用户名: 密码: 验证码:
聚2,3-二甲基苯胺及其无机纳米复合物的制备及防腐性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管大量的文献报道都证明了聚苯胺具有良好的耐腐蚀性能,但是由于分子链骨架刚性较强,分子间相互作用力大,导致溶解、加工性较差,使其在商业应用前景上受到很大的限制。对聚苯胺进行一定的化学修饰或改性,如在聚苯胺的分子链上引入一定的取代基生成聚苯胺衍生物可以有效的改善PANI难溶解和不易加工的缺陷。聚2,3-二甲基苯胺(P(2,3-DMA))作为聚苯胺的主要衍生物之一,由于苯环上两个甲基(-CH3)的空间位阻效应,可以降低PANI分子链的刚性,减小链间相互作用力,可以很大程度上提高PANI的溶解性,因此在防腐方面具有较好的应用前景。并利用复合法制备聚2,3-二甲基苯胺/无机纳米复合材料,充分发挥聚合物和无机纳米材料各自的优势,使P(2,3-DMA)的防腐性能和热稳定性都有所提高。具体工作如下:
     采用乳液聚合法,以十二烷基苯磺酸(DBSA)既作为乳化剂又作为掺杂剂合成了十二烷基苯磺酸掺杂的P(2,3-DMA)。通过红外光谱,X射线衍射,场发射扫描电镜对聚合物的结构和形貌进行表征。并分别使用循环伏安法和热重分析对P(2,3-DMA)的电化学和热稳定性能进行了研究。将在同等条件下合成的PANI和P(2,3-DMA)加入到环氧树脂中,在钢铁表面进行涂层,在3.5%的NaCl溶液中测试其耐腐蚀性能。
     首次在磷酸体系中用过硫酸铵作氧化剂采用原位溶液聚合法合成了磷酸掺杂的P(2,3-DMA)/TiO2复合物。采用负载有复合物的碳纸为工作电极,使用电化学测试及产率表征,探讨了TiO2的含量对复合物性能的影响,得到TiO2的最佳含量为15%。同时对合成的复合物使用红外光谱,X射线衍射,场发射扫描电镜等进行结构和形貌表征。将复合物加入到环氧树脂中进行涂层,然后采用开路电位-时间曲线和交流阻抗法对其耐腐蚀性能进行研究。
     采用过硫酸铵为氧化剂,十二烷基苯磺酸(DBSA)为乳化剂的乳液聚合体系,合成了十二烷基苯磺酸掺杂的P(2,3-DMA)-Al2O3复合物。采用红外光谱分析、紫外可见光谱、扫描电镜对复合材料的结构和形貌进行表征。并使用循环伏安法和热重分析对复合物的电化学和热稳定性能进行了研究。将复合材料加入到环氧树脂中,在低碳钢表面制备涂层。采用塔菲尔极化曲线,开路电位-时间曲线对涂层的防腐性能进行研究。
     研究结果表明:
     (1)用十二烷基苯磺酸既做乳化剂又做掺杂剂采用乳液法成功的合成了P(2,3-DMA)。表征结果表明P(2,3-DMA)具有和PANI类似的结构。两个甲基取代基造成的空间位阻效应降低了PANI分子链的刚性,从而有效的提高了其在有机溶剂中的溶解性。通过交流阻抗谱,开路电位-时间曲线测试,Tafel极化曲线测试表明,P(2,3-DMA)具有比PANI更好的耐腐蚀性能,有可能替代PANI在金属防腐领域大规模使用。
     (2)对采用原位氧化聚合法在磷酸溶液中用过硫酸铵做氧化剂合成出的P(2,3-DMA)-TiO2复合物进行表征。红外光谱表明P(2,3-DMA)和TiO2之间有相互作用力的存在,这种相互作用力可能存在于P(2,3-DMA)大分子链的N原子和TiO2纳米颗粒的Ti原子之间。Ti为过度金属元素,具有3d4s的外层电子结构,有空轨道,而P(2,3-DMA)中的N原子含有孤对电子,具有空轨道的Ti原子可以和具有孤对电子的N原子之间形成N-Ti配位键。X射线衍射表明,TiO2的晶型没有受到P(2,3-DMA)的影响。场发射扫描表明TiO2纳米颗粒被P(2,3-DMA)聚合物完全包覆。在3.5%的NaCl溶液中的浸泡实验结果表明P(2,3-DMA)-TiO2复合物环氧涂层具有比P(2,3-DMA)和PANI更好的耐腐蚀性能。P(2,3-DMA)-TiO2复合物优良的耐腐蚀性能是因为其良好的屏蔽作用,P(2,3-DMA)的氧化还原性和相对较高的比表面积。
     (3)采用十二烷基苯磺酸既作为乳化剂又作为掺杂剂成功的合成出了十二烷基苯磺酸掺杂的P(2,3-DMA)-Al2O3复合物。结构分析表明Al2O3纳米颗粒和P(2,3-DMA)大分子之间有相互作用力的存在。热重分析表明Al2O3纳米颗粒的加入提高了P(2,3-DMA)的热稳定性。P(2,3-DMA)-Al2O3具有可逆且稳定的电化学活性,塔菲尔极化曲线,开路电位-时间曲线表明其在3.5%NaCl耐腐蚀性能高于P(2,3-DMA)。
     (4)P(2,3-DMA)及其无机纳米粒子复合物材料具有良好的溶解性及耐腐蚀性能,有望在防腐领域替代PANI大规模使用。
Despite the large amount of literature has demonstrated that polyaniline has goodcorrosion resistance of mild steel, the poor solubility and processing properties of PANIcaused by its high rigidity of molecular chain backbone and large intermolecularinteractions restricted its commercial applications greatly. One of a certain chemicalmodifications of polyaniline, such as the introduction of certain substituents generatepolyaniline derivatives can effectively improve the insolubility and difficultprocessability of PANI. Poly(2,3-dimethylaniline)(P(2,3-DMA)) is a major derivativesof polyaniline, which was substituted by two methyl groups on the same side of benzenering. The stiffness of PANI backbone was effectively decreased due to the high sterichindrance between the molecular chains so that the solubility of PANI could beimproved. P(2,3-DMA) has a good application prospect in terms of corrosion. Thepolymer–nano-inorganic materials-based composites may combine the advantages ofpolymers like flexibility, processability, durability, load bearing capability, etc. and ofinorganic nanofillers like selectivity, thermal stability, high melting and boiling points,and densities. So we prepared a series of poly(2,3-dimethylaniline)/nano-inorganiccomposite materials in order to improve the corrosion resistance and thermal stability ofP(2,3-DMA). Details are as follows:
     P(2,3-DMA) was synthesized by emulsion polymerization using dodecyl benzenesulfonic acid as emulsifier and dopant. Effects of the two methyl substituents on thestructure and morphology of polyaniline were characterized by Fourier TransformationInfrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WXRD), Field emissionscanning electron microscopy (FESEM). Cyclic voltammetry measurements (CV) andthermogravimetric analysis (TGA) was used to study the electrochemical and thermalstability. Epoxy resin coating containing P(2,3-DMA) and PANI respectively werepainted on mild steel and accelerated immersion tests were performed to evaluate theanticorrosion property of the coatings in3.5%NaCl solution.
     Poly(2,3-dimethylaniline)-TiO2composite (PTC) was prepared by oxidativepolymerization of2,3-dimethylaniline in phosphoric acid medium with ammoniumpersulphate as oxidant for the first time. Carbon papers loaded PTC were used asworking electrode for electrochemical tests to study the effects of TiO2on the propertiesof the composite. The results showed that the property was best when the content of TiO2was15%. The composite was characterized by Fourier transformation infrared(FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM).Suitable coating with PTC was formed on steel using epoxy resin, and its corrosionresistance behavior was studied by open circuit potential (OCP) and electrochemicalimpendence spectroscopy (EIS) in3.5%NaCl solution.
     Poly(2,3-dimethylaniline)/nano-Al2O3composite (PAC) was synthesized byemulsion polymerization using dodecyl benzene sulfonic acid as emulsifier and dopant.The structure of PAC was characterized by Fourier fransformation infrared spectroscopy,UV–visible adsorption spectroscopy, and field emission scanning electron microscopy.The thermal stability was studied by thermogravimetric analysis, and theelectrochemical performances were studied by cyclic voltammetry measurements.Epoxy coatings containing PAC and P(2,3-DMA) respectively, were painted on steel,and accelerated immersion tests were performed to evaluate the anticorrosion propertyof the coatings in3.5%NaCl solution.
     The results showed that:
     (1) P(2,3-DMA) was successfully prepared by emulsion polymerization usingdodecyl benzene sulfonic acid (DBSA) as emulsifier and dopant. The results indicatedthat the structure of P(2,3-DMA) was similar with that of PANI. The high sterichindrance between the molecular chains caused by the two methyl group substitutionseffectively decreased the stiffness of PANI backbone so that the solubility of PANI wassignificantly improved. The coatings of P(2,3-DMA) were found to offer good corrosionprotection and showed a better anticorrosion performance than conventional polyanilinecoating according to the results of EIS, OCP and TAF measurements in3.5%NaClsolution, which shows a promising prospect for P(2,3-DMA) in the field of corrosionprotection and more suitable for the industrialization.
     (2) P(2,3-DMA)-TiO2composite was successfully prepared by chemicalpolymerization of2,3-DMA and TiO2in the presence of phosphoric acid usingammonium persulfate as oxidant. The FTIR spectra show that there is an interactionexists at the interface of P(2,3-DMA) and TiO2particles. The interaction may beassociated with the interaction of titanic and nitrogen atom in P(2,3-DMA)macromolecule. Titanium is a transition metal, has intense tendency to formcoordination compound with nitrogen atom in P(2,3-DMA) macromolecule. XRDpattern of PTC indicates that the crystallinity of TiO2is not altered by P(2,3-DMA)polymer. The SEM study of PTC clearly shows that TiO2particles are fully covered by P(2,3-DMA). Open circuit potentials and impedance studies of coated samples in3.5%NaCl immersion test have shown that coating containing PTC has got higher corrosionresistant property than that of P(2,3-DMA) and PANI. The higher corrosion protectionability of coating containing PTC has been associated with the increase in barrier todiffusion, redox properties of P(2,3-DMA) as well as very large surface area availablefor the liberation of dopant due to the addition of nano-TiO2particles.
     (3) PAC was successfully prepared by emulsion polymerization using DBSA asemulsifier and dopant. The structure characterization shows that there is an interactionbetween the Al2O3nanoparticles and P(2,3-DMA) macromolecules. The TGA indicatesthat the thermal stability of PAC is much better than that of P(2,3-DMA). Theelectrochemical behavior of the PAC is reversible and stable, and its anticorrosionperformance is better than that of P(2,3-DMA) in3.5%NaCl solution.
     (4) P(2,3-DMA) and its inorganic nanoparticles composites have good solubilityand corrosion resistance, is expected to replace the massive use of PANI in the field ofanticorrosion of metals.
引文
[1] G. iri-Marjanovi.Recent advances in polyaniline research: Polymerization mechanisms,structural aspects, properties and applications[J].Synth.Met.2013,177:1-47.
    [2] NACE.Corrosion Costs and Preventive Strategies in the United States[M].A Supplement toMaterials Performance.2002:2-11.
    [3] H.Zhang,S.Gu,N.Xie.Effect of La2O3on the wear behavior of MoSi2at hightemperature[J].J.Rare Earthss,2011,29(4):370-373.
    [4] N.Horasawa,S.Takahashi,M.Marek.Galvanic interaction between titanium and galliumalloy or dental amalgam[J].Dent.Mater.1999,15(5):318-322.
    [5] M.G.Mogul.Reduce corrosion in amine gas absorption columns[J].Hydrocarbon processing,1999,78(10):47-56.
    [6] E.Groshart. Design for finishing [J].Metal Finishing,1986,(4):63-65.
    [7] M.L.Zheludkevich,D.G.Shchukin,K.A.Yasakau,et al.Anticorrosion coatings withself-healing effect based on nanocontainers impregnated with corrosion inhibitor [J].Chem.Mater.2007,19(3):402-411.
    [8] Y.I.Kuznetsov.Current state of the theory of metal corrosion inhibition [J].Prot.Met.2002,38:103-111.
    [9] A.Aytac,U.Ozmen,M.Kabasakaloglu.Investigation of some Schiff bases as acidic corrosionof alloy AA3102[J].Mater.Chem.Phys.2005,89:176-181.
    [10] D.Jayaperumal,P.Subramanian,N.Palaniswamy,et al.Studies on Inhibitors for Acidizationof Oil-Wells [J].Bull.Electrochem.1995,11:313-316.
    [11] G.Lendvay-Gyorik, G.Meszaros, B.Lengyel,et al.Electrochemical and quantum chemicalstudies on the formation of protective films by alkynols on iron [J].Corros.Sci.2003,45:1685-1702.
    [12] S.Sathiyanarayanan,C.Marikkannu,N.Palaniswamy.Corrosion inhibition effect of tetraminesfor mild steel in1M HCl [J].Appl.Surf.Sci.2005,241:477-484.
    [13] M.Vishnudevan,M.Natesan.Inhibition of corrosion of mild steel in acidic solutions usingN-benzyldimethylamine [J].Bull.Electrochem.2000,16:49-53.
    [14] F.C.Giacomelli,C.Giacomelli,M.F.Amadori,et al.Inhibitor effect of succinic acidon the corrosion resistance of mild steel: electrochemical gravimetric and optical microscopicstudies [J].Mater.Chem.Phy.2004,83:124-128.
    [15] S.Ferreira,C.Giacomelli, F.C.Giacomelli,et al.Evaluation of the inhibitor effect ofL-ascorbic acid on the corrosion of mild steel [J].Mater.Chem.Phy.2004,83:129-134.
    [16] M.A.Pech-Canul,M.Echeverria.Corrosion inhibition of steel in neutral chloride solutionsby mixtures of N-phosphono-methyl-glycine with zinc ions [J].Corros.Eng.Sci.Techn.2003,38:135-138.
    [17] M.A.Quraishi,F.A.Ansari,D.Jamal.Thiourea derivatives as corrosion inhibitors formild steel in formic acid [J].Mater.Chem.Phys.2003,77:687-680.
    [18]王利祥,王佛松.导电聚合物-聚苯胺的研究进展[J].应用化学,1990,7(6):1-8.
    [19] A.G.MacDiarmid,A.J.Epstein.Secondary doping in polyaniline [J].Synth.Met.1995,69:85-92.
    [20] Y.Chen,E.T.Kang,K.Q.Neoh.Intrisic redox states of polyaniline studied by high-resolutionX-ray photoelectron spectroscopy [J].Colloid.Polym.Sci.2001.279(1):73-76.
    [21] W.S.Huang,A.G.MacDiarmid.Polyaniline, a Novel Conducting polymer. Morphologyand chemistry of its oxidation and reduction in aqueous electrolytes [J]. J. Chem. Soc. Chem.Commun.Faraday Trans.1986,82(1):2385-2396.
    [22] M.Wan.Absorption spectra of thin film of polyaniline [J].J.Polym.Sci.Part A:Polym.Chem.1992.30(4):543-549.
    [23] J.C.Chiang,A.G.Macdiarmind.Polyanine: Protonic acid doping of the emeraldine formto the metallic regime [J].Synth.Met.1986,13:193-205.
    [24] S.K.Dhwan,N.D.Singh.Rodrigues.Electromagnetic shielding behaviour of conductingpolyanilin composites [J].Sci.Technol.Adv.Mater.20034(2):105-113.
    [25] B.Lundberg,W.R.Salaneck.Pressure-tempreature and field dependence of hoppingconduction in polyaniline [J].Synth.Met.1987,21:144-147.
    [26]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应[J].武汉大学学报,1993(6):65-73.
    [27] W.Li,M,Wan.Stability of polyanilin synthesized by a doping-dedoping-redoping method[J].J.Appl.Polym.Sci.1999,71(1-4):615-621.
    [28] Y.Cao,S.Paul,J.H.Alan.Counterion induced processibility of conducting polyanilineand of conducting polyblends of polyaniline in bulk polymers [J].Synth.Met.1992,48(1):91-97.
    [29] H.H.S.Javadi,R.Laversanne,A.J.Epstein,et al.ESR of protonated “emeraline”: insulatorto metal transition [J].Synth.Met.1989,29(1):439-444.
    [30] S.E.Moultion,P.C.Innis,L.P.Kane-Maguire.Polyaniline and characterization of conductingpolyaniline nanoparticles dispersions [J].Curr.Appl.Phys.2004,4:402-406.
    [31] K.Uvda,M.L.gdlund,P.Dannetun,L.Bertilsson, et al. Vapor deposited polyaniline [J].Synth.Met.1989,29(1):451-456.
    [32] R.Hernadaz,A.F.Diaz,R.Waltman,J.Bargon.Surface characteristics of thinfilms preparedby plasma and electrochemical polymerizations [J].J.Phys.Chem.1984,88(15):3333-3337.
    [33] M.Angelopoulos,J.M.Shaw,K.L.Lee,et al.Coducting Polymers as LithograaphicMaterials [J].Polym.Eng.Sci.1992,32:1535-1538.
    [34] S.Z.Li,M.X.Wan.Photo-induce doped polyaniline by the vinylidene chloride and methylacrylate copolymer as photo acid generator [J].Chin.J.Polym.Sci.1997,15:108-113.
    [35] A. R. Despic, V. P. Parkhutik;,in: J.O.M. Bockris, BE Conway, RM White (Eds.), ModernAspects of Electrochemistry,20Plenum Press, New York,1989, Vol.20, Charp.6.
    [36] A.F.Diaz,J.A.Logan.Electroactive polyaniline films [J].J.Electroanal.Chem.InterfacialElectrochem.1980,111(1):111-114.
    [37] H.Okamoto,M.Okamoto,T.Kotaka.Effect of counter ions in electrochemical polymerizationmedia on the structure and response of the product polyaniline films. Structure and properties ofpolyaniline film prepared via electrochemical polymerization[J].Polymer,1999,40(2):407-417.
    [38] J.C.Chiang,A.G.MacDiarmid.Polyaniline:Protonic acid doping of the emeraldine formto the metallic regime [J].Synth.Met.1986,13(1-3):193-205.
    [39] H.Shirakawa. Nobel Lecture:The discovery of polyacetylene film-the dawning of an era ofconducting polymers [J].Reviews of Modern Physics.2001,73(3):713-718.
    [40] A.Pron,F.Genoud,C.Menardo,et al.The effect of the oxidation conditions on the chemicalpolymerization of polyaniline [J].Synth.Met.1988,24(3):193-201.
    [41] R.L.Hand,R.F.Melson.The Anodic Decomposition Pathways of Ortho-and Meta-substitutedAnilines [J].J.Electrochem.Soc.1978,125(7):1059-1069.
    [42] H.Yan,N.Toshima.Chemical preparation of polyaniline and its derivatives by using cerium(IV) sulfate [J].Synth.Met.1995,69(1-3):151-152.
    [43] A.Bingham,B.Ellis.Polymerization of aromation amines with ferric chloride to producethermally stable polymers [J].J.Polym.Sci:Part A-1,1969,7(11):3229-3244.
    [44] N.Kumar,S.R.Vadera,P.C.Jana.Synthesis and characterization of FeCl4-doped poly-aniline [J].Polymer,1992,33(11):2424-2426.
    [45] N.Toshima,H.Yan,M.Ishiwatari.Catalytic Polymerization of Aniline and Its Derivativesby Using Copper (II) Salts and Oxygen.New Type of Polyaniline with Branched Structure[J].Bull.Chem.Soc.Jpn.1994,67(7):1947-1953.
    [46] P. Kovacic,F.W.Koch.Coupling of Naphthalene Nuclei by Lewis Acid Catalyst-Oxidant [J].J.Org.Chem.1965,30(12):3176-3181.
    [47] D.K.Moon,T.Maruyama,K.Osakada,et al.Chemical Oxidation of Polyaniline by RadicalGenerating Reagent,O2,H2O2-FeCl3Catalyst,and Dibenzoyl Peroxide [J].Chem.Lett.1991,20(9):1633-1636.
    [48] Y.Cao,A.Andreatta,A.J.Heeger,et al.Influence of chemical polymerization conditionson the properties of polyaniline [J].Polymer,1989,30(12):2305-2311.
    [49] E.M.Genies,C.Tsintavis.A.A.Syed,et al.Electrochemical Systems of the PANI [J].Mol. Cryst. Liq. Cryst.1985,121(2):181-186.
    [50] J.P.Traves,J.Chroboczek,F.Devreux,et al.Transport and Magnetic Resonance Studiesof Polyaniline [J].Mol. Cryst. Liq. Cryst.1985,121(2):195-197.
    [51] A.G.MacDiarmid,J.C.Chiang,M.Halpern,et al.“Polyaniline”:Interconversion ofmetallic and insulated forms [J].Mol. Cryst. Liq. Cryst.1985,121:173-180.
    [52] Y. Cao,P.Smith,A.J.Heeger.Processible forms of electrically conductive polyaniline [P].US Patent:5624605,1997.
    [53] N.Oyama,T.Tatsuma,T.Sato,T.Sotomura.Diamercapyan-polyaniline composite electrodesfor lithium batteries with high energy density [J].Nature,1995,373:598-600.
    [54] L.Yu,X.H.Wang,J.Li,X.B.Jing,F.S.Wang,Soluble2,5-dimercapto-1,3,4-thiadiadiazole/polyco-toluidine electroactive composite [J].J.Electrochem.Soc.1999,146:1712-1716.
    [55] M.R.Anderson,B.R.Mattes,H.Reiss,R.B.Kaner.Conjugated polymer films forgas separations [J].Science,1991,252:1412-1415.
    [56] D.W.Deberry.Modification of the electrochemical and corrosion behavior of stainless steelwith electroactive coating [J].J.Electrochem.Soc.1985,132(5):1022-1026.
    [57] D.A.Wrobleski,B.C.Benecewicz,K.G.Thompson,et al.Corrosion resistant coatingfrom conducting polyaniline [J].Polymer Preprint,1994,35(1):264-268.
    [58] T.P.McAndrew.Corrosion prevention with electrically conductive polymers [J].Trends inPolymer Science,1997,5(1):7-12.
    [59] J.Han,L.Y.Li,R.Guo. Novel approach to controllable synthesis of gold nanoparticlessupported on polyaniline nanofibers [J].Macromolecules,2010,43:10636-10644.
    [60] A. Bhattaeharya,A.De.Conducting composite of polypyrrole and polyaniline-A review [J].Prog.Solid State Chem.1996,24(3):141-181.
    [61] L.L.Yang,Z.H.Yang,W.X.Cao.Fabrication of stable chiral polyaniline nanocomposite-based patters [J].Macromol.Rapid Conunun.2005,26(3):192-195.
    [62] S.Tian,J.Liu,T.Zhu,W.Knoll.Polyaniline doped with modified gold nanoparticles andits electrochemical Properties in neutral aqueous solution [J].Chem.Commun.2003(21):2738-2739.
    [63] Y.Xian,Y.Hu,F.Liu,Y.Xian,H.Wang,L.Jin.Glucose biosensor based on Aunanoparticles-conductive Polyaniline nanocomposite [J].Biosens.Bioelectron.2006,21(10):1996-2000.
    [64] S.Xuan,Y.X.J.Wang,J.C.Yu,et al.Preparation, characterization, and catalytic activityof core/shell Fe3O4@polyaniline@Au nanocomposites [J]. Langmuir,2000.25(19):11835-11843.
    [65] M.M.Olliveira,E.G.Castro,C.D.Canestraro,D.Zanehet,D.Ugarte,L.S.Roman,A.J.G.Zarbin.A simple two-Phase route to silver nanoparticles/Polyaniline structures [J].J.Phys.Chem.B,2006.110:17063-17069.
    [66] A.Houdayer,R.Schneider,D.Billaud,J.Ghanbaja,J.Lambert.New polyaniline/Ni(0)nanocomposites:synthesis,characterization and evaluation of their catalytic activity in heekcouplings [J].Synth.Met.2005,151(2):165-174.
    [67] Y.Gao,C.A.Chen,H.M.Gau,A.James,et al.Facile Synthesis of polyaniline-supportedPd Nanoparticles and Their Catalytic Properties toward Selective Hydrogenation of Alkynesand Cinnamaldehyde [J].Chem.Mater.2008,20,2839-2844.
    [68] C.C.Hu,E.Chen,J.Y.Lin.Capacitive and textural characteristics of Polyaniline-Platinumcomposite films [J].Electroehim.Acta,2002,47(17):2741-2749.
    [69] S.Shanna,C.Nirkhe,S.Pethkar.Chloroform vapour sensor based on copper/Polyanilinenanocomposite [J].Sens.Actuators B,2002,85(l-2):131-136.
    [70] S.J.Tian,J.Y.Liu,T.Zhu.Polyaniline/gold nanoparticle multilayer films,assembly,properties and biological applications [J].Chem.Mater.2004,16(21):4103-4108.
    [71] G.Miehael,M.John,P.A.Steven,L.E.John,Y.Terry,J.M.Peter,M.Chris.Novelcolloidal Polyaniline-silica composites [J].J.Chem.Soc.Chem.Commun.1992(2):108-109.
    [72] P.Xiao,M.Xiao,P.Liu,K.Gong.Direct synthesis of a Polyaniline interealated graphiteoxide nanocomposite [J].Carbon,2000,38(4):626-628.
    [73] L.Al-Mashat,K.Shin,K.Kalantar-zadeh,J.D.Plessis,et al.Graphene/polyanilineNanocomposite for Hydrogen Sensing [J].J.Phys.Chem.C,2010,114,16168-16173.
    [74] Q.Wu,Y.X,Xu,Z.Y.Yao,A.R.Liu,G.Q.Shi.Supercapacitors Based on FlexibleGraphene/polyaniline Nanofiber Composite Films [J].ACS NANO,2010,4(4):1963-1970.
    [75] Y.Z.Liao,C.Zhang,Y.Zhang,V.Strong,J.S.Tang,et al.Carbon Nanotube/PolyanilineComposite Nanofibers:Facile Synthesis and Chemosensors [J].Nano Lett.2011,11(3):954-959.
    [76] D.D.Shao,J.Hu,C.L.Chen,G.D.Sheng,X.M.Ren,X.K.Wang.PolyanilineMultiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-InducedGraft Technique and Its Application for Removal of Aniline and Phenol [J].J.Phys.Chem.C,2010,114,21524-21530.
    [77] Y.Long,Z.Chen,J.L.Duvail,Z.Zhang,M.Wan.Electrical and magnetic propertiesof Polyaniline/Fe3O4nanostructures [J].Physica B:Condensed Matter,2005,370(1-4):121-130.
    [78] M.X.Wan,W.X.Zhou,J.C.Li,Composite of polyaniline containing iron oxides withnanometersize [J].Synth.Met.1996,78(1):27-31.
    [79] M.X.Wan,S.Z.Li,J.C.Li.Magnetic properties of doped polyaniline with tetrachioferratecountier-ions [J].Solid State Commun.1996,97(6):527-530.
    [80] S.X.Xiong,S.L.Phua,B.S.Dunn,J.Ma,X.H.Lu.Covalently Bonded Polyaniline-TiO2Hybrids:A Facile Approach to Highly Stable Anodic Electrochromic materials with LowOxidation Potentials [J].Chem.Mater.2010,22:255-260.
    [81] S.X.Wang,Z.C.Tan,Y.S.Li.Synthesis,characterization and thermal analysis ofPolyaniline/ZrO2composites [J].Thermoehim.Acta,2006,441(2):191-194.
    [82] N.Ballav.High conducting polyaniline via oxidative polymerization of aniline by MnO2,PbO2and NH4VO3[J].Mater.Lett.2004,58:3257-3260.
    [83] Y.S.Liu,P.Liu,Z.X.Su.Core-shell attapulgite@polyaniline composite particles viain situ oxidative Polymerization [J].Synth.Met.2007,157:585-591.
    [84] E.J.Anaiss,G.J.F.Demets,R.A.Timm,H.E.Toma.Hydrid Polyaniline/Bentonite/Vanadium (V) Oxide Nanocoposites [J].Mater.Sci.Eng.A,2003,347(1-2),374-381.
    [85] N.Kinomura,T.Toyama,N. Kumada.Intercalative Polymerization of Aniline in VOPO4·2H2O[J]. Solid State Ionics,1995,78(3-4):282-286.
    [86] S.S.Ray,M.Okamoto.Polymer/Layered Silicate Nanocomposites:A Review from Preparationto Processing [J].Prog.Polym.Sci.2003,28(11),1539-1641.
    [87] G.M.do Nascimento,V.R.L.Constanino,M.L.A.Temperini,Spectroscopic Characterizationof A New Type of Conducting Polymer-Clay Nanocomposite [J].Macromolecules,2002,35(20):7535-7537.
    [88] H.L.Tasi,J.L.Schindler,C.R.Kannewurf,et al.Plastic Superconducting Polymer-NbSe2Nanocomposites [J].Chem.Mater.1997,9(4):875-878.
    [89] A.Katoch,M.Burkhart,T.Hwang,S.S.Kim,Synthesis of polyaniline/TiO2hybrid nanoplatesvia a sol–gel chemical method [J].Chem.Eng.J.2012(192):262-268.
    [90] S.J. Su,K.Noriyuki.Processable polyaniline–titanium dioxide nanocomposites:effect oftitanium dioxide on the conductivity [J].Synth.Met.2000,114(2):147-153.
    [91] L.J.Zhang,M.X.Wan,Y.Wei.Polyaniline/TiO2microspheres prepared by a template-freemethod [J].Synth.Met.2005,151:1-5.
    [92] G.Tanami,V.Gutkin,D.Mandler.Thin Nanocomposite Films of Polyaniline/Au Nanoparticlesby the Langmuir-Blodgett Technique [J].Langmuir,2010,26(6):4239-4245.
    [93] J.I.Sohn,J.W.Kim,B.H.Kim.Application of emulsion intercalated conducting polymerclaynanocomposite [J].Mol.Cryst.Liq.Cryst.2002,377:333-336.
    [94] I.Karatchevtseva,Z.M.Zhang,H.John,L.Vittorio.Electrosynthesis of MacroporousPolyaniline-V2O5Nanocomposites and Their Unusual Magnetic properties [J]. Chem. Mater.2006,18:4908-4916.
    [95] J.G.Deng,C.L.He,Y.X.Peng.Magnetic and conductive Fe3O4-polyaniline nanoparticleswith core-shell structure [J].Synth.Met.2003,139(2):295-301.
    [96] S.H.Xuan,Y.Xiang,J.Wang,K.Y.Shu.Synthesis of Fe3O4@Polyaniline Core/ShellMicrospheres with Well-Defined Blackberry-like Morphology [J].J.Phys.Chem.C,2008,112:18804-8809.
    [97] C.O.Bian,G.Xue.Nanocomposites based on rutile-TiO2and polyaniline [J]. Mater.lett.2007,61(7):1299-1302.
    [98] J.C.Xua,W.M.Liub,H.L.Lia.Titanium dioxide doped polyaniline [J].Mater.Sci.Eng.C,2005,25(4):444-447.
    [99] J.Li, L.H.Zhu,Y.H.Wu,et al.Hybrid composites of conductive polyaniline andnanocrystalline titanium oxide prepared via self-assembling and graft polymerization [J].Polymer,2006,47(21):1-7.
    [100] S.X.Xiong,Q.Wang,H.S.Xia.Template synthesis of polyaniline/TiO2bilayer microtubes[J].Synth.Met.2004,146:37-42
    [101] M.Oh, S.J.Park,Y.Jung,S.Kim,Electrochemical properties of polyaniline compositeelectrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution[J].Synth.Met.2012(162):695-701.
    [102] P.Xu,X.J.Han,J.J.Jiang,X.H.Wang,X.D.Li,A.H.Wen,Synthesis andCharacterization of Novel Coralloid Polyaniline/BaFe12O19Nanocomposites [J]. J. Phys.Chem.C,2007,111:12603-12608.
    [103] Y.P.Li,H.M.Zhang,X.H.Wang,J.Li,F,S.Wang.Role of dissolved oxygendiffusion in coating defect protection by emeraldine base [J].Synth.Met.2011,161:2312-2317.
    [104] Y.P.Li,H.M.Zhang,X.H.Wang,J.Li,F.S.Wang.Growth kinetics of oxidefilms at the polyaniline/mild steel interface [J].Corros.Sci.2011,53(12):4044-4049.
    [105] J.E.Pereira da Silva,S.I.Córdoba de Torresi,R.M.Torresi.Polyaniline acrylic coatingsfor corrosion inhibition: the role played by counter-ions [J].Corros.Sci.2005,47:811-822.
    [106] S.Radhakrishnan,N.Sonawane,C.R.Siju.Epoxy powder coatings containing polyanilinefor enhanced corrosion protection [J].Prog.Org.Coat.2009(64):383-386.
    [107] V.Karpakam,K.Kamaraj,S.Sathiyanarayanan,G.Venkatachari,S,Ramu.Electrosynthesisof polyaniline-molybdate coating on steel and its corrosion protection performance [J].Electrochim.Acta,2011,56:2165-2173.
    [108] S.R.Moraes, D.Huerta-Vilca,A.J. Motheo.Characteristics of polyaniline synthesizedin phosphate buffer solution [J].Eur.Polym.J.2004,40:2033-2041.
    [109] Y.Chen,X.H.Wang,J.Li,et al.Long-term anticorrosion behaviour of polyaniline onmild steel [J].Corros.Sci.2007,49:3052-3063.
    [110] B.Yao,G.C.Wang,J.K.Ye,X.W.Li. Corrosion inhibition of carbon steel by polyanilinenanofibers [J]. Mater.Lett.2007,62(12-13):1775-1778.
    [111] V.Karpagam,S.Sathiyanarayanan,G.Venkatachari.Studies on corrosion protection ofAl2024T6alloy by electropolymerized polyaniline coating [J].Curr.Appl.Phys.2008,8:93-98.
    [112] Y.Wei,J.G.Wang,X.R.Jia.Polyaniline as corrosion protection coatings on cold rolledsteel [J].Polymer,1995(36):4535-4537.
    [113] J.Fang, K.Xu,L.Zhu,Z.X.Zhou, H.Q.Tang.A study on mechanism of corrosionprotection of polyaniline coating and its failure[J].Corros.Sci.2007,49:4232–4242
    [114] S.Sathiyanarayanan,S.S.Azim,G.Venkatachari,et al.Preparation of polyaniline–TiO2composite and its comparative corrosion protection performance with polyaniline [J].Synth.Met.2007,157:205-213.
    [115] A.Meroufel,C.Deslouis,S.Touzain.Electrochemical and anticorrosion performances ofzinc-rich and polyaniline powder coatings [J].Electrochim.Acta,2008,53:2331-2338.
    [116] B.Wessling.Passivation of metals by coating with polyaniline: corrosion potential shift andmorphological changes [J].Adv.Mater.1994,6:226-228.
    [117] M.Fahlman,S.Jasty,A.J.Epstein.Corrosion Protection of iron/steel by emeraldine basepolyaniline:an X-ray photoelectron spectroscopy study [J].Synth.Met.1997,85:1323-1326.
    [118] W.K.Lu,R.L.Elsenbaumer.B.Wessling.Corrosion protection of mild steel by coatingscontaining polyaniline [J].Synth.Met.1995,71:2163-2166.
    [119] B.C.Beard,P.Spellane.XPS Evidence of Redox Chemistry between Cold Rolled Steel andPolyaniline [J].Chem.Mater.1997,9(9):1949-1953.
    [120] M.Fahlman,S.Jasty,A.J.Epstein. Corrosion protection of iron/steel by emeraldine basepolyaniline:an X-ray photoelectron spectroscopy study [J].Synth.Met.1997,85:1323-1326.
    [121] N.Ahmad,A.G.Macdiarmid.Inhibition of corrosion of steels with the exploitation ofconducting polymers [J].Synth.Met.1996,78:103-110.
    [122] B.Wessling.Passivation of metals by coating with polyaniline:corrosion potential shift andmorphological changes [J].Advanced Materials,1994,6:226-228.
    [123] S.Sathyanaraganan,S.K.Dhawan.Soluble conducting poly ethoxy aniline as an inhibitorfor iron in HCl [J].Corros.Sci.1992,(33):1831-1841.
    [124] P.J.Kinlen,D.C.Silverman,C.R.Jefreys.Corrosion protection using polyaniline coatingfor mulations [J].Synth.Met.1997,85:1327-1332.
    [125] Z.Deng,W.H.Smyrl,H.S.White.Stabilization of metal-metal oxide surfaces usingelectroactive polymer films [J].J.Electrochem.Soc.1989,136:2152-2157.
    [126] A.G.MacDiamtid.Polyaniline and polypyrrole:Where are we headed [J].Synth.Met.1997,84:27-34.
    [127] T.Schauer,A.Joos,L.Dulog,C.D.Eisenbach.Protection of iron against corrosionwith polyaniline primers [J].Prog.Org.Coat.1998,33:20-27.
    [128] F.C.Jain,J.J.Rosato,K.S.Kalonia.Formation of an active electronic barrier atAl/semiconductor interfaces:a novel approach in corrosion prevention [J].Corrosion,1986,42(12):700-707.
    [129] D.W.Deberry.Modification of the Electrochemical and Corrosion Behavior of StainlessSteels with an Electroactive Coating [J].J.Electrochem.Soc.1985,132,1022-1027.
    [130] B.Wessling.Electrical conductivity in heterogenous polymer systems (V)(1): furtherexperimental evidence for a phase transition at the critical volume concentration [J].Synth.Met.1991,41(3):1057-1062.
    [131] B.G.Soares, M.E.Leyva,G.M.O.Barra, D.Khastgir.Dielectric behavior ofpolyaniline synthesized by different techniques [J].Eur.Polym.J.2006,42,676-686.
    [132] D.A.Wrobleski,B.C.Benicewicz,K.G.Thompson,C.J.Byran.Polym.Prepr.(Am.Chem. Soc., Diu. Polym. Chem.)1993,35,265.
    [133] B.Wessling.Passivation of metals by coating with polyaniline: Corrosion potential shift andmorphological changes [J].Adv.Mater.1994,6,226-228.
    [134] Y.Wei,J.Wang,X.Jia,J.M.Yeh, P.Spellane.Polyaniline as corrosion protectioncoatings on cold rolled steel [J].Polymer,1995,36,4535-4537.
    [135] A.Yagan,N.O.Pekmez,A,Yildiz.Effect of electrolyte and monomer concentration onanticorrosive properties of poly(N-methylaniline) and poly(N-ethylaniline) coated mild steel[J].Synth.Met.2006(156):664-670.
    [136] A.Yagan,N.O.Pekmez,A,Yildiz.Investigation of protectiv effect of poly(N-ethylaniline)coatings on iron in various corrosive solutions [J].Surf.Coat.Technol.2007,201:7339-7345.
    [137] A.Yagan,N.O.Pekmez,A,Yildiz.Corrosion inhibition by poly(N-ethylaniline) coatingsof mild steel in aqueous acidic solution [J].Prog.Org.Coat.2006(57):314-318.
    [138] S.K.DHAWAN,D.C.TRIVEDI.Synthesis and characterization of poly(o-ethoxyaniline):a processable conducting polymer [J].J.Appl.Polym.Sci.1995,58(4):815-826.
    [139] J.Yano,A.Muta,Y.Harima,A.Kitani.Poly(2,5-dimethoxyaniline) film coating for corrosionprotection of iron [J].J.Solid State Electrochem,2011,15:601–605.
    [140]付丹丹.插层结构蒙脱土/聚2,3-二甲基苯胺复合材料的制备、表征及防腐性能研究[M].重庆大学,2014:1.
    [141] P.Savitha,D.N.Sathyanarayana.Copolymers of aniline with o-and m-toluidine:synthesisand characterization [J].Polym.Int.2004,53,106-112.
    [142] P.Santhosh,M.Sankarasubramanian,M.Thanneermalai,A.Gopalan,T. Vasudevan.Electrochemical,spectroelectrochemical and spectroscopic evidences for copolymer formationbetween diphenylamine and m-toluidine [J].Mater.Chem.Phys.2004,85,316-328.
    [143]刘先勇,刘军.聚苯胺衍生物的研究[J].化工新型材料,2005,33(2):32-38.
    [144] V.Prevost,A.Petit,F.Pla.Polymerization of2-pentadecylaniline monolayers at fluidsurfaces-kinetics,the romodynamics,and mechanism [J].Eur.Polym.1999,35:1229-1236.
    [145] L.H.C.Mattoso,S.K.Manoha,A.G.Macdiarmid,et al. Studies on the chemical synthesesand on the characteristics of polyaniline derivatives [J].Ploym.Sci.Part A,1995,33:1227-1234.
    [146]汤琪,马利.反应条件对聚苯胺-邻甲氧基苯胺性能的影响[J].重庆大学学报,2002,25(2):246-49.
    [147]马利,汤琪.共聚态聚苯胺的合成及性能[J].高分子材料科学与工程,2003,19(6):76-79.
    [148] P.Sonal,S.R.Sainkar,P.P.Patil.Poly(o-anisidine) coatings on copper:synthesis,characterization and evaluation of corrosion protection performance [J]. Appl.Surf.Sci.2004,225(1-4):204-216.
    [149] S.Sathiyanarayanan,S.K.Dhawan,D.C.Trivedi,et al.Soluble conducting poly ethoxyaniline as an inhibitor for iron in HCl [J].Corros.Sci.1992,33(12):1831-1841.
    [150] F.R.Diaz,C.O.Sanchez,M.A.Del Valle,et al.Synthesis, characterization and electricalproperties of poly (2,5-,2,3-and3,5-dichloroaniline)s. Part II. Copolymers with aniline[J].Synth.Met.2001,118(1-3):25-31.
    [151] G.D.Storrier,S.B.Colbran,D.B.Hibbert.Chemical and electrochemical syntheses,and characterization of poly(2,5-dimethoxyaniline)(PDMA):a novel,soluble,conductingpolymer [J].Synth.Met.1994,62(2):179-186.
    [152] K.G.Neoh,E.T.Kang, K.L.Tan.Chemical copolymerization of aniline withhalogen-substituted anilines [J].Eur.Polym.J.1990,26(4):403-407.
    [153] F.R.Diaz,C.O.Scanchez,M.A.Del Valle,et al.Synthesis,characterization andelectrical properties of poly(2,5-,2,3-and3,5-dichloroaniline)s:Part II.Copolymers withaniline [J].Synth.Met.2001,118:25-31.
    [154] A.Ya an,N..Pekmez,A.Y ld z.Poly(N-methylaniline) coating on stainless steel byelectropolymerization [J].Corros.Sci.2007,49:2905-2919.
    [155] A.Ya an,N..Pekmez,A.Y ld z.Electrochemical synthesis of poly(N-methylaniline)on an iron electrode and its corrosion performance [J].Electrochim.Acta,2008,53:5242-5251.
    [156]曹楚南.腐蚀电化学[M].北京:化学工业出版社,2004.
    [157] T.Tüken,G.Arslan,B.Yazici,et al.The corrosion protection of mild steel by polypyrrole/polyphenol multilayer coating [J].Corros.Sci.2004,46(11):2743-2754.
    [158] T.L.H.Nguyen, B.Garcia,C.Deslouis,et al.Corrosion protection and conductingpolymers:polypyrrole films on iron [J].Electrochim.Acta,2001,46(26-27):4259-4272.
    [159] P.M.A.De,R.C.D.Peres,S.Panero,et al.Properties of electrochemically synthesizedpolymer electrodes-X.Study of polypyrrole/dodecylbenzene sulfonate [J].Electrochim.Acta,1992,37(7):1173-1182.
    [160] T.Tüken.Polypyrrole films on stainless steel [J].Surf.Coat.Technol.2006,200(16-17):4713-4719.
    [161] F.Mansfeld.Use of electrochemical impedance spectroscopy for the study of corrosionprotection by polymer coatings [J].J.Appl.Electrochem.1995,25(3):187-202.
    [162] W.Meuleman,R.Vandenkerckhove,E.Temmerman.Electrochemical investigation ofautomotive coating systems [C].Mater.Sci.Forum.1998,383:289-292.
    [163] V.B.M.Stankovic,J.B.Zotovic,M.D.Maksimovic.Corrosion behavior of epoxycoatings investigated by EIS [C].Mater.Sci.Forum.1998,327:289-292.
    [164] K.M.Yin,H.Z.Wu.Electrochemical impedance study of the degradation if organic-coatedcopper [J].Sur.Coat.Technol.1998,106(2):167-173.
    [165] S.Bhadra,D.Khastgir,N.K.Singha,J.H.Lee.Progress in preparation,processingand applications of polyaniline [J].Prog.Polym.Sci.2009,34:783-810.
    [166] X.S.Du,C.F.Zhou,G.T.Wang,Y.W. Mai.Novel solid-state and template-freesynthesis of branched polyaniline nanofibers [J].Chem.Mater.2008,20:3806-3808.
    [167] S.Radhakrishnan,N.Sonawane,C.R.Siju.Epoxy powder coatings containing polyanilinefor enhanced corrosion protection [J].Prog.Org.Coat.2009,64:383-386.
    [168] D.M.Tigelaar,W.Lee,K.A.Bates,A.Saprigin,et al.Role of solvent and secondarydoping in polyaniline films doped with chiral camphorsulfonic acid:preparation of a chiralmetal [J].Chem.Mater.2002,14:1430-1438.
    [169] M.Jaymand.Recent progress in chemical modification of polyaniline [J].Prog.Polym.Sci.2013,38:1287-1306.
    [170] P.Jia,A.A. Argun,J.Xu,S.Xiong,J.Ma,P.T.Hammond, X.Lu.Enhancedelectrochromic switching in multilayer thin films of polyaniline-tethered silsesquioxanenanocage [J].Chem.Mater.2009,21:4434-4441.
    [171] A.A.Athawale,M.V.Kulkarni,V.V.Chabukswar.Studies on chemically synthesizedsoluble acrylic acid doped polyaniline [J].Mater.Chem.Phys.2002,73:106-110.
    [172] K.Levon,K.H.Ho,W.Y.Zheng,J.Laakso,T.K rn,T.Taka,J.E. sterholm.Thermaldoping of polyaniline with dodecylbenzene sulfonic acid without auxiliary solvents [J].Polymer,1995,36:2733-2378.
    [173] M.Saroop,A.K.Ghosh,G.N.Mathur.Polyaniline based conductive polymers-an overview[J].Int.J.Plast.Technol.2003,7:41-46.
    [174] R.K.Paul,C.K.S.Pillai.Melt/solution processable conducting polyaniline with novelsulfonic acid dopants and its thermoplastic blends [J].Synth.Met.2000,114:27-35.
    [175] A.Pron,P.Rannou.Processible conjugated polymers: from organic semiconductors to organicmetals and superconductors [J].Prog.Polym.Sci.2002,27:135-190.
    [176] M.Jaymand.Synthesis and characterization of conductive polyaniline-modified polymers vianitroxide mediated radical polymerization [J].POLYMER-KOREA,2010,34:553-559.
    [177] T.Yasuda,I.Yamaguchi,T.J.Yamamoto.Preparation of N-grafted polyanilines witholigoether side chains by using ring-opening graft copolymerization of epoxide, and theiroptical,electrochemical and thermal properties and ionic conductivity [J].J.Mater.Chem.2003,13:2138-2144.
    [178] W.Huang,W.L.Yu,H.Meng,J.Pei,S.F.Y.Li.New series of blue-light-emittingpolymers constituted of3-alkylthiophenes and1,4-di(1,3,4-oxadiazolyl)phenylene [J].Chem.Mater.1998,10:3340-3345.
    [179] M.Hatamzadeh,A.Mahyar,M.J.Jaymand.Chemical modification of polyaniline byN-grafting of polystyrenic chains synthesized via nitroxide-mediated polymerization [J].Braz.Chem.Soc.2012,23:1008-1017.
    [180] W.Y.Zheng,K.Levon,J.Laakso,J.E. esterholm.Characterization and solid-stateproperties of processable N-alkylated polyanilines in the neutral state [J].Macromolecules,1994,27:7754-7768.
    [181] M.Grigoras,A.M.Catargiu,F.Tudorache,M.Dobromir.Chemical synthesis andcharacterization of self-doped N-propanesulfonic acid polyaniline derivatives [J].Iran.Polym.J.2012,21:131-141.
    [182] S.L.Mu.Synthesis and electronic properties of poly(aniline-co-2-amino-4-hydroxy benzenesulfonic acid)[J].Phys.Chem.B.2008,112:6344-6349.
    [183] P.Saini,V.Choudhary.Structural details,electrical properties,and electromagneticinterference shielding response of processable copolymers of aniline [J].J.Mater.Sci.2013,48:797-804.
    [184] S.Chaudhari,P.P.Patil.Corrosion protective poly(o-ethoxyaniline) coatings on copper [J].Electrochim.Acta,2007,53:927-933.
    [185] S.Chaudhari,S.R.Sainkar,P.P.Patil.Poly(o-ethylaniline) coatings for stainless steelprotection [J].Prog.Org.Coat.2007,58:54-63.
    [186] V.Shinde,S.R.Sainkar,S.A.Gangal,P.P.Patil.Synthesis of corrosion inhibitivepoly(2,5-dimethylaniline) coatings on low carbon steel [J].J.Mater.Sci.2006,41:2851-2858.
    [187] J.Zhang,D.Shan,S.L.Mu.A promising copolymer of aniline and m-aminophenol:Chemical preparation,novel electric properties and characterization [J].Polymer,2007,48:1269-1275.
    [188] G.C.Li,Z.K.Zhang.Synthesis of dendritic polyaniline nanofibers in a surfactant gel [J].Macromolecules,2004,37:2683-2685.
    [189] J.S.Tang,X.B.Jing,B.C.Wang,F.S.Wang.Infrared spectra of soluble polyaniline[J].Synth.Met.1988,24:231-238.
    [190] T.Ohsaka,Y.Ohnuki,N.Oyama,G.Katagiri,K.Kamisako.IR absorption spectroscopicidentification of electroactive and electroactive polyaniline films prepared by theelectrochemical polymerization of aniline [J].J.Electroanal.Chem.1984,161:399-405.
    [191] W.Y.Zheng,K.Levon,T.Taka,J.Laakso,J. sterholm.Doping-induced layeredstructure in N-alkylated polyanilines [J].E.Polym.J.1996,28:412-418.
    [192] K.G.Neoh, E.T.Kang,K.L.Tan.Structural study of polyaniiine films inreprotonatlon/deprotonation cycles [J].J.Phys.Chem.1991,95:10151-10156.
    [193] M.Shabani-Nooshabadi,S.M.Ghoreishi,M.Behpour.Direct electrosynthesis ofpolyaniline-montmorrilonite nanocomposite coatings on aluminum alloy3004and theircorrosion protection performance [J].Corros.Sci.2011,53:3035-3042.
    [194] M.S.Freund,N.S.Lewis.A chemically diverse conducting polymer-based “electronic nose”[J].Proc.Natl.Acad.Sci.US.A.,1995,92(7):2652-2656.
    [195] X.W.Li,H.Zhang,G.C.Wang,Z.H.Jiang.A novel electrode material based ona highly homogeneous polyaniline/titanium oxide hybrid for high-rate electrochemicalcapacitors [J].J.Mater.Chem.2010,20:10598-10601.
    [196] Q.L.Hao,W.Lei,X.F.Xia,Z.Z.Yan,et al.Exchange of counter anions inelectropolymerized polyaniline films [J].Electrochim.Acta,2010,55:632-640.
    [197] Y.Wei,W.W.Focke,G.E.Wnek,A.Ray,A.G.Macdiarmid.Synthesis andElectrochemistry of Alkyl Ring-Substituted Polyanilines [J].J.Phy.Chem.1989,93:495-499.
    [198]王亚军.基于Parylene的柔性生物微电极阵列的研究[D].上海交通大学,2009:57-60.
    [199] W.S.Araujo,I.C.P.Margari,M.Ferreira,O.R.Mattos,P.L.Neto.Undopedpolyaniline anticorrosive properties [J].Electrochim.Acta.2001,46:1307-1312.
    [200] B.Wessling.Passivation of metals by coating with polyaniline: Corrosion potential shift andmorphological changes [J].Adv.Mater.1994,6:226-228.
    [201] B.Wessling.Scientific and commercial breakthrough for organic metals [J].Synth.Met.1997,85:1313-1318.
    [202] Z.Wen,T.Itoh,T.Uno,M.Kubo,O.Yamamoto.Thermal,electrical,and mechanicalproperties of composite polymer electrolytes based on cross-linked poly(ethyleneoxide-co-propylene oxide) and ceramic filler [J].Solid State Ionics,2003,160:141-148.
    [203] A.L.Nazareth da Silva,S.C.S.Teixeira,A.C.C.Widal,F.M.B.Coutinho.Mechanicalproperties of polymer composites based on commercial epoxy vinyl ester resin and glass fiber[J].Polym.Test.2001,20(8):895-899.
    [204] K.H.Rao,K.S.E.Forssberg,W.Forsling.Interfacial interactions and mechanical propertiesof mineral filled polymer composites: wollastonite in PMMA polymer matrix [J].ColloidsSurf.A,1998,133:107-117.
    [205] B.Karunagaran,P.Uthirakumar,S.J.Chung,S.Velumani,E.K.Suh.TiO2thinfilm gas sensor for monitoring ammonia [J].Mater.Charact.2007,58:680-684.
    [206] H.L.Tai,Y.D.Jiang,G.Z.Xie,J.S.Yu,X.Chen,Z.H.Ying.Influence ofpolymerization temperature on NH3response of PANI/TiO2thin film gas sensor [J].Sens.Actuators B,2008,129:319-326.
    [207] M.Dondi,G.Cruciani,E.Balboni,G.Guarini,C.Zanelli.Titania slag as a ceramicpigment [J].Dyes Pigm.2008,77(3):608-613.
    [208] T.A.Egerton,N.J.Everall,J.A.Mattinson,L.M.Kessell,L.R.Tooley.Interactionof TiO2nano-particles with organic UV absorbers [J].J.Photochem.Photobiol.A,2008,193:10-17.
    [209] Y.Zhang,Y.F.Wu,M.Chen,L.M.Wu.Fabrication method of TiO2-SiO2hybrid capsulesand their UV-protective property [J].Colloid Surf.A:Physicochem.Eng.Asp.2010,353:216-225.
    [210] A.P.Toor,A.Verma,C.K.Jotshi,P.K.Bajpai,V.Singh.Photocatalytic degradationof Direct Yellow12dye using UV/TiO2in a shallow pond slurry reactor [J].DyesPigm.2006,68:53-60.
    [211] Y.Q.Gou,D.Y.Chen,Z.X.Su.Photocatalyst of nanometer TiO2/conjugated polymercomplex employed for depigmentation of methyl orange [J].Appl.Catal.A:Gen.2004,261:15-18.
    [212] E.Balaur,J.M.Macak,L.Taveira,P.Schmuki.Tailoring the wettability of TiO2nanotubelayers [J].Electrochem.Commun.2005,7:1066-1070.
    [213] D.A.Wang,B.Yu,F.Zhou,C.W.Wang,W.M.Liu.Synthesis and characterizationof anatase TiO2nanotubes and their use in dye-sensitized solar cells [J].Mater.Chem.Phys.2009,113:602-606.
    [214] W.S.Nam,G.Y.Han.Photocatalytic performance of TiO2photocatalyst prepared by thehydrothermal method [J].Korean J.Chem.Eng.2003(1):180-184.
    [215]邱星林,徐安武.纳米级TiO2光催化净化大气环保涂料的研制[J].中国涂料,2000(4):30-32.
    [216] Y.Zhang,L.D.Zhang.Synthesis, microstructure and optical absorption of coatings withdoping of nano-TiO2for protection against ultraviolet irradiation [J].J.Mater.Sci.Technol.2000(3):277-280.
    [217] S.Sathiyanarayanan,S.S.Azim,G.Venkatachari.Preparation of polyaniline-TiO2compositeand its comparative corrosion protection performance with polyaniline [J].Synth.Met.2007,157:205-213.
    [218] P.J.Kinlen,V.Menon,Y.W.Ding.A mechanistic investigation of polyaniline corrosionprotection using the scanning reference electrode technique [J].J.Electrochem.Soc.1999,146:3690-3695.
    [219] K.Gurunathan,D.P.Amalnerker,D.C.Trivedi.Synthesis and characterization of conductingpolymer composite (PAn/TiO2) for cathode material in rechargeable battery [J]. Mater.Lett.2003,57:1642-1648.
    [220] M.Kosmulski.The significance of the difference in the point of zero charge between rutileand anatase [J].Adv.Colloid Interface Sci.2002,99:255-264.
    [221] S.Chaudhari,P.P.Patil.Inhibition of nickel coated mild steel corrosion by electrosynthesizedpolyaniline coatings [J].Electrochim.Acta,2011,56:3049-3059.
    [222] B.Wessling.Passivation of metals by coating with polyaniline:corrosion potential shift andmorphological changes [J].Adv.Mater.1994,6:226-228.
    [223] A.Talo,P.Passiniemi,O.Forsén,S.Yl ssari.Polyaniline/epoxy coatings with goodanti-corrosion properties [J].Synth.Met.1997,85:1333-1334.
    [224] B.Wessling.Scientific and commercial breakthrough for organic metals [J].Synth. Met.1997,85:1313-1318.
    [225] W.K.Lu,R.L.Elsenbaumer,B.Wessling.Corrosion protection of mild steel by coatingscontaining polyaniline [J].Synth.Met.1995,71:2163-2166.
    [226] P.G.Rao,M.Iwasa,T.Tanaka,I.Kondoh.T.Inone.Preparation and mechanicalproperties of Al2O3-15wt%ZrO2composites [J].Scripta Mater.2003,48:437-441.
    [227] A.Laachachi,M.Cochez,E.Leroy,P.Gaudon,M.Ferriol,J.M.Lopez Cuesta.Effectof Al2O3and TiO2nanoparticles and APP on thermal stability and flame retardance of PMMA[J].Polym.Adv.Technol.2006,17:327-334.
    [228] Y.N.Qi,F.Xu,L.X.Sun,J.L.Zeng,Y.Y.Liu.Thermal stability and glass transitionbehavior of PANI/α-Al2O3composites [J].J.Therm.Anal.Calorim.2008,94:553-557.
    [229] S.X.Xiong,Q.Wang,Y.H.Chen.Preparation of polyaniline/TiO2hybrid microwiresin the microchannels of a template [J].Mater.Chem.Phys.2007,103,450-455.
    [230] C.Y.Wang,V.Mottaghitalab,C.O.Too,G.M.Spinks,G.G.Wallace.Polyanilineand polyaniline-carbon nanotube composite fibres as battery materials in ionic liquidelectrolyte [J].J.Power Sources,2007,163:1105-1109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700