用户名: 密码: 验证码:
多晶硅CVD反应器的计算传递学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在开发低能耗的新型多晶硅CVD反应器,并采用计算流体力学的方法研究反应器的动量、热量、质量传递及化学反应过程,以指导反应器的优化与设计,进一步降低反应器的还原电耗。
     本文第二部分首先介绍了现有多晶硅CVD反应器的结构及操作流程,分析了现有反应器的硅棒的排布方式,讨论了现有反应器的进气和出气方式,列举了现有一些反应器的底盘冷却结构。
     本文第三部分采用多表面辐射传热模型(S2S)研究了多晶硅CVD反应器的辐射传热过程,计算结果表明反应器从12对棒放大到18对棒和27对棒,反应器的辐射能耗分别降低7.8%和20.8%;将多晶硅的沉积速率从5μm min-1提高到20μm min-1,反应器的辐射能耗可降低75%;将反应器壁面的温度从373K提高到773K,反应器的辐射能耗可降低9.6%;将反应器内壁面的发射率从0.2降低到0.1,反应器的辐射能耗可降低的61.6%;另外通过比较了两种不同的硅棒排布的反应器辐射能耗,结果发现圆周排布反应器的硅棒与反应器壁面之间的辐射功率更低,硅棒与硅棒之间的辐射功率更高,这表明了在圆周排布反应器的硅棒排布更加密。
     本文第四部分在传统多晶硅CVD反应器基础上提出了一种新型反应器,并根据工业尾气组分推导反应器内的反应方程式,耦合这一反应模型,建立了描述反应器内动量、热量、质量同时传递及化学反应的数学模型,应用该模型分析了两反应器的性能。模拟结果表明:首先新型反应器内混合气的流场更加均匀,基本上为“平推式流动”,解决了传统反应器原料气走短路问题;其次新型反应器解决了传统反应器顶部区域温度过高的问题,避免了硅粉的生成,长期保持反应器内壁面的光洁度,从而降低了反应器的辐射能耗;第三,新型反应器内三氯氢硅在径向和轴向方向上都存在着较大的浓度差,这种浓度差可能造成多晶硅棒的直径不同,但是与上述两点相比,这种浓度分布不均匀对多晶硅棒直径的影响是可以接受的;最后与传统反应器结构的还原电耗相比,新型反应器的还原电耗至少可降低10%以上。
     本文第五部分提出了一种新型多晶硅CVD反应器的底盘冷却结构,并采用计算流体力学的方法模拟了新型结构的流动过程,模拟结果发现通过减小电极套筒的大小,减小电极套筒与底盘下底板的间距,改变中间隔板与底盘下底板的间距,都可以提高电极套筒流量的均匀度。
The purpose of the paper is to develop a novel energy saving polysilicon CVDreactor. In order to guide the optimization and design of the reactor and reduce theenergy consumption, the flow behavior, the heat and mass transfer, the speciestransport and chemical vapor deposition reaction in the polysilicon CVD reactor havebeen modeled by using the computational fluid dynamic method.
     In the second part of this dissertation, the structure of the polysilicon CVDreactor and the operation process have been introduced, the arrangement of thepolysilicon rods has been analyzed; the inlet and outlet of the gases have beendiscussed and several cooling structures of the chassis have been presented.
     In the third part, the radiation heat transfer of the reactor has been simulated byusing the S2S model. The simulation results demonstrate that enlarging the reactorcapacity from12rods to18rods and27rods can reduce the energy loss by7.8%and20.8%respectively; if the polysilicon growth rate is increased from5to20μm min-1,the radiation energy consumption can be reduced by75%; increasing the inner shieldtemperature from373to773K, the energy saving is9.6%; changing the emissivity ofthe inner shield from0.2to0.1decreases the energy loss by38.3%. Furthermore, theradiation energy consumption has been compared between the circular arrangementreactor and the hexagonal arrangement reactor. The results show that the radiationpower in the circular arrangement reactor between the polysilicon rods and the reactorwall is lower than that in hexagonal arrangement reactor and the power in the circulararrangement reactor between the polysilicon rods are more than that in hexagonalarrangement reactor, the results demonstrate that the polysilicon rods arrangement inthe circular arrangement reactor is more encryption than that in hexagonalarrangement reactor.
     Based on the traditional polysilicon CVD reactor, a novel reactor with lowerenergy consumption is developed and a three dimensional theoretical model todescribe the transport phenomena in the reactor is proposed. An overall chemicalreaction formula is developed according to the measured composition of the exhaustgas in a polysilicon factory. By comparing the simulated results with industrial datafor traditional polysilicon CVD reactor, the proposed model has been verified. Thevelocity profile, temperature field, concentration distribution and the energyconsumption of the traditional reactor and novel reactor have been analyzed using the theoretical model. The simulation results demonstrate that the flow pattern of the gasmixture in the novel reactor is nearly plug flow, which is fundamentally different fromthat of traditional reactor, and the temperature field can be controlled by changing theoperating parameters in the novel reactor. Because the temperature of the gas phase inthe novel reactor can be controlled, the chance of silicon powder generation can beavoided, and the cleanness of the inner wall of the reactor can be kept at95%above.Simulation results shows that the energy consumption of the novel reactor can begreatly reduced due to lower radiation on the cleaner inner wall.
     Finally, the paper presents a novel cooling structure of the chassis in polysiliconCVD reactor, the flow behavior in the novel chassis has been modeled by using thecomputational fluid dynamic. The simulation result demonstrate that by reducing thesize of the electrode sleeve and the distance between the electrode sleeve and thebottom plane of the chassis can increase the uniform of the mass flow between theelectrode sleeves; changing the distance between the middle plane and the bottomplane in the chassis can also increase the uniform of the mass flow between theelectrode sleeves.
引文
[1]Photo International, The Solar Power Magazine3,2010
    [2]Del Canizo C, Del Coso G, Sinke W C, Crystalline silicon solar moduletechnology: Towards the1€Per Watt-Peak Goal [J], Progress in Photovoltaics:Research and Applications,2009,17(3):199-209
    [3]Despotou E, Fontaine B, Montoro D F, Global market outlook for photovoltaicuntil2014[R], European Photovoltaic Industry Association, Brussels, Belgium,2010.
    [4]Maycock P D, PV Market Update [J], Renewable Energy World,2003,6(4):84-101
    [5]Jaeger Waldau A, PV-net: European Roadmap for PV R&D [M], EuropeanCommission,2004
    [6]Rogol M. Silicon2010: two sports with one name [C], The8th solar siliconconference, Stuttgart, Germany,2010
    [7]Pizzini S, Towards solar grade silicon: Challenges and benefits for low costphotovoltaic [J], Solar Energy Materials and Solar Cells,2010,94(9):1528-1533
    [8]蒋潇,周红卫,陈会明等,国内外多晶硅产业的特点与差距,新材料产业,2013,2:36-40
    [9]梁骏吾,电子级多晶硅的生产工艺[J],中国工程科学,2000,2(12):34-39
    [10]Luque A, Handbook of Photovoltaic Science and Engineering [M], New York:John Wiley&Sons Inc.,2010,167-172
    [11]Filtvedt W O, Javidi M, Holt A, Melaaen M C, Development of fluidized bedreactors for silicon production [J], Solar Energy Materials and Solar Cells,2010,94(12):1980-1995
    [12]Reiser J., Method and apparatus for producing hyperpure silicon rods, US Patent3053638,1962
    [13]Schering H., Process for production of hyperpure silicon by heat decompositionof a chlorosilanes, US Patent3041144,1962
    [14]汪光裕,丁国江,艾波,四氯化硅在西门子法多晶硅生产流程内部的循环利用[J],东方电气评论,2008,22(4):70-72
    [15]苗军舰,陈少纯,丘克强,西门子法生产多晶硅的热力学[J],无机化学学报,2007,23(5):795-801
    [16]苏维,多晶硅生产的节能减排措施[J],有色金属加工,2008,37(2):57-59
    [17]Jaeger Waldau A, Photovoltaic status report2011-research: solar cell productionand market implementation of photovoltaics [R], European Commission, Ispra, Italy,2011
    [18]Mara W, Herring R. Hunt L, Handbook of Semiconductor Silicon Technology[M], New Jersey: Noyes Publ.,1990,34-37
    [19]Mauk M, Silicon Solar Cells: Physical Metallurgy Principles [J], JOM Journal ofthe Minerals, Metals and Materials Society,2003,55(5):38-42
    [20]郑淞生,陈朝,罗学涛,多晶硅冶金法除磷的研究进展[J], Materials Review,2009,23(10):11-19
    [21]陈君,杨德仁,席珍强,铸造多晶硅中铜沉淀的电子束诱生电流[J],太阳能学报,2005,(1):5-9
    [22]徐岳生,刘彩池,王海云,半导体硅熔体电导率的间接测量[J],人工晶体学报,2008,102-103
    [23]戴永年,马文会,杨斌,粗硅精炼制多晶硅[J],世界有色金属,2009,(12):29-35
    [24]徐云飞,冶金法制备太阳能级多晶硅工艺研究[D],大连,大连理工大学,2008
    [25]Caussat M H B., Couderc J P., Silicon Deposition from Silane or Disilane in aFluidized Bed--Part I: Experimental Study [J], Chemical Engeering Science,1995,50(22):3615-3624.
    [26]Caussat M H B., Couderc J P., Silicon Deposition from Silane or Disilane in aFluidized Bed--Part II: Theoretical Analysis and Modeling [J], Chemical EngeeringScience,1995,50(22):3625-3635
    [27]Hsu R H G., Rohatgi N., Fines in Fluidized Bed Silane Pyrolysis [J], Journal ofElectrochem Soc,1984,131,660-668
    [28]Cadoret N R L., Pannala S., Silicon CVD on Powders in Fluidized Bed:Experimental and Multifluid Eulerian Modelling Study [J], Surf Coat Technol,2007,201(22-23):8919-8923
    [29]Reuge L C N., Coufort-Saudejaud C., Multifluid Eulerian Modeling of DenseGas-Solids Fluidized Bed Hydrodynamics: Influence of the Dissipation Parameters [J],Chemical Engeering Science,2008,63(22):5540-5551
    [30]Kimura T K T., Numerical-Model of a Fluidized-Bed Reactor for PolycrystallineSilicon Production-Estimation of CVD and Fines Formation [M],8th EuropeanConference on Chemical Vapour Deposition (Eurocvd8),1991,103-110
    [31]杨晓婵,德山公司西门子法和VLD法并举[J],现代材料动态,2007,(4):18
    [32]Ekanayake G, Quinn T., Reehal H., Large-Grained Poly-Silicon Thin Films byAluminium-Induced Crystallisation of Microcrystalline Silicon [J], J. Crystall.Growth,2006,293(2):351-358
    [33]Reber S, Zimmermann W., Kieliba T., Zone Melting Recrystallization of SiliconFilms for Crystalline Silicon Thin-Film Solar Cells [J], Sol. Energy Mater. Sol. Cells,2001,65(1-4):409-416
    [34]李维刚,许颖,区熔再结晶制备多晶硅薄膜太阳电池[J],北京师范大学学报:自然科学版,2001,37(6):746-749
    [35]Ciszek T., Wang T., Page M., Solar-Grade Silicon from Metallurgical-GradeSilicon Via Iodine Chemical Vapor Transport Purification [A] IEEE,2003:206-209
    [36]Strebkov D, Pinov A, Zadde V, Chlorine Free Technology for Solar-Grade SiliconManufacturing [A],2004
    [37]Mozer A., Fath P., Design Criteria for polysilicon factories, In3rd Solar siliconConference,2006
    [38]Sirtl E, Hunt L, Sawyer D, High Temperature Reactions in theSilicon-hydrogen-chlorine System[J], J. Electrochem. Soc.,1974,121(7):919-925
    [39]李国栋,张秀玲,胡仰栋,电子级多晶硅生产工艺的热力学分析[J],过程工程学报,2007,7(03):520-525
    [40]Habuka H., Nagoya T., Mayusumi M., etc., Model on transport phenomena andepitaxial growth of silicon thin film in SiHCl3-H2system under atmospheric pressure,Journal of Crystal Growth,1996,169(1):61-72
    [41]Habuka H., Katayama M., Shimada M., Okuyama K., Nonlinear increase insilicon epitaxial growth rate in a SiHCl3-H2system under atmospheric pressure,Journal of Crystal Growth,1997:182,352-362
    [42]Habuka H., Aoyama Y., Akiyama S., etc., Chemical process of silicon epitaxialgrowth in a SiHCl3-H2system, Journal of Crystal Growth,1999,207:77-86
    [43]Habuka H., Suzuki T., Yamamoto S., etc., Dominant rate process of siliconsurface etching by hydrogen chloride gas, Thin Solid Films,2005,489(1-2):104-110
    [44]Eversteijn F., Chemical-reaction engineering in the semiconductor industry,Philips research reports,1974,26:45-46
    [45]Faller, Hurrle A., High-temperature CVD for crystalline-silicon thin-film solarcells, IEEE Transactions on electron devices,1999,46:2048-2054
    [46]Kommu S., Wilson G.M., Khomami B., A theoretical/experimental study ofsilicon epitaxy in horizontal single-wafer chemical vapor deposition reactors, Journalof the Electrochemical Society,2000,147(4):1538-1550
    [47]Del Coso G., Canizo C., Luque A., Chemical vapor deposition model ofpolysilicon in a trichlorosilane and hydrogen system, Journal of the ElectrochemicalSociety,2008,155(6):485-491
    [48]Del Coso G., Tobias I., Canizo C., etc., Temperature homogeneity of polysiliconrods in a Siemens reactor, Journal of Crystal Growth,2007,299(1):165-170
    [49]Del Coso G., Canizo C., Luque A., Radiative energy loss in a polysilicon CVDreactor, Solar Energy Materials and Solar Cells,2011,95(4):1042-1049
    [50]Li M., Mitrasinovic A., Utigard T., etc., Silicon rod heat generation and currentdistribution, Journal of Crystal Growth,2009,312(1):141-145
    [51]Pazzglia G., Fumagalli M., Kulkarni M., Bell jar for siemens reactor includingthermal radiation shield, USPat0250366,2011
    [52]Revankar V., Lahoti S., Method of gas distribution and nozzle design in theimproved chemical apor deposition of polysilicon reactor, USPat0151137,2011
    [53]Kang S.O., Lee U.J., You H. J., etc., Gas nozzle effect on the deposition ofpolysilicon by monosilane Siemens reactor, International Journal of Photoenergy,2012
    [54]Gum J.C, Fero C., Desrosier D., Gold-coated polysilicon reactor system andmethod, USPat0159214,2011
    [55]Arifuddin F., Chandra M., Muthukrishnan S., Method and appratus for low costproduction of polysilicon using Simen's reactors, USPat0080902,2011
    [56]De Paola E., Duverneuil P., Simulation of silicon deposition from SiHCl3in aCVD barrel reactor at atmospheric pressure, Computers&Chemical Engineering,1998,22: S683-S686
    [57]Barbato A., Cavallotti C., Challenges of introducing quantitative elementaryreactions in multiscale models of thin film deposition, Physica Status Solidi B-BasicSolid State Physics,2010,247(9):2127-2146
    [58]Valente G., Cavallotti C., Masi M., etc., Reduced order model for the CVD ofepitaxial silicon from silane and chlorosilanes, Journal of Crystal Growth,2001,230(1-2):247-257
    [59]Cavallotti C., Reactivity of silicon surfaces in the presence of adsorbed hydrogenand chlorine, Chemical Vapor Deposition,2010,16(10-12):329-335
    [60]Cavallotti C., Masi M., Kinetics of SiHCl3chemical vapor deposition and fluiddynamic simulations, Journal of Nano science and Nanotechnology,2011,11(9):8054-8060
    [61]Angermeier D., Monna R., Slaoui A., etc., Modeling and analysis of the siliconepitaxial growth with SiHCl3in a horizontal rapid thermal chemical vapor depositionreactor,1997,144(9),3256-3261
    [62]张攀,王伟文,董海红,三氯氢硅和氢气系统中多晶硅化学气相沉积的数值模拟,人工晶体学报,2010,39(2):494-499
    [63]Bird R. B., Stewart W. E., Lightfoot E. N., Transport phenomena, Beijing:Chemical Industrial Press,2002
    [64]Introduction to computation fluid dynamic, U. S. Department of commerce,Springfield: National Technical Information Service,1985
    [65]陶文铨,数值传热学,西安:西安交通大学出版社,2003
    [66]刘伯潭,流体力学传质计算新模型的研究和在塔板上的应用:[博士学位论文],天津,天津大学,2004
    [67]孙志民,化工计算传质学的研究及其在精馏塔中的应用:[博士学位论文],天津,天津大学,2006
    [68]傅德薰,马延文,计算流体力学,北京:高等教育出版社,2002
    [69]Piller M., Nobile E., Thomas J., DNS study of turbulent transport at low Prandtlnumbers in a channel flow, J. Fluid Mech.,2002,458:419-441
    [70]Wissink J. G., DNS of separating low Reynolds number flow in a turbine cascadewith incoming wakes, Int. J. Heat Fluid Flow,2003,24(4):626-635
    [71]Rollet-Miet P., Laurence D., Ferziger J., LES and RANS of turbulent flow in tubebundles, Int. J. Heat Fluid Flow,1999,20(3):241-254
    [72]陶文铨,计算传热学的近代发展,科学出版社,2000
    [73]忻孝康,刘儒勋,蒋伯诚,计算流体动力学,长沙:国防科技大学出版社,1989
    [74]刘春江,袁希钢,余国琮,计算传质学,展望21世纪的化学工程,北京:化学工业出版社,2004,253-266
    [75]Sun Z. M., Liu B. T., Yuan X. G., et. al., New turbulent model for computationalmass transfer and its application to a commercial-scale distillation column, Industrial&Engineering Chemistry Research,2005,44(12):4427-4434
    [76]Liu G. B., Yu K. T., Yuan X. G., et al., Simulations of chemical absorptioninpilot-scale and industrial–scale packed columns by computational mass transfer,Chem. Eng. Sci.,2006,61(9):6511-6529
    [77]Liu G. B., Yu K. T., Yuan X. G., et al., New model for turbulent mass transfer andits application to the simulations of a pilot-scale randomly packed column forCO2-NaOH chemical absorption, Ind. Eng. Chem. Res.,2006,45(9):3220-3229
    [78]Liu G. B., Yu K. T., Yuan X. G., et al., Simulation of wall-cooled fixed-bedcatalytic reactor by computational transport, Proceedings of Chinese-FrenchCollabotarory of Chemical and Enviromental Engineering for SustainablDevelopment Annual Meeting, Tianjin, China,2006
    [79]Sun Z. M., Yu K. T., Yuan X. G., Liu C. J., A modified model of computationalmass transfer for distillation column, Chem. Eng. Sci.\,2007,62(7):1839-1850
    [80]Carvalho M. G., Farias T., Fontes P., Predicting Radiative Heat Transfer inAbsorbing, Emitting, and Scattering Media Using the Discrete Transfer Method,Fundamentals of Radiation Heat Transfer, ASME HTD,1991,160:17-26
    [81]Shah N. G., An New Method of Computation of Radiant Heat Transfer inCombustion Chambers, PhD thesis, Imperial College of Science and Technology,London, England,1979
    [82]Cheng P., Two-Dimensional Radiating Gas Flow by a Moment Method, AIAAJournal,1964,2:1662-1664
    [83]Siegel R., Howell J. R.,Thermal Radiation Heat Transfer,Hemisphere PublishingCorporation, Washington D.C.,1992
    [84]Chui E. H., Raithby G. D., Computation of Radiant Heat Transfer on aNon-Orthogonal Mesh Using the Finite-Volume Method, Numerical Heat Transfer,Part B,1993,23:269-288
    [85]Raithby G. D., Chui E. H., A Finite-Volume Method for Predicting a Radiant HeatTransfer in Enclosures with Participating Media J. Heat Transfer,1990,112:415-423
    [86]黄哲庆,刘春江,袁希钢,新型多晶硅还原炉流动与传热的数值模拟,化工学报,2013,64(2):484-489
    [87]刘春江,黄哲庆,段连,袁希钢,一种18对棒新型多晶硅还原炉排布及连接方法,中国专利,201110190062.X,2013-01-02
    [88]王晓静,黄哲庆,段连,刘春江,一种42对棒多晶硅还原炉排布及连接方法,中国专利,201110173457.9,2012-12-19
    [89]刘春江,黄哲庆,段连,袁希钢,均匀取热式多晶硅还原炉底盘冷却结构,中国专利,201110186795.6,2013-1-02
    [90]王伟文,陈光辉,马文华等,多晶硅生产用还原炉,中国专利,200810249625.6
    [91]黄国强,毛俊南,王红星,华超,一种多晶硅还原炉[P],中国专利,201010542482.5
    [92]周积卫,程佳彪,茅陆荣,郝振良,并联双螺旋导流通道多晶硅还原炉底盘,中国专利,200820154686.X
    [93]吴海龙,程佳彪,周积卫,宋瑜,中心对称三螺旋导流通道多晶硅还原炉底盘,中国专利,200920208183.0
    [94]吴海龙,程佳彪,周积卫,赵巧,中心对称双螺旋导流通道多晶硅还原炉底盘,中国专利,200920208194.9
    [95]Schweickert H., Reuschel K., Gutsche H., Production of high puritysemiconductor materials for electrical purposes, Patent US3011877,1957
    [96]Gutsche, Method for producing highest purity silicon for electric semiconductordevices, Patent US3042494,1962
    [97]Reuschel K., Kersting A., Method for producing hyperpure silicon, Patent US3057690,1962
    [98]R. Siegel, Howell J. R., Thermal radiation heat transfer, New York: Mc Graw Hill,1972
    [99]Koppl F., Hamster H., Griesshammer R., Lorenz H., Process for the deposition ofpure semiconductor material, Patent US4179530,1979
    [100]Modest M.F., Radiative Heat Transfer, McGraw-Hill,1993
    [101]Cohen M.F., Greenberg D.P., The hemi-cube: A radiosity solution for complexenvironments, Computer Graphics,1985,19(3):31-40
    [102]Larsen M.E., Howell J.R., Least squares smoothing of direct exchange areas inzonal analysis, Journal of Heat Transfer,1986,108:239-242
    [103]T. Sato, Spectral emissivity of silicon, Japanese Journal of Applied Physics,1967,6(3):339-347
    [104]Bauer W., Oertel H., Spectral emissivities of bright and oxidized metals at hightemperature, The Fifteenth Symposium on Thermophysical Properties,2003
    [105]Reid R. C., Prausnitz J. M., Poling B. E., The Properties of Gases and Liquids
    [M], NewYork: McGraw-Hill,1987
    [106]McGee H. A., Molecular Engineering [M], New York: McGraw-Hill,199
    [107]Qian J. L., Yu Z. H., Wang L. T., Tube Furnace[M], Beijing: HydrocarbonProcessing Press,1987
    [108]Wolfe W. L., George J. Z., Infrared Information and Analysis Center[M],Washington, D.C.: Office of Naval Research, Department of Navy,1985
    [109]Carl L. Y., Matheson gas data book [M], New York: McGraw-Hill,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700