用户名: 密码: 验证码:
在LiCl/DMAc体系中制备环境敏感型纤维素水凝胶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上最丰富的的可再生生物质资源,由于其良好的生物相容性、生物降解性和无毒性等特征,纤维素及其衍生物除了在传统的工业领域得到广泛的应用外,在生物制药、食品工程和生物医学材料等领域有着十分广阔的应用前景。以纤维素为基材制备的环境敏感性纤维素基水凝胶现在已成为各国研究的热点,其在药物控释、生物透镜和金属离子废水处理等方面都有着潜在的应用前景。纤维素基水凝胶的制备一般有物理方法和化学方法,而从制备反应介质来分,可分为非均相反应和均相反应两种类型。由于纤维素分子间较高的氢键结合和较高的结晶度,导致其在化学改性方面的效率低下,所以不断寻找优良的纤维素溶剂体系也是各国科学家们一直努力的方向。
     本论文以氯化锂/N,N-二甲基乙酰胺(LiCl/DMAc)溶剂体系作为纤维素化学改性的反应介质,分别采用常规的自由基聚合方法和原子基团转移自由基聚合(ATRP)方法制备出具有不同结构的纤维素基水凝胶。
     1、采用常规自由基溶液聚合方法,构建具有半互穿网络(Semi-IPN)结构的纤维素/聚异丙基丙烯酰胺(cellulose/PNIPAAm)复合水凝胶。研究中以微晶纤维素(MCC)和异丙基丙烯酰胺(NIPAAm)为原料,N,N′-亚甲基双丙烯酰胺(MBAAm)为交联剂,过氧化苯甲酰(BPO)为引发剂。运用傅立叶红外光谱(FTIR)、扫描电子显微镜(SEM)、热重分析(TGA)对水凝胶进行结构、形貌和热学性能进行表征。结果表明这种Semi-IPN结构的水凝胶具有多孔三维结构,和良好的温度敏感性。探讨了交联剂MBAAm的用量对水凝胶的形态结构、溶胀/消溶胀行为以及温度响应性的影响。结果发现随着交联剂用量的提高,水凝胶中PNIPAAm组分增加,孔隙减小且孔壁加厚,这引起了水凝胶平衡吸水溶胀率的降低,溶胀速率和消溶胀速率也随之降低,这表明可通过水凝胶的交联密度控制水凝胶的溶胀行为。另外,以亚甲基蓝为药物模型,研究了该系列水凝胶的吸附和控释性能。
     2、采用ATRP方法,以2-溴代异丁酰溴(BiBB)为引发剂,溴化亚铜/N,N,N′,N′,N′-五甲基二乙烯基三胺(CuBr/PMDETA)为催化剂体系,在纤维素分子链上引入温敏性聚合物链段PNIPAAm和不饱和双键。通过紫外光辐照交联制备出新型纤维素基温敏性水凝胶。用FTIR、DSC和SEM对该水凝胶的化学结构、凝聚态结构以及表面形貌等进行表征,发现该系列水凝胶具有温度负响应特性,并且其临界相转变温度(LCST)随着纤维素大分子引发剂阶段中BiBB用量的增加而升高。
     3、采用常规自由基聚合方法,用丙烯酸(AA)和纤维素制备具有Semi-IPN结构的水凝胶,成功在水凝胶网络上引入聚丙烯酸链段,使得水凝胶具有良好的pH敏感性。研究了水凝胶的溶胀动力学。水凝胶对金属离子Cu2+具有良好的吸附作用,并通过线性方程模拟,发现水凝胶的吸附动力学符合准二级反应方程,属于化学吸附机理。该水凝胶在金属离子废水处理方面具有潜在应用。
     4、用AA、NIPAAm和纤维素制备了具有pH和温度双响应性的Semi-IPN结构水凝胶。该水凝胶具有无规则小孔径的三维网络结构,其具有良好的温度和pH响应性。对水凝胶在37°C的体外释药曲线进行了模型计算和分析,结果发现载药水凝胶在不同的pH值条件下的释放动力学模型不同,释放机制随着时间的变化而变化。
Cellulose is the most abundant organic raw material. This inexpensive, biodegradableand renewable resource has received a great deal of attention for its physical properties andchemical reactivity. Many properties of cellulose, both physical and chemical are significantlydifferent from those of synthetic polymers. Therefore, cellulose and cellulose derivatives findapplications in areas as diverse as composite materials, tissue engineering scaffold, drugdelivery systems and personal care products. However, the unique physical properties ofenvironmentally sensitive hydrogels based on cellulose have sparked particular interest intheir applications. As a result, hydrogels are commonly used in tissue engineering, drugdelivery, diagnostics, and cellular immobilization, separation of biomolecules and adsorptionof heavy metals.
     In this work, a series of cellulose based hydrogels were synthesized in LiCl/DMAcsolution.
     1. A new kind SIPN cellulose hydrogel was synthesized using NIPAAm and cellulose.The swelling behaviors and temperature sensitivities of the hydrogel were researched in detail.It was found that the swelling ratios of the hydrogels decreased with increasing temperature.The adsorption and release behavior of the hydrogel for cationic methylene blue wasinvestigated. The morphology, thermal behavior and thermal stability of the hydrogel werestudied by SEM, DSC and TGA.
     2. A big molecular initiator was synthesized by using cellulose and BiBB. Then thecellulose-PNIPAAm-PEGDMA was synthesized by ATRP. Lastly prepared the cellulose basedhydrogel using the cellulose grafted polymer. The swelling behaviors and temperaturesensitivities of the hydrogel were researched in detail. It was found that the LCST of thehydrogel increased with increasing BiBB.
     3. A pH sensitive cellulose hydrogel was synthesized. The structure and morphology ofthe hydrogel were analyzed by FTIR and SEM. The prepared hydrogel beads showed goodadsorption ability for heavy metal ions.
     4. A pH and thermal double sensitive cellulose based hydrogel was prepared. Thestructure and morphology of the hydrogel were analyzed by FTIR and SEM. The drug releasebehavior was investigated through model calculations and analysis, combined with the resultsof experiments.
引文
[1]毕曼;郝红;李涛;赵亚玲。智能水凝胶研究最新进展[J]。离子交换与吸附,2008,24(2):188-192
    [2] Liu Y.Y; Fan X.D.; Wei B.R. pH-responsive amphiphilic hydrogel networks with IPNstructure: A starategy for controlled drug release [J]. International Journal of Pharmaceutic,2006,308(1~2):205~209
    [3] Yong Q.; Park K. Environment-sensitive hydrogels for drug delivery [J]. Adv Drug DelivRev.2001,53(3):321-339
    [4] Firestone B.A.; Siegel R.A. Kinetics and mechanisms of water sorption in hydrophobicionizable copolymer gels [J]. J Appl Polym Sci,1991,43(5):901-914
    [5] Daisuke M.; Kazuya Y.; Takao A. Stimuli-responsive properties ofN-Isopropylacrylamide based ultrathin hydrogel films prepared by photo-cross-linking [J].Langmuir,2006,22(13):5911~5915
    [6] Wang B.B.; Zhu W.; Zhang Y. et al. Synthesis of a chemically crosslinkedthermo-sensitive hydrogel film and in situ encapsulation of model protein drugs [J]. ReactFunct Polym,2006,66(5):509-518
    [7] Katono H.; Maruyama A.; Sanui K. et al. Thermo-responsive swelling and drug releaseswitching of interpenetrating polymer networks composed of poly(acrylamide-co-butylmethacrylate) and poly(acrylic acid)[J]. J Control Release,1991,16:215-227
    [8] Shibayama M.; Mizutaini S.Y.; Nomura S. Thermal properties of copolymer gelscontaining N-isopropylacrylamide [J]. Macromolecules,1996,29(6):2091-2024
    [9] Brazel C.S.; Peppas N.A. Synthesis and characterization of thermo andchemomechanically responsive poly(N-isopropylacryamide-co-methacrylic acid)hydrogels [J]. Macromolecules,1995,28(24):8016-8020
    [10] Mamada A.; Tanaka T.; Kungwachakun D. et al. Photo induced phase transition of gels[J]. Macromolecules,1990,23(4):1517-1519
    [11] Suzuki A.; Tanaka T. Phase transition in polymer gels induced by visible light [J]. Nature,1990,346:345-347
    [12] Gong J.P.; Nitta T.; Osada Y. Electrokinetic modeling of the contractile phenomena ofpolyelectrolyte gels: one dimensional capillary model [J]. J. Phys. Chem.,1994,98(38):9583-9587
    [13] Kim S.J.; Shin S.R.; Lee J.H. et al. Electrial reponse characterization ofchitosan/polyacrylonitrile hydrogel in NaCl solution [J]. J. Appl. Polym. Sci.,2003,90(1):91-96
    [14] Shiga T.; Hirose Y.; Okada A. et al. Electric field-associated deformation ofpolyelectrolyte gel near a phase transition point [J]. J. Appl. Polym. Sci.,1992,46(4):635-640
    [15]郑云华;刘根起;程永清;杨世文。聚乙烯醇磷酸酯水凝胶电刺激响应行为的研究[J].高分子学报,2009,9:922-928
    [16] Shamim N. Thermosensitive polymer(N-isopropylacryamide) coated nanomagneticparticles: Preparation and characterization [J]. Colloides Surface B: Biointerfaces,2007,55(1):51-58
    [17] Peppas N.A.; Hilt J.Z.; Khademhosseini A. et al. Hydrogels in biology and medicine:From molecular principles to bionanotechnology [J]. Advanced Materials,2006,18(11):1345-1360
    [18] Qiu Y.; Park K. Environment-sensitive hydrogels for drug delivery [J]. Advanced DrugDelivery Reviews,2001,53(3):321-339
    [19] Tokarev I.; Minko S. Stimuli-responsive hydrogel thin films [J]. Soft Matter,2009,5(3):511-524
    [20] Dimitrov I.; Trzebicka B.; Muller A.H. et al. Thermosensitive water-soluble copolymerswith doubly responsive reversibly interacting entities[J]. Progress in Polymer Science,2007,32(11):1275-1343
    [21] Lyon L.A.; Meng Z.Y.; Singh N. et al. Thermoresponsive microgel-based materials [J].Chemical Society Reviews,2009,38,865-874
    [22] Xu X.D.; Wei H.; Zhang X.Z. et al. Fabrication and characterization of a novel compositePNIPAAm hydrogel for controlled drug release[J]. Journal of Biomedical MaterialsResearch Part A,2007,81A(2):418-426
    [23] Dai S.; Ravi P.; Tam K.C. pH-responsive polymers: synthesis, properties and application[J]. Soft Matter,2008,4(3):435-449
    [24] Lee K.Y.; David J.M. Hydrogels for Tissue Engineering [J]. Chemical Reviews,2001,101(7):1869-1879
    [25]卢国冬;燕青芝;宿新泰等。多孔水凝胶研究进展[J].化学进展,2007,19(4):485-493
    [26] Hoffman A.S. Hydrogels for biomedical applications[J]. Advanced drug delivery reviews,2002,54(1):3-12
    [27] Tsioptsias C.; Tsivintzelis I.; Papadopoulou L. et al. A novel method for producing tissueengineering scaffolds from chitin, chitin–hydroxyapatite, and cellulose [J]. MaterialsScience and Engineering: C,2009,29(1):159-164
    [28] Loebsack A.; Greene K.; Wyatt S. et al. In vivo characterization of a porous hydrogelmaterial for use as a tissue bulking agent [J]. Journal of Biomedical Materials Research,2001,57(4):575-581
    [29] VandeVord P.J.; Matthew H.W.T.; DeSilva S.P. et al. Evaluation of the biocompatibilityof a chitosan scaffold in mice [J]. Journal of Biomedical Materials Research Part A,2002,59(3):585-90
    [30] El-Saied H.; Waly A.I.; Basta A.H. High Water Absorbents from Lignocelluloses I: Effectof Reaction variables on the Water Absorbency of Polymerized Lignocelluloses [J].Polymer-Plastics Technology and Engineering,2000,39(5),905-926.
    [31] Sadeghi M.; Hosseinzadeh H. Synthesis and superswelling behavior of carboxymethylcellulose-poly(sodium acrylate-co-acrylamide) hydrogel [J]. Journal of Applied PolymerScience,2008,108(2):1142-1151
    [32] Li N.; Bai R.B. A Novel Amine-Shielded Surface Cross-Linking of Chitosan HydrogelBeads for Enhanced Metal Adsorption Performance [J]. Industrial&EngineeringChemistry Research,2005,44(17):6692-6700
    [33] Zhao L.; Mitomo H. Adsorption of heavy metal ions from aqueous solution onto chitosanentrapped CM-cellulose hydrogels synthesized by irradiation [J]. Journal of AppliedPolymer Science,2008,110(3):1388-1395
    [34] El-Din H.M.N.; Taleb M.F.A.; El-Naggar A.W.M. Metal sorption and swelling charactersof acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation[J].Nuclear Instruments and Methods in Physics Research B,2008,266(11):2607-2613
    [35] Chauhan G.S.; Singh B.; Chauhan S. et al. Sorption of some metal ions oncellulosic-based hydrogels [J]. Desalination,2005,181(13):217-224
    [36] Mani P.; Joao F.M. Stimuli-Responsive Hydrogels Based on PolysaccharidesIncorporated with Thermo-Responsive Polymers as Novel Biomaterials [J]. Macromol.Biosi.2006,6:991~1008
    [37] TAKAMASA N.; KEISUKE H.; SEIJI K. Preparation of thermosensitivecellophane-graft-N-Isopropylacrylamide copolymer membranes and permeation of solutesthrough the membranes [J]. Journal of Applied Polymer Science,1997,66:209-216
    [38] Ting-Yu Liu,Shang-Hsiu Hu,Tse-Ying Liu et al., Magnetic-sensitive behavior ofintelligent ferrogels for controlled release of drug[J], Langmuir,2006,22(14):5974~5978.
    [39] Mani Prabaharan, Joao F. Mano. Stimuli-Responsive Hydrogels Based onPolysaccharides Incorporated with Thermo-Responsive Polymers as Novel Biomaterials[J]. Macromol. Biosi.2006,6,991~1008.
    [40] Zhang G.Q.; Zha L.S.; Zhou M.H. et al. Rapid deswelling of sodiumalginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogelsin response to temperature and pH changes [J]. Colloid polymer science,2005,283:431-438
    [41] Ton T.M.; Chen H.R. Synthesis and characterization of AB-crosslinked graft copolymersbased on maleiland chitosan and N-isopropylacrylamide [J]. Carbohydrate Polymers,2005,61:334-347
    [42] Liu J.Q.; Zhai M.L.; Ha H.F. Pre-irradiation grafting of temperature sensitive hydrogelon cotton cellulose fabric [J]. Radiation Physics and Chemistry,1999,55(1):55-59
    [43] Kubota H.; Shiobara N. Photografting of N-isopropylacrylamide on cellulose andtemperature-responsive character of the resulting grafted celluloses [J]. Reactive&Functional Polymers,1998,37(1):219-224
    [44] Gattás K.M.; Weisman E.; Andreopoulos F.M. et al. Nitrocinnamate-functionalizedgelatin: synthesis and “smart” hydrogel formation via photo-cross-linking[J].Biomacromolecules,1996,1503
    [45] Marsano E.; Bianchi E.; Viscardi A. Stimuli responsive gels based on interpenetratingnetwork of hydroxyl propylcellulose and poly(N-isopropylacrylamide)[J]. Polymer,2004,45(1):157-163
    [46] Kubota H.; Suka I.G.; Kuroda S. et al. Introduction of stimuli-responsive polymers intoregenerated cellulose film by means of photografting [J]. European Polymer Journal,2001,37(7):1367-1372
    [47] Lee S.B.; Ha D.I.; Cho S.K. et al. Temperature/pH-sensitive comb-type graft hydrogelscomposed of chitosan and poly(N-isopropylacrylamide)[J]. Journal of Applied PolymerScience,2004,92:2612-2620
    [48]高洁,汤烈贵。纤维素科学[M],北京,科学出版社,1999
    [49] Roy D.; Semsarilar M.; Guthrie J.T. et al. Cellulose modification by polymer grafting: Areview [J]. Chemical Society Reviews,2009,38(7),2046-2064
    [50] Hamidi M.; Azadi A.; Rafiei P. Hydrogel nanoparticles in drug delivery [J]. AdvancedDrug Delivery Reviews,2008,60(15):1638-1649
    [51] Zhou D.; Zhang L.; Zhou J. et al. Cellulose/chitin beads for absorption of heavy metals inaqueous solution[J]. Water Research,2003,38:2643-2650
    [52] Li N.; Bai R. Copper adsorption on chitosan-cellulose hydrogel beads: Behaviors andmechanisms [J]. Separation and Purification Technology,2005,42:237-244
    [53] Shih C. M.; Shieh Y. T.; Twu Y. K. Preparation of cellulose/chitosan blend films [J].Carbohydrate Polymers,2008,78:169-175
    [54] Tang Y.; Wang X.; Li Y. et al. Production and characterization of novel injectablechitosan/methylcellulose/salt blend hydrogels with potential application as tissueengineering scaffolds [J]. Carbohydrate Polymers,2008,82:833-838
    [55] Baumann M.D.; Kang C.E.; Stanwick J.C. et al. An injectable drug delivery platform forsustained combination therapy [J]. Journal of Controlled Release,2010,138:205-212
    [56] Rao K.; Subha M.; Naidu B. et al. Controlled release of diclofenac sodium and ibuprofenthrough beads of sodium alginate and hydroxyl ethyl cellulose blends[J]. Journal ofApplied Polymer Science,2011,102:5708-5785
    [57] Chang C.; Duan B.; Zhang L. Fabrication and characterization of novel macroporouscellulose-alginate hydrogels [J]. Polymer,2000,50:5467-5474
    [58] Saha A.; Manna S.; Nandi A.K. Temperature and pH sensitive photoluminescence ofriboflavin-methyl cellulose hydrogel: Towards AND molecular logic gate behavior[J].Soft Matter,2007,5:3992-4000
    [59] Nie K.; Pang W.; Wang Y. et al. Effects of specific bonding interactions inpoly(e-carprolactone)/silica hybrid materials on optical transpatrncy and melting behavior[J]. Materials Letters,2009,59:1325-1331
    [60] Fellah B.H.; Weiss P.; Gautheir O. et al. Bone repair using a new injectableself-crosslinkable bone substitute [J]. Journal of Orthopaedic Research,2010,24:628-636
    [61] Sannino A.; Madaghiele M.; Lionetto M.G. et al. A cellulose-based hydrogel as apotential bulking agent for hypocaloric diets: An in vitro biocompatibility study on ratintestine [J]. Journal of Applied PolymerScience,2011,102:1524-1534
    [62] Hirsch S.G.; Spontak R.J. Temperature-dependent property development in hydrogelsderived from hydroxypropylcellulose [J]. Polymer,2012,43:123-133
    [63] Marsano E.; Bianchi E.; Sciutto L. Microporous thermally sensitive hydrogels based onhydroxypropyl cellulose cross-linked with poly-ethyleneglicol diglycidyl ether[J].Polymer,2008,44:6835-6842
    [64] Yan L.; Shuai Q.; Gong X. et al. Synthesis of microporous cationic hydrogel ofhydroxypropyl cellulose (HPC) and its application on anionic dye removal [J]. Clean: Soil,Air, Water,2011,37:392-400
    [65] Rosiak J.M.; Ulanski P. Synthesis of hydrogels by irradiation of polymers in aqueoussolution [J]. Radiation Physical and Chemistry,2007,55:139-147
    [66] Fei B.; Wach R.W.; Mitomo H. et al. Hydrogel of biodegradable cellulose derivatives. I.Radiation-induced crosslinking of CMC [J]. Journal of Applied Polymer Science,2011,78:278-286
    [67] Bin F.; Wach R.A.; Mitomo H. et al. Hydrogel of biodegradable cellulose derivatives. I.Radiation-induced crosslinking of CMC [J]. Journal of Applied Polymer Science,2011,78:278-286
    [68] Liu P.; Peng J.; Li J. et al. Radiation crosslinking of CMC-Na at low dose and itsapplication as substitute for hydrogel [J]. Radiation Physics and Chemistry,2006,72:635-642
    [69] Wach R.A.; Mitomo H.; Yoshii F. et al. Hydrogel of biodegradable cellulose derivatives.II. Effect of some factors on radiation-induced crosslinking of CMC [J]. Journal ofApplied Polymer Science,2005,81:3030-3039
    [70] Fei B.; Wach R.W.; Mitomo H. et al. Hydrogel of biodegradable cellulose derivatives. I.Radiation-induced crosslinking of CMC [J]. Journal of Applied Polymer Science,2011,78:278-286
    [71] Ibrahim S.M.; Salmawi K.M.; Zahran A.H. Synthesis of crosslinked superabsorbentcarboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation [J].Journal of Applied Polymer Science,2008,104:2003-2010
    [72] El D.; Alla S.G.A.; El-Naggar A.W.M. Swelling and drug release properties ofacrylamide/carboxymethyl cellulose networks formed by gamma irradiation[J]. RadiationPhysics and Chemistry,2011,79:725-735
    [73] Trombino S.; Cassano R.; Bloise R. et al. Synthesis and antioxidant activity evaluation ofnovel cellulose hydrogel containing trans-ferulic acid [J]. Carbohydrate Polymers,2006,75:184-192
    [74] Sperling L.H. Interpenetrating polymer networks: An overview, interpenetratingnetworks [J]. American Chemical Society: Ishington, DC.
    [75] Nakayama A.; Kakugo A.; Gong J.P. et al. High mechanical strength double-networkhydrogel with bacterial cellulose [J]. Advanced Functional Materials,2004,14:1124-1134
    [76] Chang C.; Han K.; Zhang L. Structure and properties ofcellulose/poly(Nisopropylacrylamide) hydrogels prepared by IPN strategy [J]. Polymerfor Advanced Technologies,2009, doi:10.1002/pat.1616
    [77] Williamson S.L.; Armentrout R.S.; Porter R.S. et al. Microstructural examination ofsemi-interpenetrating networks of poly(N,N-dimethylamide) with cellulose or chitinsynthesized in lithium chloride/NN-dimethylacetamide[J]. Macromolecules,1997,31:8134-8145
    [78] Caykara T.; Sengiil G.; Birlik G. Preparation and swelling properties oftemperature-sensitive semi-interpenetrating polymer networks composed ofpoly[(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose [J].Macromolecular Materials and Engineering,2001,291:1044-1051
    [79] Bajpai A.K.; Mishra A. Carboxymethyl cellulose (CMC) based semi-IPNsas carriers for controlled release of ciprofloxacine: An in-vitro dynamic study[J].Journal of Materials Science Materials in Medicine,2012,19:2121-2131
    [80]吕昂;张俐娜。纤维素溶剂研究进展[J].高分子学报,2007,(10),937-944.
    [81] Lue A.; Zhang L.; Ruan D. Inclusion complex formation of cellulose in NaOH-thioureaaqueous system at low temperature[J]. Macromolecular Chemistry and Physics,2007,208(21):2359-2366
    [82] Ruan D.; Zhang L.; Zhou J. et al. Structure and properties of novel fibers spun fromcellulose in NaOH/thiourea aqueous solution[J]. Macromolecular Bioscience.2004,4(12),1105–1112
    [83] Cai J.; Zhang L.; Zhou J. et al. Novel fibers prepared from cellulose in NaOH/ureaaqueous solution [J]. Macromolecular Rapid Communications,2004,25(17):1558-1562
    [84] Chen X.M.; Burger C.; Fang D.F. et al. X-ray studies of regenerated cellulose fibers wetspun from cotton linter pulp in NaOH/thiourea aqueous solutions [J]. Polymer,2006,47(8):2839-2848.
    [85] Jin H.J.; Zha C.X.; Gu L.X. Direct dissolution of cellulose in NaOH/thiourea/ureaaqueous solution [J]. Carbohydrate Research,2007,342(6):851-858.
    [86] Cuculo J.A.; Smith C.; Sangwatanaro J.U. et al. A study on the mechanism ofdissolution of the cellulose/NH3/NH4SCN system[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1994,32(2):229-239.
    [87] Hattori M.; Koga T.; Shimaya Y. et al. Aqueous calcium thiocyanate solution as acellulose solvent. Structure and interactions with cellulose [J]. Polymer Journal,1998,30(1):43-48.
    [88] Xu Q.; Chen L.F. Ultraviolet spectra and structure of zinc-cellulose complexes in zincchloride solution [J]. Journal of Applied Polymer Science,1999,71(9):1441-1446.
    [89] Leipner H.; Fischer S.; Brendler E. et al. Structural changes of cellulose dissolved inmolten salt hydrates [J]. Macromolecular Chemistry and Physics,2000,201(15):2041-2049.
    [90] Xiao M.; Frey M.W. The role of salt on cellulose dissolution in ethylene diamine/saltsolvent systems [J]. Cellulose,2007,14(3):225-234.
    [91] Fischer S.; Leipner H.; Thummler K. et al. Inorganic Molten Salts as Solventsfor Cellulose[J]. Cellulose,2003,10(3):227-236.
    [92] Zhang Y.H.; Cui J.B.; Lynd L.R. et al. A transition from cellulose swelling to cellulosedissolution by o-phosphoric acid: evidence from enzymatic hydrolysis andsupramolecular structure[J]. Biomacromolecules,2006,7(2):644-648.
    [93]詹怀宇。维化学与物理[M].北京,科学出版社,2005,117-119.
    [94] Shigemasa Y.; Kishimoto Y.; Sashiwa H. et al. Dissolution of cellulose in dimethylsulfoxide. Effect of thiamine hydrochloride[J]. Polymer Journal,1990,22(12):1101-1103.
    [95] Philipp B.; Nehls I.; Wagenknecht W.13C-NMR spectroscopic study of thehomogeneous sulphation of cellulose and xylan in the N2O4-DMF system[J].Carbohydrate Research,1987,164(1):107-116.
    [96] Striouk S.; Wolf B.A. Fractional dissolution of “solid” unsubstituted cellulose [J].Macromolecular Chemistry and Physics,2000,201(15):1946-1949.
    [97] Radugin M.V.; Prusov A.N.; Lebedeva T.N. et al. Heat of dissolution of cellulose inwater and water-dimethyl sulfoxide mixtures [J]. Fibre Chemistry,2008,40(6):533-536.
    [98] Michael M.; Ibbett R.N.; Howarth O.W. Interaction of cellulose with amine oxidesolvents [J]. Cellulose,2000,7(1):21-33.
    [99] Zhao H.B.; Kwak J.H.; Wang Y. et al. Interactions between cellulose andN-methylmorpholine-N-oxide [J]. Carbohydrate Polymers,2007,67(1):97-103.
    [100] Isogai A.; Atalla R.H. Amorphous celluloses stable in aqueous media: Regenerationfrom SO2-amine solvent systems[J]. Journal of Polymer Science, Part A: PolymerChemistry,1991,29(1):113-119.
    [101] Isogai A.; Ishizu A.; Nakano J. et al. Dissolution mechanism of cellulose inSO2-amine-dimethylsulfoxide [J]. Journal of Applied Polymer Science,1987,33(4):1283-1290.
    [102] McCormick C.L.; Dawsey T.R. Preparation of cellulose derivatives via ring-openingreactions with cyclic reagents in lithium chloride/N, N-dimethylacetamide [J].Macromolecules,1990,23(15):3606-3610.
    [103] Takaragi A.; Minoda M.; Miyamoto T.; et al. Reaction characteristics of cellulose in theLiCl/1,3‐dimethyl‐2‐imidazolidinone solvent system[J]: Cellulose,1999,6(2):93-102.
    [104] Ass B.A.; Frollini E.; Heinze T. Studies on the homogeneous acetylation of cellulose inthe novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate [J].Macromolecular Bioscience,2004,4(11):1008-1013.
    [105] Hussain M.A.; Liebert T.; Heinze T. Acylation of cellulose withN, N’-carbonyldiimidazole-activated acids in the novel solvent dimethylsulfoxide/tetrabutylammonium fluoride [J]. Macromolecular Rapid Communications,2004,25(9):916-920.
    [106] Hermanutz F.; Gaehr F.; Uerdingen E. et al. New developments in dissolving andprocessing of cellulose in ionic liquids [J]. Macromolecular Symposia,2008,262(1):23-27.
    [107] De O.W.; Glasser W.G. Hydrogels from polysaccharides. I. cellulose beads forchromatographic support[J]. Journal of Applied Polymer Science,1996,60,63-68.
    [108] Heinze T.; Dicke R.; Koschella A. et al. Effective preparation of cellulose derivatives ina new simple cellulose solvent [J]. Macromolecular Chemistry Physics,2000,201,627-630.
    [109] Ostlund A.; Lundberg D.; Nordstierna L. et al. Dissolution and gelation of cellulose inTBAF/DMSO solutions: The roles of fluoride ions and water [J]. Biomacromolecules,2009,10,2401-2406.
    [110] Saito H.; Sakurai A.; Sakakibara M. et al. Preparation and properties of transparenthydrogels [J]. Journal of Applied Polymer Science,2003,90,3020-3025.
    [111] Fink H. P.; Weigel P.; Purz H.J. et al. Structure formation of regenerated cellulosematerials from NMMO-solution [J]. Progress in Polymer Science,2001,26,1473-1478.
    [112] Zhao H.; Kwak J.; Wang Y. et al. Interactions between cellulose andN-methylmorpholine-N-oxide [J]. Carbohydrate Polymers,2007,67,97-101.
    [113] Zhu S.; Wu Y.; Chen Q. et al.. Dissolution of cellulose with ionic liquids and itsapplication: a mini-review [J]. Green Chemistry,2006,8,325-328.
    [114] Li L.; Lin Z.B.; Xiao Y. et al. A novel cellulose hydrogel prepared from its ionic liquidsolution [J]. Chinese Science Bulletin,2009,54,1622-1627.
    [115] Kadokawa J.; Murakami M.; Kaneko Y. Afacile preparation of gel materialsfrom a solution of cellulose in ionic liquid[J]. Carbohydrate Research,2009,343,769-773.
    [116] Cai J.; Zhang L.; Liu S. et al. Dynamic self-assembly induced rapid dissolution ofcellulose at low temperature [J]. Macromolecules,2008,41,9345-9349.
    [117] Lue A.; Zhang L.; Ruan D. Inclusion complex formation of cellulose inNaOH-Thiourea aqueous system at low temperature [J]. Macromolecular Chemistryand Physics,2007,208,2359-2362.
    [118] Liang S.; Zhang L.; Li Y. et al. Fabrication and properties of cellulose hydratedmembrance with unique structure [J]. Macromolecular Chemistry and Physics,2007,208,594-598.
    [119] McCormick C.L.; Callais P.A.; Hutchinson B.H. Solution studies of cellulose in lithiumchloride and N,N-dimethylacetamide [J]. Macromolecules,1985,18(12):2394~2401
    [120]李状;石锦志;廖兵等。纤维素/LiCl/DMAc溶液体系的研究与应用[J]。高分子通报,2010,10:53-60
    [121] Swatloski R.P.; Spear S.K.; Holbrey J.D. et al. Dissolution of cellulose with ionicliquids [J]. Journal of the American Chemical Society,124,4974-4979.
    [122] El-Kaf rawy A. Investigation of the cellulose/LiCl/dimethylacetamide andcellulose/LiCl/N-methyl-2-pyrrolidinone solutions by13C NMR spectroscopy [J]. JAppl Polym Sci,1982,27(7):2435-2443
    [123] Timpa J.D. Application of universal calibration in gel permeation chromatography formolecular weight determinations of plant cell wall polymers: cotton fiber [J]. J Agr FoodChem,1991,39(2):270-275
    [124] McCormick C.L; Callais P.A; Hutchinson B.H. Solution studies of cellulose in lithiumchloride and N,N-dimethylacetamide [J]. Macromolecules,1985,18(12):2394~2401.
    [125] Terbojevich M.; Cosani A.; Conio G. et al. Mesophase formation and chain rigidity incellulose and derivatives.3. Aggregation of cellulose in N,N-dimethylacetamide-lithiumchloride [J]. Macromolecules,1985,18(4):640-646
    [126] St ryuk S,Eckelt J,Wolf B A. Solutions of cellulose in DMAc/LiCl: migration of thesolute in an electrical field [J]. Cellulose,2005,12(2):145-149.
    [127] Rinaudo M. Polysaccharide Characterization in Relation with Some Original Properties[J]. Inuyama:John Wiley&Sons Inc,1993,183-232.
    [128] Aono H.; Tat sumi D.; Mat sumoto T. Characterization of Aggregate Structure inMercerized Cellulose/LiCl·DMAc Solution Using Light Scattering and RheologicalMeasurements [J]. Biomacromolecules,2006,7(4):1311-1317
    [129] Sjolm E.; Gustaf sson K.; Eriksson B. et al. Aggregation of cellulose in lithiumchloride/N,N-dimethylacetamide [J]. Carbohyd Polym,2000,41(2):153-161
    [130] Roder T.; Schelosky N.; Glatter O. Solutions of cellulosein N,N-dimethylacetamide/lithium chloride studied by light scattering methods [J].Polymer,2001,42(16):6765-6773
    [131] Terbojevich M.; Cosani A.; Conio G. et al. Mesophase formation and chain rigidity incellulose and derivatives.3. Aggregation of cellulose in N,N-dimethylacetamide-lithiumchloride [J]. Macromolecules,1985,18(4):640-646
    [132] Churms S.C. Recent progress in carbohydrate separation by high-performance liquidchromatography based on size exclusion [J]. J Chromatog A,1996,720(122):151-166
    [133] Mohammad R.K. Comparison of various solvents for determination of intrinsicviscosity and viscometric constants for cellulose [J]. J Appl Polym Sci,2002,86(9):2189-2193.
    [134] Bert H.F.; Gustaf K.; Berggren R. et al. Dissolution of softwood kraft pulps by directderivatization in lithium chloride/N,N-dimethylacetamide [J]. J Appl Polym Sci,2004,94(2):424-431.
    [135] Said M.A.; Alloin F.; Paillet M. et al.Tangling Effect in Fibrillated CelluloseReinforced Nanocomposites [J]. Macromolecules,2004,37(11):4313-4316
    [136] Bledzki A.K. Gassan Composites reinforced with cellulose based fibres [J]. J. ProgPolym Sci,1999,24(2):221-274
    [137] Johan M.F.; Paul G. The nature of adhesion in composites of modified cellulose fibersand polypropylene [J]. J Appl Polym Sci,1991,42(3):609-620.
    [138] Wu J.; Yu D.; Chan C.M. et al. Effect of fiber pretreatment condition on the interfacialstrength and mechanical properties of wood fiber/PP composites [J]. J Appl PolymSci,2000,76(7):1000-1010
    [139] Ichazo M.N.; Albano C.; Gonzalez J. et al. Polypropylene/wood flour composites:treatments and properties [J]. Compos St ruct,2001,54(223):207-214
    [140] Araki J.; Kataoka T.; Kat suyama N. et al. A preliminary study for fiber spinning ofmixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithium chloride(DMAc/LiCl) solvent system [J]. Polymer,2006,47(25):8241-8246
    [141] Wolfgang G.G.; Razaina T.; Rajesh K.J. et al. Fiber-reinforced cellulosic thermoplasticcomposites [J]. J Appl Polym Sci,1999,73(7):1329-1340.
    [142] Hughes M.; Hill C.A.S.; Hague J.R.B. The fracture toughness of bast fibre reinforcedpolyester composites Part1Evaluation and analysis [J]. J Mater Sci,2002,37(21):4669-4676.
    [143] Nishino T.; Mat suda I.; Hirao K. All-Cellulose Composite [J]. Macromolecules,2004,37(20):7683-7687
    [144] Nayak J.N.; Chen Y.; Kim J. Removal of Impurities from Cellulose Films after TheirRegeneration from Cellulose Dissolved in DMAc/LiCl Solvent System [J]. Ind EngChem Res,2008,47(5):1702~1706.
    [145] Araki J.; Kataoka T.; Kat suyama N. et al. A preliminary study for fiber spinning ofmixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithium chloride(DMAc/LiCl) solvent system [J]. Polymer,2006,47(25):8241-8246
    [146] Kim J.; Wang N.; Chen Y. et al. Electroactive-paper actuator made withcellulose/NaOH/urea and sodium alginate [J]. Cellulose,2007,14(3):217-223.
    [147] Liebert T.F.; Heinze T.J. Exploitation of Reactivity and Selectivity in CelluloseFunctionalization Using Unconventional Media for the Design of Products ShowingNew Superstructures [J]. Biomacromolecules,2001,2(4):1124-1132
    [148] Heinze T.; Liebert T. Unconventional methods in cellulose functionalization [J]. ProgPolym Sci,2001,26(9):1689-1762
    [149] Mohammad R.K. Comparison of various solvents for determination of intrinsicviscosity and viscometric constants for cellulose [J]. J Appl Polym Sci,2002,86(9):2189-2193
    [150] Bianchi E.; Marsano E.; Ricco L. et al. Free radical grafting onto cellulose inhomogeneous conditions: Modified cellulose–acrylonitrile system [J]. CarbohydPolym,1998,36(4):313~318.
    [151] Jenkins A.D.; Kratochvìl P.; Stepto R.F.T. Glossary of basic terms in polymer science(IUPAC Recommendations1996), Pure Appl. Chem.68(1996)2287–2311.
    [152] Chang C.; Han K.; Zhang L. Structure and properties ofcellulose/poly(Nisopropylacrylamide) hydrogels prepared by IPN strategy [J]. Polymerfor Advanced Technologies,2009, doi:10.1002/pat.1616
    [153] Tosh B.; Chowdhury N.S.; Narendra N.D. Homogeneous esterification of cellulose inthe lithium chloride-N,N-dimethylacetamide solvent system: Effect of temperature andcatalyst [J]. Carbohydrate Research,2000,327,345-352.
    [154] Uraki Y.; Imura T.; Kishimoto T., et al. Body temperature-responsive gels derived fromhydroxypropylcellulose bearing lignin II: Adsorption and release behavior [J]. Cellulose,2006,13(3):225-234
    [155] Cheng B.W. Research on the dissolubility of cellulose in LiCl/polar solvent system [J].Journal of Tianjin Institute of Texitile Science and Technology,2000,19(2):1-3.
    [156] Liang L.; Rieke P.C.; Liu J. et al. Surfaces with reversible hydrophilic/hydrophobiccharacteristics on cross-linked poly(N-isopropylacrylamide) hydrogels [J]. Langmuir,2000,16,8015-8023
    [157] Sivaraj R.; Namasivayam C.; Kadirvelu K. Orange peel as an adsorbent in the removalof acid violet17(acid dye) from aqueous solutions [J]. Waste Management,2001,21(1):105-110
    [158] Kannan N.; Sundaram M.M. Kinetics and mechanism of removal of methylene blue byadsorption on various carbons--A comparative study [J]. Dyes and Pigments,2001,51(1):25-40[159] Krzysztof Matyjaszewski, Jianhui Xia. Atom Transfer RadicalPolymerization[J]. Chem.Rev.,2001,101:2921-2990.
    [159] Ho Y.S.; Mckay G. Pseudo-second order model for sorption processes [J]. ProcessBiochemistry,1999,34(5):451-465
    [160] Chiron N.; Guilet R.; Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica:isotherms and kinetic models[J]. Water Res,2003,37(13):3079-308
    [161] Ho Y.S.; Ng J.C.Y.; McKay G. Removal of lead(II) from effluents by sorption on peatusing second-order kinetics[J]. Sep. Purif. Methods,2000,29(2):189-23
    [162]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社,1983:6
    [163] Saucedo I.; Guibal E.; Roussy J. et al. Uranium sorption by glutamate glucan:amodified chitosan-part: equilibrium studies. Water S A,1993,19:113-11
    [164] Krzysztof Matyjaszewski, Jianhui Xia. Atom Transfer Radical Polymerization [J].Chem.Rev.,2001,101:2921-2990.
    [165] Huang X.; Wirth M.J. Surface Initiation of Living Radical Polymerization for Growthof Tethered Chains of Low Polydispersity[J]. Macromolecules,1999,32:1694-1696.
    [166] Anna C.; Eva M. Atom Transfer Radical Polymerization from Cellulose Fibers atAmbient Temperature[J]. J. AM. CHEM. SOC.,2002,6:900-901.
    [167] Anna C.; Eva M. ATRP Grafting from Cellulose Fibers to Create Block-CopolymerGrafts [J]. Biomacromolecules,2003,4:1740-1745.
    [168] Sui X.F.; Yuan J.Y. Synthesis ofCellulose-graft-Poly(N,N-dimethylamino-2-ethylmethacrylate) Copolymers viaHomogeneous ATRP and Their Aggregates in Aqueous Media [J].Biomacromolecules,2008,9:2615-2620.
    [169] Tao M.; Xia G.; Jun Z. et.al. Graft copolymers prepared by atom transfer radicalpolymerization from cellulose [J]. Polymer (2009), doi:10.1016/j.polymer.2008.
    [170] Lin C.X.; Zhen H.Y.; Lin M.H. Preparation of cellulose graft poly(methyl methacrylate)copolymers by atom transfer radical polymerization in an ionic liquid [J]. CarbohydratePolymers,2009.78:432-438.
    [171] Zhang J.; Xu X.D.; Wu D.Q. et al. Synthesis of thermosensitiveP(NIPAAm-co-HEMA)/cellulose hydrogel via “click” chemistry [J]. CarbohydratePolymers,2009, doi:10,1016/j.carbpol,2009.01.23
    [172] Hao, Y., Peng, J., Li, J., Zhai, M., Wei, G., An ionic liquid as reaction media forradiationinduced grafting of thermosensitive poly (N-isopropylacrylamide) ontomicrocrystalline cellulose, Carbohydrate Polymers (2009), doi:10.1016/j.carbpol.2009.02.025
    [173] Ngah W.S.W.; Hanafiah M.A.K.M. Removal of heavy metal ions from wastewater bychemically modified plant wastes as adsorbents: A review [J]. Bioresource Technology,2008,99(10):3935-3948
    [174] Cheng S.P. Heavy metal pollution in China: Origin, pattern and control [J]Environmental Science and Pollution Research,2003,10(3):192-198.
    [175] Ip C.C.M.; Li X.D.; Zhang G. et al. Heavy metal and Pb isotopic compositions ofaquatic organisms in the Pearl River Estuary, South China[J]. EnvironmentalPollution,2005,138(3):494-504.
    [176] Peralta V.J.R.; Lopez M.L.; Narayan M. et al. The biochemistry ofenvironmental heavy metal uptake by plants: implications for the food chain[J].Int J Biochem Cell Biol,2009,41(8-9):1665-1677.
    [177] Meunier N.; Drogui P.; Montane C. et al. Comparison between electrocoagulationand chemical precipitation for metals removal from acidic soil leachate[J].Journal of Hazardous materials,2006,137(1):581-590.
    [178] Bessbousse H.; Rhlalou T.; Verchere J.F. et al. Removal of heavy metal ions fromaqueous solutions by filtration with a novel complexing membrane containingpoly(ethyleneimine) in a poly(vinyl alcohol) matrix[J]. Journal of MembraneScience,2008,307(2):249-259.
    [179] Alyuz B.; Veli S. Kinetics and equilibrium studies for the removal of nickel andzinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardousmaterials,2009,167(1-3):482-488.
    [180] Sprynskyy M. Solid–liquid–solid extraction of heavy metals (Cr, Cu, Cd, Ni andPb) in aqueous systems of zeolite–sewage sludge[J]. Journal of Hazardousmaterials,2009,161(2-3):1377-1383.
    [181] Li N.; Bai R.B. A Novel Amine-Shielded Surface Cross-Linking of ChitosanHydrogel Beads for Enhanced Metal Adsorption Performance[J]. Industrial&Engineering Chemistry Research,2005,44(17):6692-6700
    [182] Zhao L.; Mitomo H. Adsorption of heavy metal ions from aqueous solution ontochitosan entrapped CM-cellulose hydrogels synthesized by irradiation[J]. Journal ofApplied Polymer Science,2008,110(3):1388-1395
    [183] El-Din H.M.N.; Taleb M.F.A.; El-Naggar A.W.M. Metal sorption and swellingcharacters of acrylic acid and sodium alginate based hydrogels synthesized by gammairradiation[J]. Nuclear Instruments and Methods in Physics Research B,2008,266(11):2607-2613
    [184] Chauhan G.S.; Singh B.; Chauhan S. et al. Sorption of some metal ions oncellulosic-based hydrogels[J]. Desalination,2005,181(13):217-224
    [185] Czaja W.K.; Young D.J.; Kawecki M. et al. The future prospects of microbial cellulosein biomedical applications[J]. Biomacromolecules,2007,8(1):1-12
    [186] Samaneh S.S.; Saeed S.S. Cellulose-graft-polyacrylamide/hydroxyapatite compositehydrogel with possible application in removal of Cu (II) ions [J], Reactive&FunctionalPolymers73(2013)1523–1530
    [187] Yang S.P.; Fu S.Y.; Liu H. et al. Superabsorbent hydrogel beads based oncarboxymethyl cellulose for removal of Pb2+, Ni2+and Cu2+. Bioresource,2010,5(2):1114-1125
    [188] Wang W.B.; Huang D.J.; Kang Y.R. et al. One-step in situ fabrication of a granularsemi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption ofCu2+ion [J]. Colloids and Surfaces B: Biointerfaces,2003,106:51-59
    [189] Beneke C.E.; Viljoen A.M.; Hamman, J. H.(2009). Polymeric plant-derived excipientsin drug delivery. Molecules,14,2602–2620
    [190] Guenther U.; Smirnova I.; Neubert, R.H.H. Hydrophilic silica aerogels as dermal drugdelivery systems–Dithranol as a model drug. European Journal of Pharmaceutics andBiopharmaceutics,2008,69:935–942
    [191] Malafaya, P.B.; Silva G.A.; Reis R.L. Natural-origin polymers as carriers and scaffoldsfor biomolecules and cell delivery in tissue engineering applications. Advanced DrugDelivery Reviews,2007,59:207–233
    [192] Don T.M.; Huang M.L.; Chiu A.C. et al. Preparation of thermo-responsive acrylichydrogels useful for the application in transdermal drug delivery systems [J], MaterialsChemistry and Physics,2008,107:266-273
    [193] Wu W.; Liu J.; Cao S.Q. et al. Drug release behaviors of a pH sensitivesemi-interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) andstar poly[2-(dimethylamino)ethyl methacrylate], International Journal of Pharmaceutics416(2011)104–109
    [194] Mulye,N.V, Turco,SJ. A simple model based on first order kinetics to explain release ofhighly water solube drugs from porous diclcium phosphate Dehydrate matrices[J]. DrugDev.Ind.Pharm,1995,(21):943-953
    [195] Bajpai J.; Shrivastava R.; Bajpai A.K.; Dynamic and equilibrium studies onadsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate andgelatin. Colloids and Surfaces A: Physicochem. Eng. Aspects,2004,236:81-9
    [196] Marsano E.; Bianchi E.; Viscardi A. Stimuli responsive gels based on interpenetratingnetwork of hydroxyl propylcellulose and poly(N-isopropylacrylamide)[J]. Polymer,2004,45:157-163
    [197] Joshi R.V.; Nelson C.E.; Poole K.M. et al. Dua pH-and temperature-responsivemicroparticles for protein delivery to ischemic tissues [J]. Acta Biomateriallia,2013,9:6526-6534
    [198] Sun X.M.; Shi J.; Xu X.D., et al. Chitosan coated alginate/poly(N-isopropylacrylamide)beads for dual responsive drug delivery [J]. International Journal of BiologicalMacromolecules,2013,59:273-281
    [199] kinen M.; Sepp U.; Hein P. et al. In vitro evaluation of microcrystalline chitosan (MCCh)as gel-forming excipient in matrix granules. European Journal of Pharmaceutics andBiopharmaceutics,2002,54:33–40.
    [200] Domb A.J.; Kost J.(1997). Handbook of biodegradable polymers. Amsterdam, TheNetherlands: Harwood [J].
    [201]林亚平;董芸。药物释放数学模型的评价及选择[J].数理医药杂志,1994,7(4):308-310
    [202]陈力;刘韬;黄亮。缓控释系统药物释放的数学模型研究进展[J].药学专论,2008,17(11):1-3
    [203] Ritger P.L.; Peppas N.A. A simple equation for description of solute release II Fickianand anomalous release from swellable devices [J]. Journal Controlled Release,1987,5(1):37-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700