, Baidoo EE, Benke PI, et al, Separation and mass spectrometry inmicrobial metabolomics, Curr Opin Microbiol,2008,11(3):233~239
    [143] Ding MZ, Cheng JS, Xiao WH, et al, Comparative metabolomic analysis onindustrial continuous and batch ethanol fermentation processes by GC-TOF/MS,Metabolomics,2009,5(2):229~238
    [144] Ding MZ, Zhou X, Yuan YJ, Metabolome profiling reveals adaptive evolutionof Saccharomyces cerevisiae during repeated vacuum fermentations,Metabolomics,2010,6(1):42~55
    [145] Jorgensen H, Nielsen J, Villadsen J, et al, Metabolic flux distributions inPenicillium chrysogenum during fed-batch cultivations, Biotechnol Bioeng,1995,46(2):117~131
    [146] Pirt SJ, Righelato RC, Effect of growth rate on the synthesis of penicillin byPenicillium chrysogenum in batch and chemostat cultures, Appl Microbiol,1967,15(6):1284~1290
    [147] Henriksen CM, Christensen LH, Nielsen J, et al, Growth energetics andmetabolic fluxes in continuous cultures of Penicillium chrysogenum, JBiotechnol,1996,45(2):149~164
    [148] van Gulik WM, Antoniewicz MR, De Laat WTAM, et al, Energetics of growthand penicillin production in a high-producing strain of Penicillium chrysogenum,Biotechnol Bioeng,2001,72(2):185~193
    [149] Jennings DH, Polyol metabolism in fungi, Adv Microb Physiol,1984,25:149~193
    [150] Adler L, Pedersen A, Tunblad-Johansson I, Polyol accumulation by twofilamentous fungi grown at different concentrations of NaCl, Plant Physiol,1982,56(2):139~142
    [151] Taber WA, Tertzakian G, Sequential Primary and Secondary Shunt Metabolismin Penicillium chrysogenum, Appl Microbiol,1965,13:590~594
    [152] Raina A, J nne J, Physiology of the natural polyamines putrescine, spermidineand spermine, Med Biol,1975,53(3):121~147
    [153] Mitsui K, Igarashi K, Kakegawa T, et al, Preferential stimulation of the in vivosynthesis of a protein by polyamines in Escherichia coli: purification andproperties of the specific protein, Biochemistry,1984,23(12):2679~2683
    [154] Tabor CW, Tabor H, Polyamines in microorganisms, Microbiol Rev,1985,49(1):81~99
    [155] Sekowska A, Bertin P, Danchin A, Characterization of polyamine synthesispathway in Bacillus subtilis168, Mol Microbiol,1998,29(3):851~858
    [156] Flores HE, Galston AW, Polyamines and plant stress: activation of putrescinebiosynthesis by osmotic shock, Science,1982,217(4566):1259~1261
    [157] Tabor CW, Tabor H,1,4-diaminobutane (putrescine), spermidine, and spermine,Annu Rev Biochem,1976,45:285~306
    [158] Young ND, Galston AW, Putrescine and acid stress: induction of argininedecarboxylase activity and putrescine accumulation by low pH, Plant Physiol,1983,71(4):767~771
    [159] Feuerstein BG, Pattabiraman N, Marton LJ, Spermine-DNA interactions: atheoretical study, PNAS,1986,83(16):5948~5952
    [160] Yuki M, Grukhin V, Lee CS, et al, Spermine binding to GC-rich DNA:experimental and theoretical studies, Arch Biochem Biophys,1996,325(1):39~46
    [161] Cuevas JC, López-Cobollo R, Alcázar R, et al, Putrescine is involved inArabidopsis freezing tolerance and cold acclimation by regulating abscisic acidlevels in response to low temperature, Plant Physiol,2008,148(2):1094~1105
    [162] Park MH, Joe YA, Kang KR, The polyamine derived amino acid hypusine: itspost-translational formation in eIF-5A and its role in cell proliferation, AminoAcids,1996,10(2):109~121
    [163] Byford MF, Baldwin JE, Shiau CY, et al, Themechanisms of ACV synthetase,Chem Rev,1997,97:2631~2650
    [164] Martin JF, Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactamproducing organisms—from Abraham’s discoveries to novel concepts ofnon-ribosomal peptide synthesis, J Antibiot,2000,53:1008~1021
    [165] Ramos FR, Lopez-Nieto MJ, Martin JF, Isopenicillin N synthetase ofPenicillium chrysogenum, an enzyme that converts delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N, Antimicrob Agents Chemother,1985,27:380~387
    [166] Müller WH, van der Krift TP, Krouwer AJ, et al, Localization of the pathway ofthe penicillin biosynthesis in Penicillium chrysogenum, EMBO J,1991,10:489~495
    [167] Müller WH, Bovenberg RA, Groothuis MH, et al, Involvement of microbodiesin penicillin biosynthesis, Biochim Biophys Acta,1992,1116:210~213
    [168] Müller WH, Essers J, Humbel BM, et al, Enrichment of Penicilliumchrysogenum microbodies by isopycnic centrifugation in nycodenz asvisualized with immuno-electron microscopy, Biochim Biophys Acta,1995,1245:215~220
    [169] Lamas-Maceiras M, Vaca I, Rodriguez E, et al, Amplification and disruption ofthe phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding anarylcapping enzyme that supplies phenylacetic acid to the isopenicillinN-acyltransferase, Biochem J,2006,395:147~155
    [170] Henriksen CM, Holm SS, Schipper D, et al, Kinetic studies on thecarboxylation of6-amino-penicillanic acid to8-hydroxy-penillic acid, ProcessBiochem,1997,32:85~91
    [171] Cohen G, Argaman A, Schreiber R, et al, The thioredoxin system of Penicilliumchrysogenum and its possible role in penicillin biosynthesis, J Bacteriol,1994,176:973~984
    [172] Nielsen J, J rgensen HS, Metabolic control analysis of the penicillinbiosynthesis pathway in a high-yielding strain of P, chrysogenum.Biotechnology,1995,11:299~305
    [173] Pissara P, Nielsen J, Bazin MJ, Pathway kinetics and metabolic control analysisof a high-yielding strain of Penicillium chrysogenum during fed-batchcultivations, Biotechnol Bioeng,1996,51:168~176
    [174] Henriksen CM, Nielsen J, Villadsen J, Influence of the dissolved oxygenconcentration on the penicillin biosynthetic pathway in steady state cultures ofPenicillium chrysogenum, Biotechnol Prog,1997,13:776~782
    [175] van Winden WA, van Gulik WM, Schipper D, et al, Metabolic flux andmetabolic network analysis of Penicillium chrysogenum using2D [13C,1H]COSY NMR measurements and cumulative bondomer simulation, BiotechnolBioeng,2003,83:75–92
    [176] Kleijn RJ, Liu F, van Winden WA, et al, Cytosolic NADPH metabolism inpenicillin-G producing and non-producing chemostat cultures of Penicilliumchrysogenum, Metab Eng,2007,9:112~123
    [177] Henriksen CM, Nielsen J, Villadsen J, Influence of the dissolved oxygenconcentration on the penicillin biosynthetic pathway in steady state cultures ofPenicillium chrysogenum, Biotechnol Prog,1997,13:776~782
    [178] Vardar F, Lilly MD, Effect of cycling dissolved oxygen concentrations onproduct formation in penicillin fermentations, Eur J Appl Microbiol Biotechnol,1982,14:203~211
    [179] Smith JJ, Lilly MD, Fox RI, The effect of agitation on the morphology andpenicillin production of Penicillium chrysogenum, Biotechnol Bioeng,1990,35:1011~1023
    [180] Makagiansar HY, Ayazi Shamlou P, Thomas CR, et al, The influence ofmechanical forces on the morphology and penicillin production of Penicilliumchrysogenum, Bioprocess Eng,1993,9:83~90
    [181] Nielsen J, Krabben P, Hyphal growth and fragmentation of Penicilliumchrysogenum in submerged cultures, Biotechnol Bioeng,1995,46:588~598
    [182] Paul GC, Kent CA, Thomas CR, Hyphal vacuolation and fragmentation inPenicillium chrysogenum, Biotechnol Bioeng,1994,44:655~660
    [183] Paul GC, Thomas CR, A structured model for hyphal differentiation andpenicillin production using Penicillium chrysogenum, Biotechnol Bioeng,1996,51:558~572
    [184] Justen P, Paul GC, Nienow AW, et al, Dependence of mycelial morphology onimpeller type and agitation intensity, Biotechnol Bioeng,1996,52:634~648
    [185] Jüsten P, Paul GC, Nienow AW, et al, Dependence of Penicillium chrysogenumgrowth, morphology, vacuolation, and productivity in fed-batch fermentationson impeller type and agitation intensity, Biotechnol Bioeng,1998,59:762~775
    [186] Theilgaard HA, Nielsen J, Metabolic control analysis of the penicillinbiosynthetic pathway: the influence of the LLD-ACV: bisACV ratio on the fluxcontrol, Antonie van Leeuwenhoek J,1999,75:145~154
    [187] Henriksen CM, Nielsen J, Villadsen J High exogenous concentrations ofphenoxyacetic acid are crucial for a high penicillin V productivity inPenicillium chrysogenum. Microbiology-UK,1998,144:2001~2006
    [188] Yang H, Allen DG, Model\based scale\up strategy for mycelial fermentationprocesses, The Canadian Journal of Chemical Engineering,1999,77(5):844~854
    [189] Junker BH, Hesse M, Burgess B, Masurekar P, Connors N, Seeley A. Earlyphase process scale-up challenges for fungal and filamentous bacterial cultures.Appl Biochem Biotechnol,2004,119:241~277
    [190] Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Díez B, Barredo JL,Martín JF. The isopenicillin N acyltransferase of Penicillium chrysogenum hasisopenicillin N aminohydrolase,6-aminopenicillanic acid acyltransferase andpenicillin amidase activities, all of which are encoded by the single penDE gene.Eur J Biochem,1993,215:323~332
    [191] Alvarez E, Cantoral JM, Barredo JL, Diez B, Martin JF Purification tohomogeneity and characterization of the acyl-CoA:6-APA acyltransferase ofPenicillium chrysogenum. Antimicrob Agents Chemother,1987,31:1675~1682
    [192] Hersbach GJM, van der Beck CP, van Dijck PWM. The penicillins: properties,biosynthesis and fermentation. In: Vandamme EJ (ed) Biotechnology ofindustrial antibiotics. Marcel Dekker, New York,1984,45~140
    [193] Harris DM, Diderich JA, van der Krogt ZA, et al, Enzymic analysis of NADPHmetabolism in beta-lactamproducing Penicillium chrysogenum presence of amitochondrial NADPH dehydrogenase. Metab Eng,2006,8:91~101
    [194] Junker B, Walker A, Hesse M, et al, Pilot-scale process development and scaleup for antifungal production. Bioprocess and Biosystems Engineering,2009,32(4):443~458
    [195] Russell NJ, Evans RI, terSteeg PF, et al, Membranes as a target for stressadaptation. International Journal of Food Microbiology,1995,28(2):255~261
    [196] Sohn YS, Lee KC, Koh YH, Gil GH. Changes in cellular fatty acid compositionof Cephalosporium acremonium during cephalosporin C production. Appliedand environmental microbiology,1994,60(3):947

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700