用户名: 密码: 验证码:
高性能混凝土的化学腐蚀、盐结晶和应力腐蚀及其微结构演变规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土耐久性问题十分复杂,既是实际土木工程中不可忽视的重大技术问题,又是当今国内外混凝土学术界重点关注的重大科技问题。硫酸盐、氯盐和镁盐等化学腐蚀问题,干湿循环引起的盐结晶问题和外部荷载引起的应力腐蚀问题,以及盐结晶与应力腐蚀等耦合作用,都是影响混凝土耐久性的重要因素。本文在参考了大量文献的基础上,优化配合比设计,综合运用矿物掺合料的复合效应、高效外加剂的减水和引气作用、膨胀剂补偿收缩作用和纤维增强作用等技术,制备了粉煤灰混凝土(Fly ash concrete,FAC)、高性能混凝土(High performanceconcrete,HPC)和绿色高耐久性混凝土(Green high durable concrete,GHDC),研究了不同混凝土在化学腐蚀、盐结晶、应力腐蚀以及盐结晶和应力腐蚀耦合作用下的相对动弹性模量和质量变化规律、表面剥蚀形态、腐蚀产物和显微结构变化,建立了混凝土的表面剥蚀等级变化规律、腐蚀损伤演化方程、腐蚀裂纹密度模型以及基于裂纹密度时空演变的快速寿命预测方法,为混凝土材料耐久性评估与设计提供理论参考。本文的主要研究内容和结果如下:
     第一章综述了混凝土在化学腐蚀、盐结晶、应力腐蚀以及盐结晶和弯曲应力腐蚀耦合作用下耐久性问题和寿命预测方法研究的意义和最新进展,指出当前存在的问题,在此基础上提出本文的主要研究内容和方向。
     第二章详细介绍了混凝土原材料、配合比设计、混凝土制备、试验主要仪器和试验方法,设计了施加混凝土试件轴拉与轴压应力的耐久性实验装置。设计了4种C50混凝土:粉煤灰(Fly ash,FA)掺量20%的FAC,复合掺加40%FA、10%磨细矿渣(Slag,SG)和5%硅灰(SilicaFume,SF)的HPC,在HPC基础上综合采用混杂纤维、膨胀剂和引气剂的GHDC,其中,GHDC1采用(聚丙烯+钢纤维)二元混杂纤维,GHDC2采用(聚丙烯+聚酯纤维+钢纤维)三元混杂纤维。
     第三章主要研究了混凝土在氯盐、硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下的化学腐蚀作用。结果表明:氯盐对混凝土不存在化学腐蚀作用;硫酸盐-镁盐对混凝土产生明显的化学腐蚀作用;硫酸盐-镁盐-氯盐对混凝土产生的化学腐蚀作用比硫酸盐-镁盐环境下严重;氯盐加速硫酸盐-镁盐对混凝土的化学腐蚀作用。GHDC2具有较好的抗硫酸盐-镁盐腐蚀和硫酸盐-镁盐-氯盐腐蚀能力。
     第四章主要研究了混凝土在氯盐、硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下的盐结晶腐蚀作用。结果表明:氯盐对混凝土不存在明显的盐结晶腐蚀作用;硫酸盐-镁盐对混凝土产生明显的盐结晶腐蚀作用;硫酸盐-镁盐-氯盐对混凝土产生的盐结晶腐蚀作用比硫酸盐-镁盐环境下严重;盐结晶加速硫酸盐-镁盐对混凝土的化学腐蚀作用,氯盐加速硫酸盐-镁盐环境下混凝土的盐结晶腐蚀作用,HPC具有较好的抗硫酸盐-镁盐和硫酸盐-镁盐-氯盐盐结晶腐蚀能力。
     第五章主要研究了混凝土在氯盐、硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下的应力腐蚀作用。结果表明:氯盐对混凝土不存在应力腐蚀作用;硫酸盐-镁盐对混凝土产生明显的应力腐蚀作用,应力状态对混凝土的应力腐蚀破坏作用有重要影响。混凝土在相同应力水平、不同应力状态下的硫酸盐-镁盐腐蚀损伤速度大小为:拉应力腐蚀>压应力腐蚀>弯曲应力腐蚀>化学腐蚀。硫酸盐-镁盐-氯盐对混凝土产生的弯曲应力腐蚀作用比硫酸盐-镁盐环境下严重;弯曲应力加速硫酸盐-镁盐对混凝土的化学腐蚀作用,氯盐加速硫酸盐-镁盐环境下混凝土的应力腐蚀作用。HPC具有较好的抗硫酸盐-镁盐拉/压应力腐蚀能力和抗硫酸盐-镁盐-氯盐弯曲应力腐蚀能力,GHDC2的抗硫酸盐-镁盐弯曲应力腐蚀能力较强。
     第六章研究了混凝土在氯盐、硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下的盐结晶和应力腐蚀耦合作用。结果表明:氯盐对混凝土不存在盐结晶和应力腐蚀耦合作用;硫酸盐-镁盐对混凝土产生明显的盐结晶和应力腐蚀耦合作用;硫酸盐-镁盐-氯盐对混凝土产生的盐结晶与弯曲应力腐蚀的耦合破坏作用比硫酸盐-镁盐环境下严重;硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下,盐结晶和弯曲应力腐蚀的耦合产生叠加效果,盐结晶与弯曲应力腐蚀两者相互促进;氯盐加速硫酸盐-镁盐和硫酸盐-镁盐-氯盐环境下混凝土的盐结晶和弯曲应力腐蚀耦合作用。GHDC2具有较好的抗硫酸盐-镁盐盐结晶和弯曲应力腐蚀耦合破坏能力,FAC和HPC具有较好的抗硫酸盐-镁盐-氯盐盐结晶与弯曲应力腐蚀耦合破坏能力。
     第七章采用XRD和SEM-EDAX方法研究了混凝土的腐蚀产物和显微结构变化。结果发现:混凝土内部的腐蚀产物主要是石膏、AFt、AFm、C3A·CaCl2·10H2O和氢氧化镁;根据不同混凝土在多种腐蚀条件下的SEM图,提出导致混凝土内部微裂纹产生和扩展的“起裂元”新概念,微裂纹沿着起裂元周围呈星形辐射状引发、扩展、连生、贯通成裂纹网络;矿物掺合料发生了火山灰反应,导致混凝土结构更加致密,提高了混凝土的抗腐蚀能力;掺加引气剂形成的球形气孔能够大量地释放气孔附近区域腐蚀微裂纹的扩展表面能,降低腐蚀微裂纹尖端的应力集中程度,减少混凝土腐蚀过程中的膨胀应力和结晶应力,有助于混凝土抗腐蚀能力的进一步提升。
     第八章总结大量试验结果和数据分析的基础上,建立混凝土腐蚀过程中的内部损伤演化方程,并在损伤演化方程的基础上进一步推导,获得混凝土内部裂纹密度模型,得到混凝土在多种腐蚀条件下损伤过程中内部微裂纹的时空演变规律和特征;建立了运用损伤演化方程和裂纹密度演化方程预测腐蚀环境下混凝土寿命的方法,与实测值比较发现:运用混凝土损伤演化方程和裂纹密度损伤演化方程快速预测混凝土的腐蚀寿命,是切实可行的,其中裂纹密度损伤演化方程的预测效果会更好。
     第九章总结全文结论和创新点,提出了本文研究的不足之处和改进的建议。
Durability of concrete is a complicated, important and major scientific issue concerned at homeand abroad. Effect of chemical attack caused by sulfate, chloride, magnesium etc, salt crystallizationattack caused by dry-wet cycles, stress attack caused by applied loading, and combined action of saltcrystallization attack and stress attack on concrete durability is very important. In this study, based on anumber of reference, optimization proportion design and incorporating with synergistic effect ofmineral admixture, water reducing and air-entraining properties of concrete admixture, shrinkagecompensation functions of expansion agent and reinforcing effects of fibers, fly ash concrete (FAC),high performance concrete (HPC) and green high durability concrete (GHDC) were prepared. The lawsof the changes of relative dynamic modulus of elasticity (Erd) and surface spalling, corrosion productsand evolution of microstructure under the chemical attack, slat crystallization, stress attack and thecoupling effect of slat crystallization and stress attack were investigated. Changes of visual rating of thedeterioration, damage evolution equation, a theoretical model of density of cracks and a method forservice life of concretes based on density of cracks were established. The main contents and results ofthis paper are as follows:
     In Chapter1, the research significance and latest development of durability of concretes exposedto chemical attack, slat crystallization attack, stress attack and the coupling effect of slat crystallizationattack and stress attack and service life predicting methods were summarized. Problems remaining tobe investigated were also proposed, and outline of this contribution was sketched.
     In Chapter2, raw materials, mix design, major experimental equipment and method ofexperiment were described in detail and equipments on durability experiment for applying tensilestress and compressive stress were designed. Four types of C50concrete were prepared. They areFAC incorporated with20%FA by mass of cement, HPC incorporated with fly ash (FA), slag (SG)and silica fume (SF), in which dosage of supplementary binder is10%FA+20%SG+20%SF by massof cement, and GHDC based on HPC and then incorporated fibers, expansion agent and Air-entrainedagent. For different fibers added in, GHDC was denoted as GHDC1that was incorporated steel fiberand polypropylene fiber and GHDC2that was incorporated steel fiber, polypropylene fiber andpolyester fiber.
     In Chapter3, the chemical attack to concrete exposed to chloride, magnesium sulfate andsulfate-magnesium-chloride was investigated. There is no chemical attack to concrete exposed tochloride. Chemical attack is severe to concrete exposed to magnesium sulfate and that is more severe toconcrete exposed to sulfate-magnesium-chloride. Chemical attack to concrete exposed to magnesiumsulfate is accelerated by chloride. GHDC2shows good durability tunder chemical attack caused bymagnesium sulfate and sulfate-magnesium-chloride.
     In Chapter4, the salt crystallization attack to concrete exposed to chloride, magnesium sulfate andsulfate-magnesium-chloride was investigated. There is no salt crystallization attack to concrete exposedto chloride. Salt crystallization attack is severe to concrete exposed to magnesium sulfate and that ismore severe to concrete exposed to sulfate-magnesium-chloride.. Chemical attack to concrete is accelerated by salt crystallization and salt crystallization attack to concrete exposed to magnesiumsulfate is accelerated by chloride. HPC shows good durability under salt crystallization attack causedby magnesium sulfate and sulfate-magnesium-chloride.
     In Chapter5, the stress attack to concrete exposed to chloride, magnesium sulfate andsulfate-magnesium-chloride was investigated. There is no stress attack to concrete exposed to chloride.Stress attack is severe to concrete exposed to magnesium sulfate. The effect of stress state is veryimportant to stress attack. When in the same stress level but different stress state, the value of thedamage velocity to concrete is tensile stress> compressive stress> bending stress. Stress attack is moresevere to concrete exposed to sulfate-magnesium-chloride than that exposed to magnesium sulfate.Chemical attack to concrete exposed to magnesium sulfate is accelerated by compressive stress andbending stress attack to concrete exposed to magnesium sulfate is accelerated by chloride. HPCexposed to sulfate magnesium shows good durability under tensile stress attack and compressive attackand GHDC2exposed to sulfate magnesium and sulfate-magnesium-chloride displays good durabilityunder bending stress attack.
     In Chapter6, the coupling effect of slat crystallization attack and stress attack on concrete exposedto chloride, magnesium sulfate and sulfate-magnesium-chloride was investigated. There is no couplingeffect of slat crystallization attack and stress attack on concrete exposed to chloride. The couplingeffect of slat crystallization attack and stress attack is severe to concrete exposed to magnesium sulfateand that is more severe to concrete exposed to sulfate-magnesium-chloride. The coupling effect of slatcrystallization attack and stress attack brings superposition effect that means accelerating the chemicalattack to concrete more quickly. Slat crystallization accelerates the bending attack to concrete andbending stress accelerates the salt crystallization attack to concrete. The coupling effect of slatcrystallization attack and stress attack on concrete exposed to magnesium sulfate is accelerated bychloride. Exposed to sulfate magnesium, GHDC2shows good durability under the coupling effect ofslat crystallization attack and stress attack. Exposed to sulfate-magnesium-chloride, FAC and HPCdisplay good durability under the coupling effect of slat crystallization attack and stress attack.
     In Chapter7, corrosion products and the evolution of microstructure were investigated by usingXRD and SEM-EDAX. Results show that the major corrosion products are gypsum, AFt, AFm,C3A·CaCl2·10H2O and magnesium hydroxide. Base on a number of SEM pictures about differentconcrete exposed to different corrosion condition, the new concept of “Microcrack Initiation” is presentand along which the microcrack grows as a star, develops and connects to form a net of cracks. Thepozzolanic reaction of mineral admixture compact the structure and improve the corrosion resistance ofconcrete. The spherical pore for addition of air-entrained agent releases surface developing energy ofmicrocracks that near the spherical pore, decreases stress concentration of tip of microcracks, reducesthe expansion stress and crystal stress during corrosion process, and improves further the corrosionresistance.
     In Chapter8, based on the results of concrete experiments on durability and experiment dataanalysis, a damage developing equation of Erd was established, and then, a quick service life predictingmethod based on density of cracks were established further. The laws of evolution of micro-cracksduring corrosion process under different corrosion environment. Results show that the conclusions ofdamage developing equation and service life predicting method match the experiment results and fit thepractical engineering. The service life predicting method based on density of cracks show more well results.
     In Chapter8,a summarization of this contribution was presented and the shortcomings of thisstudy and proposition for further researches were listed.
引文
[1] Mindess S, Young J F, Darwin D.混凝土(吴科如等译)[M].北京:化学工业出版社,2004:1~6.
    [2]蒋元钢,韩素芳.混凝土工程病害与修补加固[M].海洋出版社,1996:317~320.
    [3] P. K Mehta.耐久性-影响未来的关键问题[M].清华大学土木工程系建材教研室编.高强混凝土与高性能混凝土译文集(第五册),2000:10~19.
    [4]卢木.混凝土耐久性研究现状和研究方向[J].工业建筑,1997,27(5):1~6.
    [5]林宝玉,蔡跃波,单国良.保证和提高我国港工混凝土耐久性措施的研究与实践[C].吴中伟院士从事科教工作六十年学术讨论会论文集,中国建材工业出版社,2004:26~33.
    [6]阎培渝,姚燕.水泥基复合材料科学与技术[M].北京:中国建材工业出版社,1999,16~23.
    [7]田俊峰,王胜年,黄君哲,等.海港工程混凝土耐久性设计与寿命预测[J].中国港湾建设,2004,133(6):1~3.
    [8]李治国.病害隧道调查及裂纹政治技术[J].现代隧道技术(增刊),2002:15~21.
    [9]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].南京:东南大学,2004.
    [10]张三平,萧以德.应重视西部环境对材料的腐蚀—西部环境腐蚀状况调查[J].材料保护,2002,35(7):58~60.
    [11]唐明述.水泥混凝土与可持续发展[J].中国有色金属学报,2004,14(1):164~172.
    [12]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].南京:东南大学,2004.
    [13] Rostam S. Service Life Design-the European Approach [J]. Concrete International,1995:24~32.
    [14]王小林,蔡跃波,孙伟.南京地下铁道工程高性能混凝土关键技术研究与应用[R].项目报告,江苏省科技厅,2005年6月.
    [15]吴胜东,孙伟,缪昌文,等.润扬长江公路大桥结构混凝土的耐久性与寿命预测[R].项目报告,江苏省科技厅,2004年12月.
    [16]洪定海.大掺量矿渣微粉高性能混凝土应用范例[J].建筑材料学报,1998,1(1):82~87.
    [17] General guidelines for durability design and redesign, The European Union-Brite Euram Ⅲ,Document BE95-1347/R15, Feb,2000.
    [18]《混凝土结构耐久性设计规范》(GB/T50476-2008),建设部,2006年4月.
    [19]郭向勇,孙常青.混凝土耐久性设计的系统工程方法[J].苏州城建环保学院学报,2002,15(2):64~67.
    [20]孙伟.现代混凝土材料与结构服役特性的研究进展[J].混凝土世界,2009,07(01):20~30.
    [21]余红发,孙伟.华普校.盐湖地区高强混凝土的配制技术和基本性能[J].建筑材料学报,2003,6(4):410~415.
    [22]刘连新.察尔汗盐湖及超盐渍土地区混凝土腐蚀及预防初探[J].建筑材料学报,2001,4(4):395~400.
    [23] Mather A B. Performance of concrete in a coastal environment [J]. Cem. Con. Comp.,2003,25(4~5):539~548.
    [24] Omar S B, Al-Amoudi. Attack on Plain and Blended Cements Exposed to Aggressive SulfateEnvironments [J]. Cem. Con. Comp.,2002,24(3~4):305~316.
    [25] Santhanam M, Cohen M D. Olek J. Mechanism of sulfate attack: A fresh look Part1: Summaryof experimental results [J]. Cem. Con. Res.,2002,32(6):915~921.
    [26] Tian B, Cohen M D. Does gypsum formation during sulfate attack on concrete lead to expansion?[J]. Cem. Con. Res.,2000,30(1):117~123.
    [27] Gollop R S, Taylor H F W. Microstructureal and microanalytical studies of sulfate attack Ⅲ.Sulfate-resisting Portland cement: reaction with sodium and magnesium sulfate solutions [J].Cem. Con. Res.,1995,25(7):1581~1590.
    [28] Gollop R S, Taylor H F W. Microstructureal and microanalytical studies of sulfate attack. Ⅳ.Reactions of slag cement paste with sodium and magnesium sulfate solutions [J]. Cem. Con. Res.,1996,26(7):1013~1028.
    [29] Chen Jian-kang, Jiang Min-qiang, Zhu Jue. Damage evolution in cement mortar due to erosionof sulphate [J]. Corrosion science,2008,50(9):2478~2483.
    [30] Collepardi M. A state-of-the-art review on delayed ettringite attack on concrete [J]. Cem. Con.Comp.,2003,25(4~5):401~407.
    [31] Damidot D, Glasser F P. Thermodynamic inverstigation of the CaO-Al2O3-CaSO4-H2O system at25℃and the influence of NaO [J]. Cem. Con. Res.,1993,23(1):221~238.
    [32] Cody A M, Lee H, Cody R D, et al. The effects of chemical environment on the nucleation,grown, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O [J]. Cem. Con. Res.,2004,34(5):869~881.
    [33] Al-Dulaijan S U, Maslehuddin M, Al-Zahrani M M, et al. Sulfate resistance of plain and blendedcements exposed to varying concentrations of sodium sulfate [J]. Cem. Con. Comp.,2003,25(4~5):429~477.
    [34] Tikalsy P J, Roy D, Scheetz B, et al. Redefining cement characteristics for sulfate-resistantPortlant cement [J]. Cem. Con. Res.,2002,32(8):1239~1246.
    [35] Rasheeduzzafar B, Al-Amoudi B O S, Abduljauwad S N. Magnesium-sodium sulfate attack inplain and blended cements [J]. Journal of materials in civil enginerring,1994,6(2):201~222.
    [36] Binici H, Aksogan O. Sulfate resistance of plain and blended cement [J]. Cem. Con. Comp.,2006,28(1):39~46.
    [37] Irassar E F, Di Miao A, Batic O R. Sulfate attack on concrete with mineral admixtures [J]. Cem.Con. Res.,1996,26(1):113~123.
    [38] Shannag M J, Shaia H A. Sulfate resistance of high-performance concrete [J]. Cem. Con. Comp.,2003,25(4~5):363~369.
    [39] Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastesunder different circumstances [J]. Cem. Con. Res.,2002,32(9):1421~1427.
    [40] Lee S T, Moon H Y, Swamy R N. Sulfate attack and role of silica fume in resisting strength loss[J]. Cem. Con. Comp.,2005,27(1):65~76.
    [41] Boyd A J, Mindess S. The use of tension testing to investigate the effect of W/C ratio and cementtype on the resistance of concrete to sulfate attack [J]. Cem. Con. Res.,2004,34(3):373~377.
    [42] Ak z F, Türker F, Koral S, et al. Effects of sodium sulfate concentration on the sulfate resistanceof mortars with and without silica fume [J]. Cem. Con. Res.,1995,25(6):1360~1368.
    [43] Omar S B, Al-Amoudi, Mohammed M. Effect of magnesium sulfate and sodium sulfate on thedurability performance of plain and blended cement [J]. ACI Materials Jouranl,1995,92(1):15~24.
    [44]刘赞群.混凝土硫酸盐侵蚀基本机理研究[D].长沙:中南大学,2010.
    [45]梁咏宁,袁迎曙.硫酸钠和硫酸镁溶液中混凝土腐蚀破坏机理[J].硅酸盐学报,2007,35(4):504~508.
    [46] Fikret Türker, Fevziye Ak z, Sema Koral, et al. Effects of magnesium sulfate concentration onthe sulfate resistacne of mortars with and without silica fume [J]. Cem. Concr. Res.,1997,27(2):205~214.
    [47] Feldman R F, Beaudoio J J, Philipose K E. Effect of cement blends on chloride and sulfate iondiffusion in concrete [J]. ⅡCemento,1991(88):3~18.
    [48] Tumidajski P J, Chan G W. Effect of sulfate and carbon dioxide on chloride diffusivity [J].Cement and Concrete Research,1996(26):551~556.
    [49] Dehwah H A F, Maslehuddin M, Austin S A. Long-term effect of sulfate ions and associatedcation type on chloride-induced reinforcement corrosion in Portland cement concretes [J].Cement&Concrete Composites,2002(24):17~25.
    [50] Al-Amoudi O S B, Masiehuddin M, Abdui-Al Y A B. Role of chloride ions on expansion andstrength reduction in plain and blended cements in sulfate environments [J]. Construction andBuilding Materials,1995,9(1):25~33.
    [51]刘惠兰,黄艳,韩云屏.环境水对砂浆、混凝土的侵蚀性研究[J].混凝土与水泥制品,1997(6):12~15.
    [52] Dehwah H A F, Maslehuddin M, Austin S A. Effect of sulfate ions and associated cation type onthe pore solution chemistry in chloride-contaminated plain and blended cements [J].Cement&Concrete Composites25(2003):513–525.
    [53] Dehwah H A F., Maslehuddin M., Austin S A. Long-term effect of sulfate ions andassociatedcation type on chloride-induced reinforcement corrosion in Portland Cement Concretes.Cementand Concrete Composites,2002,24(1):17~25.
    [54]刘斯凤.荷载-复合离子-干湿交替下生态混凝土的损伤过程和寿命[D].南京:东南大学材料科学与工程系,2004.
    [55]张汉文.察尔汗盐湖卤水对水泥混凝土侵蚀问题的探讨[J].中国建材研究院院刊,1984,(1):15~26.
    [56]余红发.抗盐卤腐蚀的水泥混凝土的研究现状与发展方向[J].硅酸盐学报,1999,27(4):237~245.
    [57] Tumidajski P J, Chan G W. Durability of high performance concrete in magnesium brine [J].Cement and Concrete Research,1996,26(4):557~565.
    [58] Kurdowski W. The protective layer and decalcification of CSH in the mechanism of chloridecorrosion of cement paste [J]. Cement and Concrete Research,2004,34(9):1555~1559.
    [59] Metha P K. Concrete, Structure, ProPerties and Materials (ThirdEdition). Englewood CliffS, NJ:MeGraw-Hill,2006.
    [60] Thaulow N. Sadanada S. Mechanism of concrete deterioration due to salt crystallization.Materials Charaeterization,2004,53(11):123~127.
    [61] Navarro C R, Doehne E, Sebastian E. How does sodium sulfate crystallize? ImPlications for thedecay and testing of building materials. Cement and Conerete Researeh,2000,30(10):1527~1534.
    [62] Nieholas T, Flatt R J, Seherer G W. Crystallization damage by sodium sulfate. Journal of CulturalHeritage,2003,4(2):109~115.
    [63]马昆林.混凝土盐结晶侵蚀机理与评价方法[D].长沙:中南大学,2009.
    [64] Correns C W. Growth and dissolution of crystals under linear pressure [J]. Diseuss Faraday Soe,1949,(5):267~271.
    [65] Hime W G. Sulfate attaek, or is it? Cement and Conerete Researeh,1999,29(6):789~791.
    [66] Hime G H, Maltinek R A, Baekus L A, et al. Salt hydration distress observations an unidentifiedor misidentlfied cause of conerete distress[J]. Conerete intemational,2001,(10):43~50.
    [67] Steiger M. Crystal growth in Porous materials-I: The crystallization Puressure of large crystals.Journal of Crystal Growth [J],2005,282(3~4):455~469.
    [68] Steiger M. Crystal growth in Porous materials-Ⅱ: Influence of crystal size on the crystallizationpressure [J]. Journal of Crystal Growth,2005,282(3~4):470~451.
    [69] Steiger M, Kiekbuseh J, Nieolai A. An improved model in corporating Pitzer’s equations forcalculation of themodynamic properties of pore solutions implemented into an efficient programcode [J]. Construetion and Building Materials,2007,22(8):1841~1850.
    [70] Seherer G W. Factors affecting crystallization pressure [C]. Intenational sulphate attaek. In:Proeeedings of RILEM workshop on delayed ettringite formation, Paris;2004.
    [71] Flatt R J. Salt damage in porous materials: how high supersaturations are generated. Journal ofCrystal Growth,2002,242(SuPpl.):435~54.
    [72] Correns C W, Steinborn W. Experimente zur Messung und Erkl rungder so-genanntenKristallisationskraft [J]. Zeitschrift f r Kristallographie,1939,101(Heft l/2):117~33.
    [73] Snethlage R. Steinkonservierung, Berieht f r die Studienstiftung Volkswagenwerk, Arbeitsheftedes Bayrisehen Landesamtes f r DenkmalPflege, S558~77,1979~1978.
    [74] Winkler E M. Stone: properties, Durability in Man’s Environment [M]. NeW York:SPinger-Verlag,1975.
    [75] Nieholas T, Flatt R J, Seherer G W. Crystallization damage by sodium sulfate [J]. Journal ofCultural Heritage,2003,4(2):109~115.
    [76] Navarro C, Doehne R E, Sebastian E. How does sodium sulfate crystallize? Implieations for thedecay and testing of building materials [J]. Cement and Conerete Researeh,2000,30(10):1527~1534.
    [77] Thaulow N, Sadanada S. Mechanism of concrete deterioration due to salt crystallization [J].Materials Charaeterization,2004,53(11):123~127.
    [78] Robert J F. Salt damage in porous materials: how high supersaturation is generated [J]. Journal ofCrystal Growth,2002,242(3):435~454.
    [79] Theoulakis P, MoroPoulou A. Mierostruetural and mechanical parameters determining thesusceptibility of porous building stones to salt decay. Construction and Building Materials,1997,11(1):65~71.
    [80]杨全兵,杨钱荣.硫酸钠盐结晶对混凝上破坏的影响[J].硅酸盐学报,2007,35(7):877~882.
    [81]杨全兵,朱蓓蓉.混凝土盐结晶破坏的研究[J].建筑材料学报,2007,10(4):391~396.
    [82]唐旭光.矿物掺合料对混凝土抗硫酸盐侵蚀性能的影响[硕士学位论文].长沙:中南大学,2005.
    [83]高润东,赵顺波,李庆斌,等.干湿循环作用下混凝土硫酸盐侵蚀劣化机理[J].土木工程学报,2010,43(2):48~54.
    [84]李凤兰,马利衡,高润东,等.侵蚀方式对硫酸根离子在混凝土中传输的影响[J].长江科学院院报,2010,27(3):62~65.
    [85] Valiente A. Stress corrosion failure of large diameter pressure pipelines of prestressde concrete[J]. Engineering Failure Analysis,2001,8(3):245~261.
    [86] B.M莫斯克文等著,混凝土及钢筋混凝土的腐蚀及其防护方法,倪继水等译[M].北京:化学工业出版社,1998年.
    [87] Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressiveloading [J]. Cement and Concrete Research,1995,25(4):803~808.
    [88] Samaha H R, Hover K C. Influence of microcracking on the mass transport properties of concrete[J]. ACI Material Journal,1992;89(4):416~24.
    [89] Lim C C, Gowripalan N, Sirivivatnanonb V. Microcracking and chloride permeabilityof concreteunder uniaxial compression [J]. Cement&Concrete Composites,2000,22(5):353~360.
    [90] Konin A, Francois R, Arliguie G. Analysis of progressive damage to reinforced ordinary and highperformance concrete in relation to loading [J]. Materials and Structures,1998(31):27~35.
    [91] Konin A, Francois R, Arliguie G. Penetration of chlorides in relation to the microcracking stateinto reinforced ordinary and high strength concrete [J]. Materials and Structures,1998(31):310~316.
    [92] Klaus-Christian Werner,Yaoxing Chen,Ivan Odler,Investigations on stress corrosion of hardenedcement pastes [J]. Cement and Concrete Research,30(2000)1443~1451.
    [93] Gerdes A, Wittmann F H. Influence of Stress Corrosion on Fracture Energy of CementitiousMaterials.Fracture Mechanics of Concrete Structures, Proc. FRAMCOS-2, F.H.Wittmann(ed.),AEDIFCATIO Publishers, Freiburg,1995.
    [94] Schneider U, Chen S W. The chemomechanical effect and the mechanochemical effect onhigh-performance concrete subjected to stress corrosion [J]. Cement and ConcreteResearch,1998,28(4):509–522.
    [95]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学材料科学与工程系,2000.
    [96]慕儒,孙伟,缪昌文.荷载作用下高强混凝土的硫酸盐侵蚀[J].工业建筑,1999,29(8):52~55.
    [97]余红发,孙伟,刘连新,等.在盐湖卤水环境中混凝土应力腐蚀行为[J].哈尔滨工业大学学报,2007,39(12):1965~1968.
    [98]陈拴发.高性能混凝土应力腐蚀与腐蚀疲劳特性研究[D].西安:长安大学,2004.
    [99]冷发光,冯乃谦,邢锋.混凝土应力腐蚀研究现状及问题[J].混凝土,2000,(8):6~9.
    [100]高润东.复杂环境下混凝土硫酸盐腐蚀微-宏观劣化规律研究[J].北京:清华大学,2010.
    [101]钟海明.荷载-干湿循环作用下混凝土抗硫酸盐侵蚀性能研究[硕士学位论文].广东:广州大学,2012.
    [102]余震新,高建明,宋鲁光,等.荷载-干湿交替-硫酸盐耦合作用下混凝土损伤过程[J].东南大学学报(自然科学版),2012,42(3):487~491.
    [103]黄战,邢锋,董必钦,等.荷载作用下的混凝土硫酸盐腐蚀研究[J].混凝土,2008,(2):66~69.
    [104]董必钦,罗帅,邢锋.多因素作用对混凝土硫酸盐腐蚀的影响研究[J].混凝土,2007,(9):33~36.
    [105] Clifton J R. Methods for predicting the service life of concrete [A]. In: Baker J.M., Nixon P.J.,Majumdar A. J. et al. Durability of building materials and components [D].5TH Inter Conf onDurability of building materials and components, England,1990:361~373.
    [106] Atkinson A, Hearne J A. Mechanistic model for the durability of concrete barriers exposed tosulfate-bearing groundwater [C]. Materials Research Society Symposium Proceedings,1990,(176):149~156.
    [107] Ming-Te Liang, Shieng-Min Lin. Modeling the transport of multiple corrosive chemicals inconcrete structures: Synergetic effect study [J]. Cement and Concrete Research,2003(33)1917–1924.
    [108]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述与建立[J].硅酸盐学报,2001,29(6):530~534.
    [109]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证与应用[J].硅酸盐学报,2001,29(6):535~540.
    [110]余红发,孙伟,张云升,等.在冻融或腐蚀环境下混凝土使用寿命预测方法Ⅰ-损伤演化方程与损伤失效模式[J].硅酸盐学报,2008,36(s1):128~135.
    [111]余红发,孙伟,麻海燕,等.冻融和腐蚀因素作用下混凝土的损伤劣化参数分析[J].建筑科学与工程学报,2011,24(4):1~8.
    [112]余红发,孙伟,麻海燕,等.基于损伤演化方程的混凝土寿命预测方法[J].建筑科学与工程学报,2012,29(1):1~7.
    [113]李士伟,王迎飞,王胜年.硫酸盐环境下混凝土损伤预测模型[J].武汉理工大学学报,2010,32(4):35~39.
    [114] Samson E, Marchand J. Modeling the transport of ions in unsaturated cementbased materials[J]. Comput Struct,2007,85(23–24):1740~1756.
    [115] Ruthven D M. Principles of adsorption and adsorption processes. Wiley, John&Sons,Incorporated;1984.
    [116] Shen L, Chen Z. Critical review of the impact of tortuosity on diffusion [J]. Chem Eng Sci2007,62(14):3748~3755.
    [117] Sarkar S, Mahadevan S, Meeussen J C L, et al. Numerical simulation of cementitious materialsdegradation under external sulfate attack [J]. Cem. Con. Comp.,2010,3(3):241~252.
    [118] Stora E, Bary B, He Q C, et al. Modelling and simulations of the chemo-mechanical behabiorof leached cement-based materials: Interactions between damage and leaching [J].2010,40(8):1226~1236.
    [119] Stora E, Bary B, He Q C, et al. Modelling and simulations of the chemo-mechanical behabiorof leached cement-based materials: leaching process and induced loss stiffness [J].2009,39(9):763~772.
    [120] Idiart A E, López C M, Carol I. Chemo-mechanical analysis of concrete cracking anddegradation due to external sulfate attack: A meso-scale model [J]. Cem and Concr Comp,2011,33(3):411~423.
    [121] Santagata M C, Collepardi M. The effect of CMA deicers on concrete properties [J] Cementand Concrete Research,2000,30(9):1389~1394.
    [122] Omar S B, Al-Amoudi, Mohammed Ma, et al. Role of chloride ions on expansion and strengthreduction in plain and blended cements in sulfate environments [J]. Construction and BuildingMaterials,1995,9(1):25~33.
    [123] Dehwah H A F, Maslehuddin M, Austin S A. Effect of sulfate ions and associated cation typeon the pore solution chemistry in chloride-contaminated plain and blended cements [J]. Cementand Concrete Composites,2003,25(4~5):513–525.
    [124] Maher A B. Performance of concrete in a coastal environment [J]. Cement and ConcreteComposites,2003,25(4~5):539–548.
    [125] Brown P W, Doerr A. Chemical changes in concrete due to the ingress of aggressive species [J].Cement and Concrete Research,2000,30(3):411~418.
    [126] Brown P W, Badger S. The distributions of bound sulfates and chlorides in concrete subjectedto mixed NaCl, MgSO4, Na2SO4attack [J]. Cement and Concrete Research,2000,30(10):1535~1542.
    [127]杨崇豪.建筑材料的腐蚀及控制设计[M].北京,水利科学出版社,1900:0~67.
    [128]席耀忠.关于膨胀混凝土若干问题的讨论[J].混凝土与水泥制品,2007,(5):1~5.
    [129]杨全兵,朱蓓蓉,黄士元.SJ-2型引气剂的研制与应用[J].黑龙江交通科技,2000(S1):15~26.
    [130]杨钱荣,黄士元.引气混凝土的特性研究[J].混凝土,2008(5):3~7.
    [131]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996:118~125.
    [132]刘培生.多孔材料孔径及孔径分布的测定方法[J].钛工业进展,2006,23(2):29~34.
    [133]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996:47~58.
    [134] Saetta A, Scotta R, Vitaliani R. Mechanical behavior of concrete under physical–chemicalattacks. J Eng Mech,1998,124(10):1100–1109.
    [135] Karihaloo B L. Fracture mechanics and structural concrete. Essex, England: LongmanScientific and Technical,1995。
    [136]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002,1~32.
    [137] BS8110-2:1985Structural Use of Concrete–Part2: Code of parctice for specialcircumstances[S].
    [138]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992.
    [139] Budiansky B, O’Connell R. Elastic moduli of a cracked solid [J]. Int J Solid Struct,1976,12(2):81~97.
    [140] Krajcinovic D, Basista M, Mallick K, Sumarac D. Chemo-micromechanics of brittle solids. JMech Phys Solids,1992,40(5):965–990.
    [141] Basista M, Weglewski W. Chemically assisted damage of concrete: a model of expansionunder sulfate attack. Int J Damage Mech2008.
    [142] Charlaix E. Percolation threshold of a random array of discs: a numerical simulation [J]. J PhysA: Math Gen,1986,19(9):533–536.
    [143] Krajcinovic D. Effective material properties in the limit of large defect concentration [J]. EngFract Mech1997;57(2~3):227~240.
    [144] Sornette D. Critical transport and failure in continuum crack percolation [J]. J Phys1988,49:1365~1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700