用户名: 密码: 验证码:
PP/PS共混体系纺程上纤维形貌演变的研究和模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过亿万年进化,生物体在有限的资源和残酷的自然选择中,为生存而进化出许多超乎人类想象的结构,引起科学家的普遍兴趣。远在三千年前梯度钢结构首次被生产出来之前,大自然就已经把梯度结构这个概念引入许多生物体组织中。自然界中大多数生命体所形成的天然复合材料中,不仅形成层次化结构,而且分散相或增强相多为非均匀分布,从而使材料具有良好的力学性能并完成复杂的生理功能。受这些启示,材料科学家们研究和开发了许多具有优异功能的材料,其中最具代表性的是梯度功能材料(Functionally graded materials)。
     聚合物共混是一种公认的制备满足复杂性能要求的多相聚合物材料的最通用和最经济的方法。多相聚合物材料的性能强烈地依赖于材料的形貌。具有基质-微纤形貌(Matrix-fibril morphology)的多相聚合物材料是近年来该领域研究热点之一。通过控制加工流场、聚合物组分间的界面相互作用,可以制备具有基质-微纤形貌的共混物。通过制备具有基质-微纤形貌的共混纤维,可以改善传统合成纤维的性能,如力学性能、可染色性,还可以制备超细纤维和具有其它特种性能的纤维,为基质-微纤形貌研究提供了广阔的应用舞台。
     前人对基质-微纤型共混纤维的研究多集中于加工条件对形貌的影响,对形貌形成和发展机理的理论研究和形貌模拟的关注较少。深入开展这方面的理论研究,一方面可以指导基质-微纤型共混纤维的制备,另一方也是聚合物共混理论和熔融纺丝动力学理论的补充和拓展。
     课题组前期研究发现,在聚丙烯/聚苯乙烯(PP/PS)和低密度聚乙烯/聚酰胺6(LDPE/PA6)共混纤维中发现了分散相数目和尺寸呈现径向梯度分布,并提出了解释这一现象的机理假说。本文在此基础上,以PP/PS共混纤维为研究对象,进行共混纤维成形过程中两相形貌形成和演变机理研究,提出描述这些机理的数学模型体系,并进行数值求解。本文在以下几个方面展开工作并形成结论:
     (1)对原材料聚合物进行了细致的表征,包括分子量和分子量分布、基本热性能、剪切流变性能和拉伸流变性能,确定了流变经验方程中的常数,以及这些常数与流场强度之间的关系。研究表明,随着PS分子量的降低,共混体系粘度比下降。PP和PS均出现表观粘度随拉伸速率增大而降低的趋势,表现为“拉伸变稀”行为。PP和PS的拉伸粘流活化能和指前因子与拉伸速率的双对数值之间呈现良好的线性关系。在相同的拉伸速率下,温度越高,表观拉伸粘度比越高。提高拉伸速率,表观拉伸粘度比对温度的敏感性增强。这些结论将指导共混纤维纺丝工艺条件设计,以及后续的纺丝动力学研究和纤维形貌模拟。
     (2)通过共混熔融纺丝,制备了具有梯度形貌的基质-微纤型共混纤维。通过改变原材料聚合物的粘度比、纺丝速度,研究了加工条件对分散相形貌的影响。采用纺程取样的方法,获得了不同纺丝速度下,不同纺程位置的共混纤维,通过扫描电子显微镜对共混纤维形貌进行了表征,系统研究了基质-微纤形貌的形成和在纺程上的发展演变,讨论了加工条件对梯度化程度的影响,提出了形貌形成和演变的机理。研究表明,纤维的梯度相形貌强烈地依赖于体系的粘度比和纺丝速度。低纺丝速度下,纺程上只发生分散相液滴的形变,没有聚并。当纺丝速度超过一定的临界值时,液滴开始聚并。通过纺程取样分析发现,挤出丝中已经有一定程度的梯度形貌(液滴数量径向梯度αc=一1.04×10-3m-1、液滴直径径向梯度αd=2.72×10-3),随着纺丝过程进行,这种梯度形貌得到保持并发展。提高纺丝速度,基体纤维直径细化加剧,能够加剧梯度化,但是过高的纺丝速度(如1000m/min)会带来严重的聚并,弱化由于基体纤维直径细化对梯度化的贡献。挤出丝中出现梯度形貌是喷丝孔中非均匀剪切作用的结果,而纺程上梯度化程度增加则是分散相液滴非均匀形变、聚并和迁移的结果。
     (3)基于熔融纺丝动力学理论研究,推导了共混熔融纺丝过程中速度、速度梯度、纺程张力、结晶度和取向度沿纺程的轴向分布,以及温度、拉伸粘度、拉伸应力沿纺程的轴向和径向二维分布,建立了共混熔纺的动力学理论模型。
     (4)通过共混熔融纺丝过程中的微流变分析,建立了适合共混熔融纺丝过程中分散相液滴形变、破裂和聚并的数学模型。通过建立关联元胞方法,对液滴的初始状态,以及在纺程上的形变、破裂和聚并行为进行了数值模拟,并与实验结果进行了对比。研究表明,在纺程拉伸作用下,纺程上分散相液滴发生了仿射形变(约化毛细管数Ca*>4),由球形液滴形变成椭球形,最后形成微纤形貌。纺程上液滴的聚并是由液滴间基体相薄层的粘性破坏所控制的过程。理论模拟的基质-微纤形貌基本上与实验观测的结果一致。在研究的纺丝速度下,分散相液滴在纺程上不会发生破裂(Ca*>4)。
     本文通过实验与理论模拟结合的方法,对不相容聚合物共混物在非等温熔融纺丝过程中的基质-微纤形貌形成和发展进行了理论和实验的深入探讨,提出了描述形貌形成和发展行为的理论模型,尤其是分散相液滴仿射形变和基于基体相薄层粘性破坏控制的聚并理论,充实和拓展了聚合物共混和熔融纺丝理论。
In the process of millions of years of evolution, organisms have developed numerous useful biological tissue structures in order to survive in the ruthless natural selection with limited resources, which is beyond human imagination and has aroused quite a few scientists' interest. More than three thousand years ago, when graded steel was produced, the concept of gradient structure has been given in many organisms by nature force. Most natural composite materials formed by natural life body have structural hierarchy. Moreover, the dispersed phases or reinforcing phases can be found in non-uniform organization. These morphologies ensure that the natural composite materials have excellent mechanical properties to achieve complex physiological functions. Inspired by the special structure of organisms, material scientists have developed many functional materials, of which functionally graded material (FGM) is the most representative one.
     Polymer blending has been identified as one of the most versatile and economical method to produce new multiphase polymeric materials to meet the demands for complex performance. Development of the multiphase polymer materials by blending is strongly dependent on the control of morphology. Multiphase polymer material with matrix-fibril morphologies (MFMs) becomes one of the research hotspots in recent years. By controlling the processing flow field and the interfacial interaction between the polymer components, polymer blends with matrix-fibril morphologies can be prepared. Blend fibers with matrix-fibril morphologies can be utilized to improve the performance of conventional synthetic fibers, such as mechanical properties and dyeability. Moreover, super fine fibers and other fibers with special properties can be produced from matrix-fibril morphology. These enable a broad application of theoretical studies in this field.
     The published works on matrix-fibril type blend fibers focused on the effects of processing conditions on the morphology, while paid fewer attentions to the mechanism and modeling on the formations and evolutions of the morphology. A theoretical study on this theme could not only provide theoretical guides on the produce of matrix-fibril type blend fibers, but also enrich and expand the theory system of polymer blending and dynamics of melt spinning.
     Our research group has found that the dispersed phases in polypropylene/polystyrene (PP/PS) and low density polyethylene/polyamide6(LDPE/PA6) blend fibers show radial gradients on count and diameter, and proposed hypotheses of mechanism to explain this phenomenon in previous works. Based on these, this work focuses on the mechanism of two-phase morphology formation and evolution during melt spinning of PP/PS blend fibers, and proposes a system of mathematical models and solutions to the models.
     The main research contents and conclusions are summarized as below:
     Firstly, the polymers as raw materials are characterized; including molecular weight and its distribution, basic thermal properties, shearing and elongational rheological properties, meanwhile the constants for empirical equations on polymer rheology are determined, and the relationship between the rheological constants and flow field strength are also identified. The results show that the viscosity ratio of PP/PS blends decreases with the decrease of the molecular weight of PS. The apparent elongational viscosities of both PP and PS exhibit a decrease as the elongation rate increases, which is classified as so-called "elongation thinning" behavior. The elongation viscous flow activation energy and the pre-exponential factor for Arrhenius equation of both PP and PS show a good log-linear relationship with the applied elongation rate. As the elongation rate increases, the dependence of ratio of elongational viscosity on temperature becomes significant. These conclusions will guide the design of the processing conditions of melt spinning of blend fibers, and provides material parameters for the subsequent dynamic simulations and fiber morphology simulations of melt spinning of blend fibers.
     Secondly, blend fibers with gradient matrix-fibril morphology are prepared by melt blending and melt spinning. The effects of processing conditions on the morphology are studied by changing the viscosity ratio of polystyrene to polypropylene and the take-up velocity. Blend fibers in different position of the spinning line at various take-up velocities are captured, and are observed by scanning electron microscopy to characterize the fiber morphologies. The formation and evolution of the fiber morphologies along the spinning lines are studied systematically: the effects of processing conditions on the gradient are discussed in details, and the mechanism of the formation and evolution of the fiber morphologies is proposed. The results show that the morphologies of droplets dispersed in matrix-fibril type blend fibers are strongly controlled by the rheological properties (viscosity ratio) of raw material and the spinning conditions (take-up velocity). At low take-up velocities, droplets deformation occurs in the spinning line without coalescence. Coalescence of droplets occurs and fibril coarsens when the take-up velocity exceeds a critical value. A radial gradient of droplet morphology is found in extrudate fibers (with the radial gradient on the count-dispersion of droplets ac=-1.04×10-3m-1, and the radial gradient on the number-averaged diameter of droplets ad=2.72×10-3). And the gradient morphologies are maintained and developed along the spinning line. As the take-up velocities increase, the gradient morphologies are firmed due to the shrinkage of matrix fibers in diameter. But high take-up velocities (such as1000m/min) cause a serious coalescence, which weakens the effects of the shrinkage of matrix fibers in diameter on the gradient morphology. The gradient in extrudate fibers is formed from the non-uniform shear flow in the spinnerets, while the progress of the gradient in the spinning line is contributed by the non-uniform deformation and coalescence of droplets.
     Thirdly, based on the dynamics of melt spinning, this work calculates the axial distributions of velocity, gradient of velocity, spinning tension, crystallinity and orientation along the spinning lines, as well as the axial and radial distributions of temperature, elongational viscosity and elongational stress. A suitable system of mathematic models is established for the dynamics of melt spinning.
     Finally, based on micro-rheology, a suitable system of mathematical models is established to describe the deformation, break-up and coalescence of dispersed droplets in melt spinning of blend fibers. A linked cell method is developed to solve the models. The simulation results, including initial morphology of droplets, and the resulted morphologies of deformation, break-up and coalescence along the spinning lines, are compared with those of experimental results. The results show that the affine deformation of droplets occurs under the spinning tension in the spinning line (with the reduced capillary number Ca*>4), which prompts the spherical droplets to change their shapes to ellipsoidal, and finally to fibrils. The coalescence of droplets in the spinning line is decided by the cohesive break of the matrix film between two coalescing droplets. The results from theoretical simulations agree with the observed results by experiments quiet well. At the discussed take-up velocities, the break-up of droplets does not occur (with Ca*>4).
     In this work, a detailed research on the formation and evolution of matrix-fibril morphology in non-isothermal melt spinning of immiscible polymer blends is carried out by a combined method of experimental and numerical simulation. A system of mathematic models is proposed to describe the behavior of formation and evolution of morphologies, especially the models for the affine deformation of droplets and the coalescence controlled by the cohesive break of matrix film, which will enrich and expand the theory systems of polymer blending and melt spinning.
引文
[1]Utracki L A. Introduction to polymer blends [M]. in:Polymer Blends Handbook, ed; Utracki L A. Dordrecht, The Netherlands:Kluwer Academic Publishers,2002.
    [2]Macosko C W. Morphology development and control in immiscible polymer blends [J]. Macromol Symp.2000,149 (1):171-184.
    [3]Sumpter B G, Noid D W, Barnes M D. Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers [J]. Polymer.2003,44 (16):4389-4403.
    [4]Fortelny I. Theoretical aspects of phase morphology development [M]. in:Micro-and nanostructured multiphase polymer blend systems:Phase morphology and interfaces, ed; Harrats C, Thomas S, Groeninckx G. Boca Raton:CRC Press,2006:56.
    [5]马德柱,何平笙,徐种德,等.高聚物的结构与性能[M].第二版.北京:科学出版社,1995.
    [6]Kim J Y, Kim S H, Kikutani T. Fiber property and structure development of polyester blend fibers reinforced with a thermotropic liquid-crystal polymer [J]. JPolym Sci Polym Phys.2004,42 (3): 395-403.
    [7]Kim S Y, Kim S H, Lee S H, et al. Internal structure and physical properties of thermotropic liquid crystal polymer/poly(ethylene 2,6-naphthalate) composite fibers [J]. Compos Part A-Appl S.2009,40 (5):607-612.
    [8]McCardle R, Bhattacharyya D, Fakirov S. Effect of Reinforcement Orientation on the Mechanical Properties of Microfibrillar PP/PET and PET Single-Polymer Composites [J]. Macromol Mater Eng. 2012,297 (7):711-723.
    [9]Sombatdee S, Amornsakchai T, Saikrasun S. Reinforcing performance of recycled PET microfibrils in comparison with liquid crystalline polymer for polypropylene based composite fibers [J]. J Polym Res.2012,19 (3):9843.
    [10]Takahashi T, Konda A, Shimizu Y. Dye-affinity of polypropylene/nylon 6 blend fibre and crystallization behaviour [J]. Sen-I Gakkaishi.1994,50 (6):248-255.
    [11]Yu C, Zhu M, Shong X, et al. Study on dyeable polypropylene fiber and its properties [J]. JAppl Polym Sci.2001,82 (13):3172-3176.
    [12]Jiang C, Chen Y M, Pan Z J, et al. Gradient phase structure formation of polymer-polymer blend composites during melt spinning [J]. Mater Sci Tech-Lond.2007,23 (6):753-756.
    [13]Tavanaie M A, Shoushtari A M, Goharpey F, et al. Matrix-fibril morphology development of polypropylene/poly(butylenes terephthalate) blend fibers at different zones of melt spinning process and its relation to mechanical properties [J]. Fiber Polym.2013,14 (3):396-404.
    [14]Shitov N A, Timofeeva G I, Aizenshtein E M. Preparation of ultra-thin fibres from polymer mixtures [J]. Fibre Chem.1986,17 (5):305-311.
    [15]Xue C H, Wang D, Xiang B, et al. Controlled and high throughput fabrication of poly(trimethylene terephthalate) nanofibers via melt extrusion of immiscible blends [J]. Mater Chem Phys.2010,124(1):48-51.
    [16]魏发云PS/PP及PA6/LDPE共混熔纺纤维梯度相结构的研究[D].上海:东华大学,2012.
    [17]杨玉良,邱枫,唐萍,等.高分子体系相分离动力学及图样生成和选择[J].化学进展.2006(4):363-381.
    [18]Cahn J W. Phase separation by spinodal decomposition in isotropic systems [J]. J Chem Phys. 1965,42:93.
    [19]Reister E, M U Ller M, Binder K. Spinodal decomposition in a binary polymer mixture:Dynamic self-consistent-field theory and Monte Carlo simulations [J]. Phys Rev E.2001,64 (4):041804.
    [20]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004.
    [21]Rallison J M. The deformation of small viscous drops and bubbles in shear flow [J]. Annu Rev Fluid Mech.1984,16:45-66.
    [22]Minale M. Models for the deformation of a single ellipsoidal drop:a review [J]. Rheol Acta.2010, 49 (8):789-806.
    [23]张洪斌,周持兴.流场中高分子共混物分散相的形态变化[J].高分子材料群学与工程1999(4).
    [24]Stone H A. Dynamics of drop deformation and breakup in viscous fluids [J]. Annu Rev Fluid Mech. 1994,26(1):65-102.
    [25]Tucker Ⅲ C L, Moldenaers P. Microstructural evolution in polymer blends [J]. Annu Rev Fluid Mech.2002,34:177-210.
    [26]Janssen J M H. Emulsions:The dynamics of liquid-liquid mixing [M]. in:Materials Science and Technology, ed; Meijer H E H. Weinheim, Gennany:Wiley-VCH,1997,18:115-188.
    [27]何郁嵩,黄亚江,李光宪.流场下不相容聚合物共混物分散相形态的研究进展[J].中国塑料.2010(10):21-27.
    [28]Leal L G. Flow induced coalescence of drops in a viscous fluid [J]. Phys Fluids.2004,16: 1833-1851.
    [29]Janssen P J A, Anderson P D. Modeling Film Drainage and Coalescence of Drops in a Viscous Fluid [J]. Macromol Mater Eng.2011,296 (3-4):238-248.
    [30]Huneault M A, Shi Z H, Utracki L A. Development of polymer blend morphology during compounding in a twin-screw extruder:Ⅳ. A new computational model with coalescence [J]. Polym Eng Sci.1995,35(1):115-127.
    [31]Worner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering:a review of methods and applications [J]. Micro fluid Nanofluid.2012,12 (6):841-886.
    [32]Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles [J]. Chem Eng Sci.2010,65 (10):2851-2864.
    [33]Fortelny I, Zivny A. Coalescence in molten quiescent polymer blends [J]. Polymer.1995,36 (21): 4113-4118.
    [34]Fortelny I, Kovar J. Theory of coalescence in immiscible polymer blends [J]. Polym Composite. 1988,9(2):119-124.
    [35]俞炜,周持兴.黏弹性体系中液滴在剪切流场中凝聚的模拟研究[C].中国北京:2005.
    [36]Ziabicki A, Kedzierska K. Studies on the orientation phenomena by fiber formation from polymer melts:Ⅰ. Preliminary investigations on polycapronamide [J]. JAppl Polym Sci.1959,2:14.
    [37]Ziabicki A. Studies on the orientation phenomena by fiber formation from polymer melts:Ⅱ. Theoretical considerations [J]. JAppl Polym Sci.1959,2:24.
    [38]Ziabicki A, Kedzierska K. Mechanical aspects of fibre spinning process in molten polymers:Ⅰ. Stream diameter and velocity distribution along the spinning way [J]. Kolloid-Z.1960,171:51-61.
    [39]Ziabicki A, Kedzierska K. Mechanical aspects of fibre spinning process in molten polymers:Ⅱ. Stream broadening after the exit from the channel of spinneret [J]. Kolloid-Z.1960,171:111-119.
    [40]Ziabicki A, Kedzierska K. Mechanical aspects of fibre spinning process in molten polymers:Ⅲ. Tensile force and stress [J]. Kolloid-Z.1961,175:14-27.
    [41]Ziabicki A. Differentialgleichungen fur Geschwindigkeitskomponenten beim Faserspinnen [J]. Kolloid-Z.1961,179 (2):116-117.
    [42]Ziabicki A, Kedzierska K. Studies on the orientation phenomena by fiber formation from polymer melts:Ⅲ. Effects of structure on orientation. Condensation of polymers [J]. J Appl Polym Sci.1962,6: 111.
    [43]Ziabicki A, Kedzierska K. Studies on the orientation phenomena by fiber formation from polymer melts:Ⅳ. Effects of structure on orientation. Polyethylene and polystyrene [J]. J Appl Polym Sci.1962, 6:361.
    [44]Ziabicki A, Takserman-Krozer R. Effect on rheological factors on the length of liquid threads [J]. Kolloid-Z.1964,199:9-13.
    [45]Ziabicki A, Takserman-Krozer R. Mechanism of breakage of liquid threads [J]. Kolloid-Z.1964, 198:60-65.
    [46]Andrews E H. Cooling a spinning thread-line [J]. Brit JAppl Phys.1959,10:39-43.
    [47]Kase S, Matsuo T. Studies on melt spinning:Ⅰ. Fundamental equations on the dynamics on melt spinning [J]. J Polym Sci A.1965,3:2541-2554.
    [48]Kase S, Matsuo T. Studies on melt spinning.Ⅱ. Steady-state and transient solutions of fundamental equations compared with experimental results [J]. J Appl Polym Sci.1967,11:251-287.
    [49]Kase S. Studies on melt spinning:Ⅲ. Velocity field within the thread [J]. JAppl Polym Sci.1974, 18:3267-3278.
    [50]Kase S. Studies on melt spinning:Ⅳ. On the stability of melt spinning [J]. J Appl Polym Sci.1974, 18:3279-3304.
    [51]Hamana I. Der Verlauf der Fadenbildung beim Schmelzspinnen [J]. Lenzinger Berichte.1968,26: 118-132.
    [52]Hamana I, Matsui M, Kato S. Der Verlauf der Fadenbildung beim Schmelzspinnen [J]. Melliand Textilberichte.1969,50:382-388,499-503.
    [53]Ishibashi T, Aoki K, Ishii T. Studies on melt spinning of nylon 6:1. Cooling and deformation behaviour and orientation of nylon 6 threadline [J]. J Appl Polym Sci.1970,14:1597-1613.
    [54]Ishibashi T, Ishii T. Studies on melt spinning of nylon 6:II. Effect of heating the threadline upon orientation and crystallization [J]. J Appl Polym Sci.1976,20:335-344.
    [55]Han C D. A theoretical study on fiber spinnability [J]. Rheol Acta.1970,9:355-365.
    [56]Han C D, Lamonte R R. Studies on melt spinning:Ⅰ. Effect of molecular structure and molecular weight distribution on elongational viscosity [J]. J. Rheol.1972,16:447-472.
    [57]Han C D, Lamonte R R. Studies on melt spinning:Ⅱ. Analysis of the deformation and heat transfer processes [J]. J Appl Polym Sci.1972,16:3285-3306.
    [58]Han C D, Lamonte R R. Studies on melt spinning:Ⅲ. Melt fracture and draw resonance [J]. J Appl Polym Sci.1972,16:3307-3323.
    [59]Han C D, Kim Y W. Studies on melt spinning:V. Elongational viscosity and spinnability of two-phase systems [J]. J Appl Polym Sci.1974,18:2589-2603.
    [60]Han C D, Kim Y W. Studies on melt spinning:VI. The effect of deformation history on elongational viscosity, spinnability, and thread instability [J]. J Appl Polym Sci.1976,20:1555-1571.
    [61]Han C D, Apte S M. Studies on melt spinning:VIII. The effect of molecular structure and cooling conditions on the severity of draw resonance [J]. J Appl Polym Sci.1979,24:61-78.
    [62]Acierno J M, Dalton J N, Rodriguez J M, et al. Rheological and heat transfer aspects on melt spinning of mono filament fibres of polyethylene and polystyrene [J]. J Appl Polym Sci.1971,15: 2395-2415.
    [63]Abbott L E, White J L. Melt spinning of high and low density polyethylene:The development of orientation and crystallinity and mechanical properties of spun fibers [J]. Appl Polym Symp.1973,20: 247-268.
    [64]White J L, Ide Y. Rheology and dynamic of fiber formation from polymer melts [J]. J Appl Polym Sci:Appl Polym Symp.1975,27:61-102.
    [65]Bankar V G, Spruiell J E, White J L. Melt-spinning dynamics and rheological properties of nylon 6 [J]. J Appl Polym Sci.1977,21:2135-2155.
    [66]Bankar V G, Spruiell J E, White J L. Melt spinning of nylon 6:Structure development and mechanical properties of as-spun filaments [J]. J Appl Polym Sci.1977,21:2341-2358.
    [67]White J L, Ide Y. Instabilities and failure in elongational flow and melt spinning of fibers [J]. J Appl Polym Sci.1978,22:3057-3074.
    [68]White J L. Dynamic and structure development in melt spinning of fibers [J]. J Rheol.1978,22: 215.
    [69]Ziabicki A. Fundamentals of fibre formation:The science of fibre spinning and drawing [M]. Wiley New York,1976.
    [70]Henry H H. Yarn process [P]. US 2,604,667. [July 29,1952].
    [71]Ziabicki A, Kawai H. High-speed fiber spinning:Science and engineering aspects [M]. New York: John Wiley & Sons,1985.
    [72]Shimizu J. High-speed spinning-mechanism and fiber properties [J]. Kasen Geppo.1977,30: 42-51.
    [73]Shimizu J, Toriumi K, Tamai K. High-speed melt spinning of polyester filaments:effect of spinning velocity on the properties and molecular orientation [J]. Sen-I Gakkaishi.1977,33:208-214.
    [74]Shimizu J, Okui N, Kaneko A, et al. High speed spinning of polyethylen terephthalate (PET): effects of melt draw ratio and flow rate [J]. Sen-I Gakkaishi.1978,34:T35-40.
    [75]Shimizu J, Okui N, Imai Y. High-speed melt spinning of isotactic polypropylene fibers: crystallization mechanism in the spinline and fiber structure and properties [J]. Sen-I Gakkaishi.1979, 35:405-412.
    [76]Shimizu J, Okui N, Kikutani T. High speed melt spinning of poly(ethylene terephthalate):Radial variation across fibers [J]. Sen-I Gakkaishi.1981,37 (4):T135-142.
    [77]Shimizu J, Okui N, Tamai K. Air drag in high-speed spinning [J]. Sen-I Gakkaishi.1983,39: T398-407.
    [78]Shimizu J, A U. Fiber structure formation in high speed melt spinning of PET:Effect of take up velocity on unit cell parameters and superstructure of fibers [J]. Sen-I Gakkaishi.1984,40:T63-71.
    [79]George H H. Model of steady-state melt spinning at intermediate take-up speeds [J]. Polym Eng Sci.1982,22:292-299.
    [80]George H H, Holt A, Buckley A. A study of structural development in the high speed spinning of polyethylene terephthalate) [J]. Polym Eng Sci.1983,23:95-99.
    [81]Koyama K, Suryadevara J, Spruiell J E. Effect of molecular weight on high-speed melt spinning of nylon 6 [J]. J Appl Polym Sci.1986,31:2203-2229.
    [82]Lu F, Spruiell J E. The influence of resin characteristics on the high speed melt spinning of isotactic polypropylene:Ⅰ. Effect of molecular weight and its distribution on structure and mechanical properties of as-spun filaments [J]. J Appl Polym Sci.1987,34:1521-1539.
    [83]Lu F, Spruiell J E. The influence of resin characteristics on the high speed melt spinning of isotactic polypropylene:Ⅱ. On-line studies of diameter, birefringence, and temperature profiles [J]. J Appl Polym Sci.1987,34:1541-1556.
    [84]Bheda J H, Spruiell J E. Dynamics and structure development during high speed melt spinning of nylon 6:I. On-line experimental measurements [J]. J Appl Polym Sci.1990,39:447-463.
    [85]Patel R M, Bheda J H, Spruiell J E. Dynamics and structure development during high-speed melt spinning of nylon 6:Ⅱ. Mathematical modeling [J]. J Appl Polym Sci.1991,42:1671-1682.
    [86]Chen G, Cuculo J A, Tucker P A. Effects of spinning conditions on morphology and properties of polyethylene terephthalate fibers spun at high speeds [J]. J Appl Polym Sci.1992,44:447-458.
    [87]Denton J S, Cuculo J A, Tucker P A. Computer simulation of high-speed spinning of PET [J]. J Appl Polym Sci.1995,57:939-951.
    [88]Kikutani T, Nakao K, Takarada W, et al. On-line measurement of orientation development in the high-speed melt spinning process [J]. Polym Eng Sci.1999,39:2349-2357.
    [89]Kawahara Y, Jeon H J, Kikutani T. Dyeing behaviour of poly(ethylene terephthalate) fibres spun by high-speed melt spinning [J]. Color Technol.1999,115:355-356.
    [90]Cho H H, Kim K H, Ito H, et al. Fine structure and physical properties of polyethylene fibers in high-speed spinning:Ⅱ. Effect of catalyst systems in linear low-density polyethylene [J]. J Appl Polym Sci.2000,77:1195-1206.
    [91]Kim J S, Kim S Y. Necking behavior in high-speed melt spinning of poly(ethylene terephthalate) [J]. J Appl Polym Sci.2000,76:446-456.
    [92]Haberkorn H, Hahn K, Breuer H, et al. On the neck-like deformation in high-speed spun polyamides [J]. J Appl Polym Sci.1993,47:1551-1579.
    [93]Shimizu J, Okui N, Kikutani T. High speed melt spinning of PET:radial variation across fibers [J]. Sen-I Gakkaishi.1981,37:T135-142.
    [94]Ziabicki A.纤维成形基本原理——制造纤维的纺丝和拉伸的科学[M].华东纺织工学院化纤教研组译.上海:上海科学技术出版社,1983.
    [95]Ziabicki A, Kawai H高速纺丝———科学与工程[M].施祖培,穆淑华,洪璋传,等译.北京:中国石化出版社,1990.
    [96]杨定超,陈稀,胡学超,等.激光衍射测定高速纺丝纺程上直径的方法[J].合成纤维.1983(3):36-39.
    [97]吴嘉麟,钱宝钧.涤纶高速纺丝成形过程的实验研究[J].中国纺织大学学报.1986(1):1-13.
    [98]陈稀,沈达苏,陆建中,等.行走纤维表面温度的接触测量[J].华东纺织工学院学报.1983(3):51-56.
    [99]胡学超,张瑜,乔光华.涤纶高速纺纺程上结构的变化——双折射测定[J].合成纤维1985(6):8-11.
    [100]周泰.用谐振频率测量纺丝张力的研究[J].自动化仪表.1987(9):12-15,36.
    [101]张瑜,胡学超.PET拉伸粘度的测定——非等温纺丝法[J].合成纤维1987(3):17-21.
    [102]张瑜,黄玉丽,胡学超,等.PET纤维冻结应力的测定及其意义[J].中国纺织大学学报.1987(4):78-84.
    [103]陈彦模,陈稀,张瑜,等.聚酯熔体流变性能的研究——高剪切速率下熔体的流变性能[J].华东纺织工学院学报.1982(2):65-72.
    [104]蔡栋才.环形吹风装置的结构及纺丝冷却条件对纺丝质量的影响[J].合成纤维工业.1979(2):58-61,84.
    [105]杨亚雄,唐丽蓉,高仲芳,等.涤纶短纤维纺丝张力对初生纤维取向度的影响[J].合成纤维1982(6):1-5.
    [106]胡学超,张瑜,丁卓敏,等.加工方式对PET纤维结构的影响——热制全取向纤维结构探讨[J].合成纤维工业1988(4):1-7.
    [107]杨振,孙友德,凌善庆,等.聚丙烯纺丝成形与结构性能的关系:Ⅱ.不同喷丝头孔径对聚丙烯成纤行为的影响[J].合成纤维1981(3):8-11,74.
    [108]李繁亭,黄玉丽,胡学超,等.涤纶高速纺丝中单丝泵供量对纤维结构形成的影响[J].合成纤维工业.1985(3):1-6.
    [109]孙桐,李远芬,关桂荷,等.涤纶高速纺丝速度对纤维结构及性能的影响[J].华东纺织工学院学报.1981(4):1-9.
    [110]程嘉祺,管新海.PET高速纺技术探讨——3600米/分纺速下张应力与取向、结晶关系[J].合成纤维工业1985(4):1-6.
    [111]胡学超,陈稀,张瑜,等.涤纶高速纺丝中纺丝动力学的初步研究[J].合成纤维.1984(2):68-74.
    [112]李繁亭,胡学超,张瑜.涤纶高速纺丝模拟计算中各参数的影响[J].合成纤维.1985(6):29-34.
    [113]吴宏仁.涤纶高速纺的基础理论分析[J].合成纤维.1984(2):47-52,46.
    [114]穆淑华,叶岁生,李繁亭.涤纶多孔纺丝过程中温度、速度、张力径向分布问题的研究[J].中国纺织大学学报.1986(6):1-8.
    [115]林福海,徐德增,马立全.利用数学模型讨论尼龙66纺丝过程及染色性[J].合成纤维工业.1987(3):44-48,64.
    [116]李小宁.尼龙66纤维的高速纺丝研究:Ⅰ.纺程上的结构发展[J].合成纤维工业1989,12(1):26-31.
    [117]李小宁.尼龙66纤维高速纺丝研究:Ⅱ.数学模型的发展[J].合成纤维工业.1989,12(2):11-16.
    [118]王玉忠.PET熔体稳态纺丝的计算分析[J].聚酯工业1989(4):22-28.
    [119]杜秉公,顾莉琴.涤纶细旦丝纺丝理论及实践[J].合成纤维.1995(4):16-22.
    [120]虞鑫海,黄南薰,唐志廉,等.PET高速纺丝中渐近流变力的模拟计算[J].合成纤维.1996(5):18-21.
    [121]Kikutani T, Radhakrishnan J, Arikawa S, et al. High-speed melt spinning of bicomponent fibers: Mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system [J]. J Appl Polym Sci.1996,62:1913-1924.
    [122]Radhakrishnan J, Kikutani T, Okui N. High-speed melt spinning of sheath-core bicomponent polyester fibers:High and low molecular weight poly(ethylene terephthalate) systems [J]. Text Res J. 1997,67:684-694.
    [123]曹均雨.多组分复合纺丝熔体流动及纤维成形过程的摸拟研究[D].东华大学,2010.
    [124]Blanco-Rodriguez F J, Ramos J I. Melt spinning of semi-crystalline compound fibers [J]. Polymer.2011,52 (24):5573-5586.
    [125]Su Y Y, Rwei S P, Wu L Y, et al. Shaping conjugated hollow fibers using a four-segmented arc spinneret [J]. Polym Eng Sci.2011,51 (4):704-711.
    [126]Blanco-Rodriguez F J, Ramos J I. A simplified two-dimensional model of the melt spinning of semi-crystalline hollow compound fibers [J]. Int J Therm Sci.2012,58:102-112.
    [127]潘飞.PET/TiO2纳米复合材料性能研究及其纺丝模拟[D].东华大学,2006.
    [128]Oh T H, Lee M S, Kim S Y, et al. Studies on melt-spinning process of hollow fibers [J]. J Appl Polym Sci.1998,68 (8):1209-1217.
    [129]Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers:Ⅰ. Structural analysis of as-spun fibers [J]. J Appl Polym Sci.2001,80:1575-1581.
    [1301 Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers:Ⅱ. On-line measurement of the spin line, including change in cross-sectional shape [J]. J Appl Polym Sci.2001,80:1582-1588.
    [131]Takarada W, Ito H, Kikutani T, et al. Studies on high-speed melt spinning of noncircular cross-section fibers:Ⅲ. Modeling of melt spinning process incorporating change in cross-sectional shape [J]. J Appl Polym Sci.2001,80:1589-1600.
    [132]Oh T. Studies on melt spinning process of hollow polyethylene terephthalate fibers [J]. Polym Eng Sci.2006,46 (5):609-616.
    [133]杨崇倡,谭志银,魏蕊,等.扁平纤维纺丝成形研究:Ⅰ.扁平纤维纺丝成形的数学模型及模拟分析[J].合成纤维工业2009,32(3):56-59.
    [134]Kim H, Chung K, Youn J R. Three dimensional FEM simulation for spinning of non-circular fibers [J]. Fiber Polym.2000,1 (1):37-44.
    [135]杨崇倡,陈革,魏蕊,等.多叶形纤维成形动力学模型及产品开发实验研究[J].东华大学学报(自然群学版).2009(4):381-385.
    [136]Zhou J, Li J, Yu W, et al. Studies on the melt spinning process of noncircular fiber by numerical and experimental methods [J]. Polym Eng Sci.2010,50:1935-1944.
    [137]宋睿,李楠帆,工朝生,等.模拟研究超细旦涤纶长丝纺丝工艺[J].合成纤维2011(7):1-5.
    [138]蒋汉雄.细旦涤纶长丝熔体直纺工程模拟研究[D].东华大学,2011.
    [139]朱汇中.超细旦纤维纺丝模拟系统的设计与开发[D].东华大学,2011.
    [140]Yu X, Tang Z, Huang L, et al. Study on the model of thermal channel spinning process for PET polymer [J]. J Ch Text Univ.1998 (2):9-14.
    [141]虞鑫海,黄南薰,唐志廉,等.PET在TCS纺丝线上的结构发展[J].合成纤维.1999(3):11-16.
    [142]虞鑫海,黄南薰,唐志廉,等.TCS工艺中热管温度对管内PET纤维的影响[J].广东化纤1999(3):21-24.
    [143]杨崇倡,上华平,郭月洋.变径热管纺丝机理的研究[J].东华大学学报(自然科学版).2001(2):42-46,50.
    [144]杨崇倡,工华平,吕文军.花色纺丝:Ⅰ.冷管热管纺丝纤维成形及结构发展机理[J].合成纤维工业2001,24(6):26-29.
    [145]杨崇倡,工华平,吕文军.花色纺丝:Ⅱ.冷管热管纺丝张力不匀及工艺调节[J].合成纤维工业.2002(1):8-11.
    [146]杨祟倡,工华平,张敏.热管纺丝传热机理研究[J].合成纤维2002(1):10-13.
    [147]Huang N, Yu X, Tang Z, et al. Computer simulation of polyester high-speed thermal channel spinning [J]. Macromol Mater Eng.2002,287:330-338.
    [148]胡学超,黄建华,邵惠丽,等.PET吸管冷却熔融纺丝动力学及计算机模拟[J].合成纤维工业.1999(1):1-4.
    [149]Sumesh P T, Mathur T P, Agarwal U S. Simulation of polyester melt spinning with axial quench for increasing productivity [J]. JAppl Polym Sci.2010,116 (5):2541-2547.
    [150]Ohkoshi Y, Park C, Gotoh Y, et al. Cooling behavior of the spinning line of poly (ether ether ketone) [J]. Sen-I Gakkaishi.2000,56 (7):340-347.
    [151]杨涛锋,陈大俊,李瑶君.弹性纤维熔纺动力学模型及模拟计算[J].中国纺织大学学报.2000(5):24-27.
    [152]刘辉,陈振兴,叶红齐,等.聚碳硅烷熔融纺丝的动力学模拟[J].江苏化工.2003(4):44-46.
    [153]张勇.聚对苯二甲酸丙二醇酯(PTT)纤维熔融纺丝动力学研究及其工业化生产实践[D].天津大学,2006.
    [154]Oh T H, Nam Y S, Kim K J, et al. Theoretical analysis of the melt spinning process of poly (trimethylene terephthalate) fibers [J]. Fiber Polym.2007,8 (5):507-511.
    [155]Zhang C X, Wang H P, Wang C S. Poly (trimethylene terephthalate) fiber melt-spinning: Material parameters and computer simulation [J]. Fiber Polym.2007,8 (3):295-301.
    [156]Kim H K, Cho H H, Ito H, et al. Fiber structure development in high-speed melt spinning of poly(trimethylene terephthalate) (PTT):On-line measurement of birefringence [J]. J Polym Sci Polym Phys.2008,46:847-856.
    [157]Wang H, Yu X, Hu X. Computer simulation of unsymmetry of the melt-spinning hollow fiber [J]. J Ch Text Univ.1999 (2):7-10.
    [158]工华平,余晓蔚,韩淑丽.熔纺中空纤维皮芯结构的动力学模拟——泵供量、卷绕速度、熔体温度、切片粘度的影响[J].纺织学报.1999,20(2):71-74,66.
    [159]工华平,余晓蔚.熔纺中空纤维皮芯结构的动力学模拟——冷却条件对皮芯差异的影响[J].纺织学报.1999,20(3):143-146.
    [160]Wang H, Yu X, Yang C, et al. Effect of heat transfer coefficient on the temperature gradient for hollow fiber [J]. JDonghua Unv.2001 (2):21-26.
    [161]Wang C, Zhao R, Han Q, et al. Dynamics Model and Simulation of Polyethylene Terephthalate (PET) Hollow Fiber [J]. J Donghua Unv.2009 (4):387-392.
    [162]Matsuo T. Memories of Fundamental Research on Melt Spinning Processing [J]. Sen-I Gakkaishi. 1996,49:P532-538.
    [163]Nadkarni V M, Patwardhan V S. Simulation software for multifilament melt spinning of PET [J]. Int Fiber J.1999,14 (6):64.
    [164]工华平.熔融纺丝成形理论及HMLS涤纶纤维的研制[D].东华大学,2001.
    [165]张传雄.熔融纺丝成形理论应用及聚合物光学纤维开发[D].东华大学,2008.
    [166]Matsuo T, Kase S. Asymmetric temperature distribution of melt-spun filament [J]. Sen-I Gakkaishi.1968,24 (11):512-523.
    [167]Shimizu J, Okui N, Kikutani T. Simulation of dynamics and structure formation in high-speed melt spinning [M]. in:High Speed Fiber Spinning:Science and Engineering Aspects, ed; Ziabicki A, Kawai H. New York:John Wiley & Sons, Inc.,1985:173.
    [168]Katayama K, Yoon M G. Polymer crystallization in melt spinning:Mathematical simulation [M]. in:High Speed Fiber Spinning:Science and Engineering Aspects, ed; Ziabicki A, Kawai H. New York: John Wiley & Sons, Inc.,1985:207.
    [169]Shimizu J, Okui N, Kikutani T. Fine structure and physical properties of fibers melt-spun at high speeds from various polymers [M]. in:High Speed Fiber Spinning:Science and Engineering Aspects, ed; Ziabicki A, Kawai H. New York:John Wiley & Sons, Inc.,1985:429.
    [170]于伟东.萨那蒙测量方法的扩展及应用[J].中国纺织大学学报.1996(3):15-22.
    [171]Yoshimura M, Iohara K, Nagai H, et al. Structure formation of blend and sheath/core conjugated fibers in high-speed spinning of PET, including a small amount of PMMA [J]. J Macromol Sci Phys. 2003, B42 (2):325-339.
    [172]Oh T H. Numerical simulation of temperature distribution in melt spinning of PET monofilament [J]. J Appl Polym Sci.2006,102 (2):1045-1051.
    [173]Bever M B, Duwez P E. Gradients in composite materials [J]. Materials Science and Engineering. 1972,10 (0):1-8.
    [174]Shen M, Bever M B. Gradients in polymeric materials [J]. J Mater Sci.1972,7 (7):741-746.
    [175]新野正之,平井敏雄,渡边龙三.倾斜楼能材料—宇宙机用超耐熟材料を目指して[J].日本複合材料学会誌.1987,13(6):257-264.
    [176]Delfosse D. Fundamentals of Functionally Graded Materials [J]. Materials Today.1998,1 (4): 18.
    [177]Koizumi M. FGM activities in Japan [J]. Compos Part B-Eng.1997,28 (1):1-4.
    [178]赵培仲,朱金华,工源升.高分子梯度材料的研究[J].弹性体.2006(3):58-60.
    [179]Lakes R. Materials with structural hierarchy [J]. Nature.1993,361 (6412):511-515.
    [180]郭兴林,谢琼丹,赵宁,等.仿生高分子的研究进展[J].化学进展.2004(6):1023-1029.
    [181]黄勇,汪长安,咎青峰,等.高韧性复相陶瓷材料的仿生结构设计、制备与力学性能[J].成都大学学报(自然科学版).2002,21(3):1-7.
    [182]Tirrell D A. Putting a new spin on spider silk [J]. Science.1996,271 (5245):39-40.
    [183]Wang L, Sun W, Liang T. Research Status of Biomimetic Materials [J]. Materials Engineering. 1996,2:3-5.
    [184]佟金,马云海,任露泉.天然生物材料及其摩擦学[J].摩擦学学报.2001(4):315-320.
    [185]颜永年,崔福斋,张人估,等.人工骨的快速成形制造[J].材料导报.2000(2):11-13.
    [186]Landers R, Hubner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering [J]. Biomaterials.2002, 23 (23):4437-4447.
    [187]刘学清.采用微波辐照技术制备热膨胀及玻璃化温度渐变的梯度聚合物材料的研究[D].四川大学,2004.
    [188]钱浩,林志勇.聚乙二醇/聚乙烯共混物薄膜表面的浓度梯度[J].高分子材料科学与工程.2005(2):236-240.
    [189]温变英,吴刚,侯少华.新型聚合物基复合梯度材料的制备及材料结构性能[J].复合材料学报.2004(3):151-156.
    [190]Wen B, Wu G, Yu J. A flat polymeric gradient material:preparation, structure and property [J]. Polymer.2004,45 (10):3359-3365.
    [191]何书刚,谢续明PA6/PP梯度材料的制备及性能研究[J].塑料.2005(5):58-61.
    [192]李治,孔祥明,谢续明.电场条件下高分子共混物组分浓度梯度化的研究[J].高等学校化学学报.2001(10):1764-1766.
    [193]Jang J, Bae J. Formation of Polyaniline Nanorod/Liquid Crystalline Epoxy Composite Nanowires Using a Temperature-Gradient Method [J]. Adv Funct Mater.2005,15 (11):1877-1882.
    [194]俞炜,周持兴.温度梯度引起的聚合物共混物梯度相形态的研究[J].高等学校化学学报. 2001 (2):321-324.
    [195]Xing Q, Zhu M, Wang Y, et al. In situ gradient nano-scale fibril formation during polypropylene (PP)/polystyrene (PS) composite fine fiber processing [J]. Polymer.2005,46 (14):5406-5416.
    [196]Pan Z, Zhu M, Chen Y, et al. The non-uniform phase structure in blend fiber:I. Non-uniform deformation of the dispersed phase in melt spinning [J]. Fiber Polym.2010,11 (2):249-257.
    [197]Pan Z, Zhu M, Chen Y, et al. The variation of fibrils' number in the sea-island fiber:low density polyethylene/polyamide 6 [J]. Fiber Polym.2010,11 (3):494-499.
    [198]Pan Z, Chen Y, Zhu M, et al. The non-uniform phase structure in blend fiber:Ⅱ. The migration phenomenon in melt spinning [J]. Fiber Polym.2010,11 (4):625-631.
    [199]Marcincin A. Modification of fiber-forming polymers by additives [J]. Prog Polym Sci.2002,27 (5):853-913.
    [200]Liang B, Pan L, He X. Structure and properties of blend fibers from poly(ethylene terephthalate) and liquid crystalline polymer [J]. JAppl Polym Sci.1997,66 (2):217-224.
    [201]秦益民.液晶高分子和聚丙烯的共混纤维(Ⅰ):纤维结构的形成[J].纺织学报.2005(2):138-140.
    [202]彭华湘,朱美芳,陈彦模,等.PP/纳米CeO2复合纤维的制备及性能研究[J].合成纤维工业2005(3):1-3.
    [203]何厚康,蒋翀,吴文华,等.纳米远红外保健异形锦纶的研究[J].合成纤维.2003(1):18-20.
    [204]何厚康,张瑜,吴文华,等.PA6/纳米TiO2复合物的制备及成纤性能[J].高分子材群科学与工程.2004(6):214-217.
    [205]王兴雪,刘峻,吴文华,等.无机抗菌剂的表面改性[J].合成纤维工业.2005(2):1-3.
    [206]Grasser W, Schmidt H, Giesa R. Fibers spun from poly(ethylene terephthalate) blended with a thermotropic liquid crystalline copolyester with non-coplanar biphenylene units [J]. Polymer.2001,42 (21):8517-8527.
    [207]王锐,朱志国,张大省,等.相容剂对PA6/PE基体-微纤型共混纤维形态结构的调控[J].高分子材料科学与工程.2002(5):96-99.
    [208]Yang J, White J L, Jiang Q. Phase morphology development in a low interfacial tension immiscible polyolefin blend during die extrusion and melt spinning [J]. Polym Eng Sci.2010,50: 1969-1977.
    [209]Soroudi A, Skrifvars M. The influence of matrix viscosity on properties of polypropylene/polyaniline composite fibers-Rheological, electrical, and mechanical characteristics [J]. JAppl Polym Sci.2011,119 (5):2800-2807.
    [210]Soroudi A, Skrifvars M, Liu H. Polyaniline-polypropylene melt-spun fiber filaments:The collaborative effects of blending conditions and fiber draw ratios on the electrical properties of fiber filaments [J]. J Appl Polym Sci.2011,119 (1):558-564.
    [211]Padsalgikar A D, Ellison M S. Modeling droplet deformation in melt spinning of polymer blends [J]. Polym Eng Sci.1997,37 (6):994-1002.
    [212]Song C H, Isayev A I. LCP droplet deformation in fiber spinning of self-reinforced composites [J]. Polymer.2001,42 (6):2611-2619.
    [213]Rezanova V, Pridatchenko Y, Tsebrenko M. Mathematical model of strain of droplets of a dispersed-phase polymer in flow of molten polymer blends [J]. JEng Phys Thermophys.2005,78 (5): 975.
    [1]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:127.
    [2]Bai F, Li F, Calhoun B H, et al. Physical constants of poly(propylene) [M]. in:Polymer Handbook, 4th Ed, ed; Brandrup J, Immergut E H, Grulke E A, et al. John Wiley & Sons,1999:V23.
    [3]臧昆,臧己.纺丝流变学基础[M].北京:纺织工业出版社,1993.
    [4]Smook J, Torfs J, Pennings A J. Hot drawing of surface growth polyethylene fibers:2. Effect of drawing temperature and elongational viscosity [J]. Makromol Chem.1981,182 (11):3351-3359.
    [5]胡学超,陈稀,张瑜,等.涤纶高速纺丝中纺丝动力学的初步研究[J].合成纤维1984(2):68-74.
    [6]李小宁.尼龙66纤维高速纺丝研究:Ⅱ.数学模型的发展[J].合成纤维工业1989,12(2):11-16.
    [7]张瑜,胡学超.PET拉伸粘度的测定——非等温纺丝法[J].合成纤维.1987,3:005.
    [8]潘力军,胡祖明,刘兆峰,等.超高分子量聚乙烯冻胶纤维拉伸流变性能的研究[J].中国纺织大学学报.1993(6):62-67.
    [9]杨屏玉,章斐,王依民,等.冻胶纺PVA纤维的超拉伸研究[J].中国纺织大学学报.1992(4):1-6.
    [1]Spurr A R. A low-viscosity epoxy resin embedding medium for electron microscopy [J]. J Ultrastruct Res.1969,26 (1-2):31-43.
    [2]Corder G W, Foreman D I. Testing Data for Normality [M]. in:Nonparametric Statistics for Non-Statisticians:A Step-by-Step Approach, Wiley,2009:26-34.
    [3]Cox R G. The deformation of a drop in a general time-dependent fluid flow [J]. J Fluid Mech.1969, 37:601-623.
    [4]Taylor G I. The viscosity of a fluid containing small drops of another fluid [J]. P Roy Soc Math Phy. 1932,138 (834):41-48.
    [5]Taylor G I. The formation of emulsions in definable fields of flow [J]. P Roy Soc Math Phy.1934, 146 (858):501-523.
    [6]Forbes C, Evans M, Hastings N, et al. Lognormal Distribution [M]. in:Statistical Distributions, Wiley,2011:131-134.
    [7]Heindl M, Sommer M K,M U Nstedt H. Morphology development in polystyrene/polyethylene blends during uniaxial elongational flow [J]. Rheol Acta.2004,44 (1):55-70.
    [8]Dealy J M, Wang J. Role of Rheology in Melt Processing [M]. in:Melt Rheology and its Applications in the Plastics Industry, Springer Netherlands,2013:207.
    [9]Zuev V V, Steinhoff B, Bronnikov S, et al. Flow-induced size distribution and anisotropy of the minor phase droplets in a polypropylene/poly (ethylene-octene) copolymer blend:Interplay between break-up and coalescence [J]. Polymer.2012,53 (3):755-760.
    [10]Wu S. Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments [M]. in:Polymer Handbook,4th Ed, ed; Brandrup J, Immergut E H, Grulke E A. John Wiley & Sons, 2003.
    [11]Bousmina M, Palierne J F, Utracki L A. Modeling of structured polyblend flow in a laminar shear field [J]. Polym Eng Sci.1999,39 (6):1049-1059.
    [1]Beyreuther R, Brunig H. Dynamics of fibre formation and processing:Modelling and application in fibre and textile industry [M]. Springer,2007.
    [2]董纪震,罗鸿烈,王庆瑞,等.合成纤维生产工艺学(上册)[M].第二版.北京:纺织工业出版社,1993.
    [3]Ziabicki A. Fundamentals of fibre formation:The science of fibre spinning and drawing [M]. Wiley New York,1976.
    [4]臧昆,臧己.纺丝流变学基础[M].北京:纺织工业出版社,1993.
    [5]Bird R B, Hassager O. Dynamics of Polymeric Liquids:Fluid mechanics [M]. New York:Wiley, 1987:171-172.
    [6]Shimizu J, Okui N, Kikutani T. Simulation of dynamics and structure formation in high-speed melt spinning [M]. in:High-speed fiber spinning, ed; Ziabicki A, Kawai H. New York:John Wiley & Sons, 1985:173.
    [7]Katayama K, Yoon M. Polymer crystallization in melt spinning:mathematical simulation [M]. in: High-speed fiber spinning, ed; Ziabicki A, Kawai H. John Wiley & Sons,1985:1207-223.
    [8]Ziabicki A. The mechanisms of'neck-like'deformation in high-speed melt spinning:2. Effects of polymer crystallization [J]. J Non-Newton Fluid.1988,30 (2-3):157-168.
    [9]Sakiadis B C. Boundary-layer behavior on continuous solid surfaces:Ⅲ. The boundary layer on a continuous cylindrical surface [J]. Aiche J.1961,7 (3):467-472.
    [10]Glicksman L R. The cooling of glass fibres [J]. Glass Technol.1968,9 (5):131-138.
    [11]Shimizu J, Shimazaki K. The spinning simulation of polypropylene melt spinning and its birefringence [J]. Sen-I Gakkaishi.1973,29 (10):T442-450.
    [12]Hamana I. Der verlauf der fadenbildung beim schmelzspinnen [J]. Lenzinger Berichte.1968,26: 118-132.
    [13]Kase S, Matsuo T. Studies on melt spinning:II. Steady-state and transient solutions of fundamental equations compared with experimental results [J]. J Appl Polym Sci.1967,11 (2): 251-287.
    [14]Sano Y, Orii K. Drag coefficients of filaments in air flow during the spinning [J]. Seni Gakkaishi. 1968,24 (5):212-218.
    [15]Gould J, Smith F S. Der Luftwiderstand monofiler Chemiefasern bei axialer Bewegung mit Geschwindigkeiten bis 100 m/s [J]. J Text Inst.1980,71:38-49.
    [16]胡学超,陈稀,张瑜,等.涤纶高速纺丝中纺丝动力学的初步研究[J].合成纤维.1984(2):68-74.
    [17]Brunig H, Beyreuther R, Hofman H. The influence of quench air on fibre formation and properties in the melt spinning process [J]. Int Fiber J.1999,14 (4):104-107.
    [18]Kase S, Matsuo T. Studies on melt spinning:I. Fundamental equations on the dynamics of melt spinning [J]. J Polym Sci Gen Paper.1965,3 (7):2541-2554.
    [19]Gagon D K, Denn M M. Computer simulation of steady polymer melt spinning [J]. Polym Eng Sci. 1981,21(13):844-853.
    [20]李繁亭,胡学超,张瑜.涤纶高速纺丝模拟计算中各参数的影响[J].合成纤维.1985(6):29-34.
    [21]Okoshi Y, Park C, Goto Y, et al. Cooling Behavior of the Spinning Line of Poly (ether ether ketone). [J]. Sen-I Gakkaishi.2000,56 (7):340-347.
    [22]Golzar M. Melt spinning of the fine PEEK filaments [D]. Dresden:University of Technology Dresden,2004.
    [23]胡安,刘鹏清,徐建军,等.聚醚醚酮纤维的结构与性能[J].合成纤维工业2009(6):14-17.
    [24]Hamana I, Matsui M, Kato S. Der Verlauf der Fadenbildung beim Schmelzspinnen [J]. Melliand Textilber.1969,50:382-388.
    [25]Katayama K, Tsuji M. Fundamentals of spinning [M]. in:Advanced fiber spinning technology, ed; Nakajima T. Cambridge:Woodhead Pub,1994:1-24.
    [26]Shimizu J, Shimazaki K. The estimation of birefringence in polypropylene melt spinning process [J]. Sen-I Gakkaishi.1973,29 (5):T205-210.
    [27]Hamana I. Formation of fibers and development of their structure [J]. Kagaku-Dojin.1969,39: 123-141.
    [28]Yasuda H, Sugiyama H, Yanagawa H. Simulation of the orientation and its distribution across a filament using the steady-state single-filament melt spinning theory [J]. Sen-I Gakkaishi.1979,35: 370-375.
    [29]Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer.1971,12 (3):150-158.
    [30]Ziabicki A. Kinetics of polymer crystallization and molecular orientation in the course of melt spining [J]. Appl Polym Symp.1967,6:1-16.
    [31]Ziabicki A, Jarecki L. Crystallization-controlled limitations of melt spinning [J]. J Appl Polym Sci. 2007,105(1):215-223.
    [32]Nakamura K, Watanabe T, Katayama K, et al. Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions [J]. J Appl Polym Sci.1972,16 (5):1077-1091.
    [33]Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition [J]. J Appl Polym Sci.1973,17 (4):1031-1041.
    [34]Ziabicki A. Theoretical analysis of oriented and non isothermal crystallization:I. Phenomenological considerations Isothermal crystallization accompanied by simultaneous orientation or disorientation [J]. Colloid Polym Sci.1974,252 (3):207-221.
    [35]Ziabicki A. Wplyw orientacji molekularnej na temperature topnienia I Szybkosc krystalizacji polimerow [J]. Polimery-W.1973,18:615-619.
    [36]Alfonso G C, Verdona M P, Wasiak A. Crystallization kinetics of oriented poly (ethylene terephthalate) from the glassy state [J]. Polymer.1978,19 (6):711-716.
    [37]Wang X, Tang Z. Necking point in PET high-speed fiber spinning [J]. J Donghua Unv.2001,18 (1):16-20.
    [38]工夏琴,黄南薰.神经元网络技术方法研究PET高速纺丝过程中的细颈点[J].合成纤维.2001(2):14-16.
    [39]Andrews E H. Cooling a spinning thread-line [J]. Brit J Appl Phys.1959,10:39-43.
    [40]Morrison M E. Numerical evaluation of temperature profiles and interface position in filaments undergoing solidification [J]. Aiche J.1970,16 (1):57-63.
    [41]Hutchenson K W, Edie D D, Riggs D M. Radial temperature differences during the melt spinning of fibers [J]. J Appl Polym Sci.1984,29 (11):3621-3640.
    [42]王华平,朱建民,胡学超,等.涤纶高速纺不对称结构形成的理论研究及纺丝动力学模型.Ⅰ.基本理论及泵供量和卷绕速度的影响[J].合成纤维.2000(5):5-9.
    [43]Bell W P, Edie D D. Calculated internal stress distributions in melt-spun fibers [J]. J Appl Polym Sci.1987,33 (4):1073-1088.
    [44]Oh T H. Numerical simulation of temperature distribution in melt spinning of PET monofilament [J]. J Appl Polym Sci.2006,102 (2):1045-1051.
    [45]Kase S. Studies on melt spinning:Ⅲ. Velocity field within the thread [J]. J Appl Polym Sci.1974, 18 (11):3267-3278.
    [46]Matsuo T, Kase S. Asymmetric temperature distrisution of melt-spun filament [J]. Sen-I Gakkaishi. 1968,24 (11):512-523.
    [47]MacKnight W J, Karasz F E, Fried J R. Solid State Transition Behavior of Blends [M]. in: Polymer Blends, Vol 1, ed; Paul D R, Newman S. Academic Press,1978:185-242.
    [48]Orwoll R. Densities, Coefficients of Thermal Expansion, and Compressibilities of Amorphous Polymers [M]. in:Physical Properties of Polymers Handbook, Second Edition, ed; Mark J E. New York:Springer Science+Business Media, LLC,2007:93-101.
    [49]Howe D V. Polypropylene, isotactic [M]. in:Polymer Data Handbook, ed; Mark J E. Oxford University Press,1999:783.
    [50]Jarecki L, Ziabicki A. Mathematical modelling of the pneumatic melt spinning of isotactic polypropylene. Part Ⅱ. Dynamic model of melt blowing [J]. Fibres Text East Eur.2008,16 (5):17-24.
    [51]Utracki L A. Viscoelastic behavior of polymer blends [J]. Polym Eng Sci.1988,28 (21): 1401-1404.
    [52]Howe D V. Polypropylene, isotactic [M]. in:Polymer Data Handbook, ed; Mark J E. Oxford University Press,1999:782.
    [53]王华平.熔融纺丝成形理论及HMLS涤纶纤维的研制[D].东华大学,2001.
    [54]陈敏恒,丛德滋,方图南,等.化工原理(上册)[M].第三版.北京:化学工业出版社,2006:268.
    [55]Fuller T R, Fricke A L. Thermal conductivity of polymer melts [J]. J Appl Polym Sci.1971,15 (7): 1729-1736.
    [56]王国全.聚合物改性[M].北京:中国轻工业出版社,2000:20-21.
    [1]MacKintosh F C, Schmidt C F. Microrheology [J]. Curr Opin Colloid In.1999,4 (4):300-307.
    [2]Miguel M, Burrows H D, Scheffold F, et al. Microrheology of complex fluids [M]. in:Trends in Colloid and Interface Science XVI, ed; Miguel M, Burrows H D. Springer Berlin Heidelberg,2004: 141-146.
    [3]Cicuta P, Donald A M. Microrheology:a review of the method and applications [J]. Soft Matter. 2007,3(12):1449-1455.
    [4]张洪斌.流场中聚合物共混物本系分散相的形态研究[D].上海:上海交通大学,1997.
    [5]Taylor G I. The viscosity of a fluid containing small drops of another fluid [J]. P Roy Soc Math Phy. 1932,138 (834):41-48.
    [6]Taylor G I. The formation of emulsions in definable fields of flow [J]. P Roy Soc Math Phy.1934, 146(858):501-523.
    [7]Cox R G. The deformation of a drop in a general time-dependent fluid flow [J].J Fluid Mech.1969, 37:601-623.
    [8]Delaby I, Ernst B, Muller R. Drop deformation during elongational flow in blends of viscoelastic fluids. Small deformation theory and comparison with experimental results [J]. Rheol Acta.1995,34 (6):525-533.
    [9]Grace H P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems [J]. Chem Eng Commun.1982,14:225-277'.
    [10]Utracki L A, Shi Z H. Development of polymer blend morphology during compounding in a twin-screw extruder:I. Droplet dispersion and coalescence-a review [J]. Polym Eng Sci.1992,32 (24): 1824-1833.
    [11]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004.
    [12]Taylor G I. Conical free surfaces and fluid interfaces [C]. Proceedings of the 11th International Congress on Applied Mechanics, Munich:Springer,1964.
    [13]Acrivos A, Lo T S. Deformation and breakup of a single slender drop in an extensional flow [J]. J Fluid Mech.1978,86 (04):641-672.
    [14]Stegeman Y W. Time dependent behavior of droplets in elongational flows [D]. Eindhoven: Eindhoven University of Technology,2002.
    [15]Janssen J M H. Emulsions:The dynamics of liquid-liquid mixing [M]. in:Materials Science and Technology, Vol 18, Processing of Polymers, ed; Meijer H E H. Weinheim:Wiley-VCH,1997: 113-188.
    [16]Delaby I, Ernst B, Muller R. Drop deformation in polymer blends during elongational flow [J]. J Macromol Sci Phys.1996,35 (3-4):547-561.
    [17]Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid [J]. P Roy Soc Math Phy.1935,150:322-337.
    [18]Tucker III C L, Moldenaers P. Microstructural evolution in polymer blends [J]. Annu Rev Fluid Mech.2002,34:177-210.
    [19]Han C D. Multiphase Flow in Polymer Processing [M]. Academic Press,1981.
    [20]Palierne J F, Lequeux F. Sausage instability of a thread in a matrix; linear theory for viscoelastic fluids and interface [J]. J Non-Newton Fluid.1991,40 (3):289-306.
    [21]Kuhn W. Spontane Aufteilung von Fliissigkeitszylindern in kleine Kugeln [J]. Colloid Polym Sci. 1953,132 (2):84.
    [22]Janssen J M H, Meijer H E H. Droplet breakup mechanisms:Stepwise equilibrium versus transient dispersion [J]. J Rheol.1993,37 (4):597-608.
    [23]Van Puyvelde P, Yang H, Mewis J, et al. Breakup of filaments in blends during simple shear flow [J].J Rheol.2000,44(6):1401-1415.
    [24]Elias L, Fenouillot F, Majeste J C, et al. Migration of nanosilica particles in polymer blends [J]. J Polym Sci Polym Phys.2008,46 (18):1976-1983.
    [25]Fenouillot F, Cassagnau P, Majeste J C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends [J]. Polymer.2009,50 (6):1333-1350.
    [26]Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider L6sungen[J].Z Phys Chem.1917,92:129-168.
    [27]Chesters A K. The modelling of coalescence processes in fluid-liquid dispersions:a review of current understanding [J]. Trans Inst Chem Eng.1991,69 (Part A):259-270.
    [28]Ross S L, Verhoff F H, Curl R L. Droplet breakage and coalescence processes in an agitated dispersion.2. Measurement and interpretation of mixing experiments [J]. Ind Eng Chem Fund.1978, 17(2):101-108.
    [29]Overbeek J T G. Kinetics of flocculation [M]. in:Colloid Science, ed; Kruyt H R. Amsterdam: Elsevier,1952:1.
    [30]Fortelny I, Kovar J. Theory of coalescence in immiscible polymer blends [J]. Polym Composite. 1988,9(2):119-124.
    [31]Willemse R C, Ramaker E J J, Van Dam J, et al. Coarsening in molten quiescent polymer blends: The role of the initial morphology [J]. Polym Eng Sci.1999,39 (9):1717-1725.
    [32]Van Gisbergen J, Meijer H. Influence of electron beam irradiation on the microrheology of incompatible polymer blends:Thread break-up and coalescence [J]. J Rheol.1991,35:63.
    [33]Fortelny I, Zivny A. Coalescence in molten quiescent polymer blends [J]. Polymer.1995,36 (21): 4113-4118.
    [34]Fortelny I, Zivny A, Juza J. Coarsening of the phase structure in immiscible polymer blends. Coalescence or ostwald ripening? [J]. J Polym Sci Polym Phys.1999,37 (3):181-187.
    [35]Elmendorp J J. Dispersive mixing in liquid systems [M]. in:Mixing in Polymer Processing, ed; Rauwendaal C. New York:Marcel Dekker,1991:17-100.
    [36]Janssen J M H, Meijer H E H. Dynamics of liquid-liquid mixing:A 2-zone model [J]. Polym Eng Sci.1995,35(22):1766-1780.
    [37]Fortelny I, Zivny A. Extensional flow induced coalescence in polymer blends [J]. Rheol Acta. 2003,42:454-461.
    [38]Jeelani S A K, Hartland S. Effect of interfacial mobility on thin film drainage [J]. J Colloid Interf Sci.1994,164 (2):296-308.
    [39]Chesters A K. The modelling of coalescence processes in fluid-liquid dispersions:A review of current understanding [J]. Trans Inst Chem Eng.1991,69 (Part A):259-270.
    [40]Janssen J M H. Emulsions:The dynamics of liquid-liquid mixing [M]. in:Materials Science and Technology, ed; Meijer H E H. Weinheim, Gennany:Wiley-VCH,1997,18:115-188.
    [41]Huneault M A, Shi Z H, Utracki L A. Development of polymer blend morphology during compounding in a twin-screw extruder:Ⅳ. A new computational model with coalescence [J]. Polym Eng Sci.1995,35(1):115-127.
    [42]Griffith A A. The phenomena of rupture and flow in solids [J]. Phil Trans R Soc London-A.1921, 221:163-198.
    [43]Wu S. Surface and interfacial tensions of polymers, oligomers, plasticizers, and organic pigments [M]. in:Polymer handbook,4th, ed; Brandrup J, Immergut E H, Grulke E A, et al. New York:John Wiley & Sons,1999:V521-541.
    [44]Ziabicki A, Takserman-Krozer R. Effect on rheological factors on the length of liquid threads [J]. Kolloid-Z.1964,199:9-13.
    [45]Ziabicki A, Takserman-Krozer R. Mechanism of breakage of liquid threads [J]. Kolloid-Z.1964, 198:60-65.
    [46]Helfand E, Tagami Y. Theory of the interface between immiscible polymers [J]. J Polym Sci Polym Lett.1971,9 (10):741-746.
    [47]Bousmina M, Palierne J F, Utracki L A. Modeling of structured polyblend flow in a laminar shear field [J]. Polym Eng Sci.1999,39 (6):1049-1059.
    [48]Zhang J, Lodge T P, Macosko C W. Models for adhesion at weak polymer interfaces [J]. J Polym Sci Polym Phys.2009,47 (23):2313-2319.
    [49]Stegeman Y W, Chesters A K, Vd Vosse F N, et al. Breakup of (non-) Newtonian droplets in a time-dependent elongational flow [J]. Proceedings of Polymer Processing Society, PPS-15,'s Hertogenbosch, The Netherlands.1999,15.
    [50]Palmer G, Demarquette N R. Evaluation of imbedded fiber retraction phenomenological models for determining interfacial tension between molten polymers [J]. Polymer.2005,46(19):8169-8177.
    [51]Israelachvili J N. Van der Waals forces between particles and surfaces [M]. in:Intermolecular and Surface Forces,3rd Ed. Academic Press,2011:263.
    [52]Pu Z. Polystyrene [M]. in:Polymer Data Handbook, ed; Mark J E. Oxford University Press,1999: 830.
    [53]Schrader D. Physical constants of poly(styrene) [M]. in:Polymer Handbook,4th Ed, ed; Brandrup J, Immergut E H, Grulke E A, et al. John Wiley & Sons,1999:V92.
    [54]Howe D V. Polypropylene, isotactic [M]. in:Polymer Data Handbook, ed; Mark J E. Oxford University Press,1999:783.
    [55]Bai F, Li F, Calhoun B H, et al. Physical constants of poly(propylene) [M]. in:Polymer Handbook, 4th Ed, ed; Brandrup J, Immergut E H, Grulke E A, et al. John Wiley & Sons,1999:V26.
    [56]Seferis J C. Refractive indices of polymers [M]. in:Polymer Handbook,4th Ed, ed; Brandrup J, Immergut E H, Grulke E A, et al. John Wiley & Sons,1999:VI573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700