用户名: 密码: 验证码:
基于一个柔性三酸配体设计和调控配位聚合物的结构及维度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着配位化学的不断发展,具有特定结构和功能的配位聚合物已经成为该领域的研究热点。在气体吸附、分子离子识别以及选择催化等方面有卓越表现的金属有机框架化合物(MOFs)更是受到了研究者们的广泛关注。配位聚合物拥有零维、一维、二维、三维以及很多新颖的穿插缠绕结构,不同的结构更是对应的不同的性能表现。MOFs材料的孔道形状、孔道尺寸以及孔表面官能团等因素直接决定了最终的性能。因此,如何定向的设计和组装不同结构的配位聚合物或MOFs材料是该领域的重大挑战。在配位聚合物的组装过程中,很多因素都会对其最终结构造成影响,那么如何有效的使用这些手段,而不是被它们制约仍旧需要深入的研究。
     本论文致力于这部分研究内容,选择了1,3-双(4’-羧基苯氧基)苯甲酸(H3cpbda)作为配体合成了17例配位聚合物。其中通过与不同的过渡金属离子组装了系列的超分子异构体以及异质同晶体,并且通过引入刚性含氮辅助配体组装了一系列不同维度的配位聚合物等。文中深入研究了不同系列结构之间的构效关系以及其影响因素,主要的研究结果有:
     1.选取金属Mn2+离子与柔性的三齿配体H3cpbda作为构筑模块,通过系统的改变溶剂体系、温度以及反应器,实现了一系列超分子异构体的调控和合成。当配体采取不同的“T”型以及“Y”型的分子构型时,会拓展出“矩形”和“菱形”的一维孔道。对比三维的超分子异构体MOFs材料的孔隙率,发现配合物6>配合物1>配合物4>配合物3,符合溶剂分子尺寸(H2O MeOH> DMF> DMP)的顺序。说明溶剂分子尺寸越大或者极性越小,倾向于得到孔隙率较大的结构。
     2.选取金属Mn2+和金属Co2+与H3cpbda作为构筑模块,通过溶剂体系的调控实现了两组二维及三维的异质同晶现象的调控。对比三维结构中的孔隙率,配合物6>配合物7>配合物8。在二维结构中,由于溶剂分子填充于孔道中支撑骨架,导致孔道的形状以及孔隙率均发生改变。对比孔道尺寸和孔隙率,配合物9<配合物10<配合物11。两组配合物均符合溶剂分子尺寸(DMF DMA> DMP)的顺序。在异质同晶体间得到了与超分子异构体相似的结论:溶剂分子尺寸越大或者极性越小,倾向于得到孔道尺寸以及孔隙率较大的结构。
     3.选取金属Cd2+离子与H3cpbda作为构筑模块的同时,添加了一组刚性含氮辅助配体,螯合配体(Phen和2,2'-bipy)和桥连配体(4,4'-bipy和Bpe),实现了对配位聚合物维度的调控(1D,2D,3D)。在该组配合物中出现了新的“M”型构型,它属于降低维数的因素。另外,桥连辅助配体属于拓展维度和稳定结构的因素,封端辅助配体属于典型的降低维数的因素。通过这一系列不同维度配合物的调控验证了柔性配体的分子构型以及刚性辅助配体的种类对最终结构维度的重要影响。除此之外对荧光的研究发现,刚性辅助配体的选择促进了配合物的红移现象,其中引入封端配体的红移小,引入桥连配体的红移大。
     4.基于柔性三齿配体H3cpbda,分别与金属离子Mn2+和Zn2+通过不同的反应方法以及溶剂体系分别合成了两组疏途同晶结构,先前关于疏途同晶现象的报道中虽然晶体的结构相同,但是宏观的晶体形貌(形状和尺寸)完全不同。本文中的两组实验方案均得到了相似的晶体形貌及产率。这是由于本文选取的柔性配体H3cpbda能够更好的适应外界溶剂及环境,在结晶过程中形成了形貌相似。说明晶体的宏观形貌的变化不仅与溶剂体系有关,它还与选择的配体种类有关。
     本文的研究内容为如何调控配合物的超分子异构和异质同晶现象,定向的合成不同结构和性能的配位聚合物提供了理论依据,具有非常重要的意义。
Coordination polymers not only have variform charming structures, such as1D,2D,3D structures and novel interpenetrating or intertwine structures, but also possess various functions. Design and construction of the metal-organic frameworks (MOFs) have become an attractive prospect for their potential applications in gas absorption, separation, molecular sensing, and catalysis. As we known, the porous shape, dimensions and function groups are key factors for the applications of MOFs, and lots of factors can influence the final structure of MOFs, such as pH values, solvents temperature and so on. Therefore, the targeted design and assembly coordination polymers or MOFs is still a great challenge, which is urgent need to be intensive researched. Besides, the rational selection of metal cations and organic ligands with suitable shape, size, symmetry, functional groups and flexibility is considered to be a pivotal role to construct MOFs
     In this dissertation, the1,3-bis(4'-carboxyl phenoxy)benzoic acid (H3cpbda) is choosen as main building block, and successfully construct17coordination polymers. H3cpbda react with different transition metal ions, result various supramolecular isomers and isomorphor. When a series of rigid N-donor ligand is introduced to the react systerm, five vari-dimension coordination polymers are synthesized. The properties and influence factor are intensively discussed. The major contents of this dissertation are listed as follows:
     (1) H3cpbda reacts with Mn2+, and results a series of supramolecular isomers, by changing the solvent systerms, temperature and reactors. The "T" and "Y" shaped configurations of cpbda3" lead to rectangle and parallelogram shaped1D channel in structures。 The solvent void volumes of complex6>1>4>3are according with the solvent molecular size (H2O MeOH> DMF> DMP)。The higher molecular size and lower solvent polarity is tending to construct the structure with higher solvent void volume.
     (2) Hacpbda react with Mn2+and Co2+, and result two groups of isomorphors, by changing the solvent systerms. In the3D structures group, the solvents voids volume of complex6>7>8。Besides, in the2D structures group, the porous size and the solvents voids volume of complex9<10<11. Both the two groups are according with the solvent molecular size (DMF DMA> DMP). Similar to supramolecular isomers, the isomorphors are also keeping the rule that the higher molecular size and lower solvent polarity is tending to construct the structure with higher porous size and solvent void volume.
     (3) Along with the Cd+and H3cpbda, four rigid N-donor ligands are introduced, and five complexes with different dimensions are successfully constructed. The phen and2,2'-bipy are terminal ligands, which are adverse to increase the dimension of coordination polymers. However,4,4'-bipy and bpe are bridged ligands, tend to assembly high dimension MOFs. Besides, the new type of "M" molecular configuration is a factor to decrease the dimension. The fluorescence researches find that the red shifts are brought out by the introductions of rigid N-donor ligands. The red shift of terminal N-donor ligand is litter than bridged N-donor ligand.
     (4) Using various synthesis methods, resulting same crystal products. According to the literature, the synthesis methods can bring out the variform crystal morphologies (crystal size and shape). However, the various synthesis ways of complexe in this dissertation are get the similar crystal morphologies and productive rate. It's must bescause of the flexible ligand H3cpbda can adapt the solvent environment and tend to form the similar crystal morphologies.
     The research of this dissertation provide the theoretical basis for assembly of supramolecular isomers and isomorphors with different structures and functions.
引文
[1]罗勤慧等.配位化学[M].北京:科学出版社,2012
    [2]盂庆金,藏安邦.配位化学的创始与现代化[M].北京:高等教育出版社,1998
    [3]刘伟生等.配位化学[M].北京:化学工业出版社,2012
    [4]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000
    [5]刘志亮等.功能配位聚合物[M].北京:科学出版社,2013
    [6]孙为银等.配位化学[M].北京:化学工业出版社,2010
    [7]苏成勇,潘梅.配位超分子结构化学基础与进展[M].北京:科学出版社,2010
    [8]仲崇立,刘大欢,阳庆元.金属-有机骨架材料的构效关系及设计[M].北京:科学出版社,2013
    [9]Yaghi O. M., Li H., Davis C., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Accounts of Chemical Research,2001,34:319-330
    [10]Schmidt G. M J. Photodimerization in the Solid State[J]. Pure and Applied Chemistry, 1971,27:647-678
    [11]Batten S. R. Coordination polymers[J]. Current Opinion in Solid State and Materials Science,2001,5:107-114
    [12]Buna U. H. F. Poly(aryleneethynylene)s:Syntheses, Properties, Structures, and Applications[J]. Chemical Reviews,2000,100:1605-1644
    [13]Santis G. De., Fabbrizzi L., Licchelli M., et al. Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching[J]. Angewandte Chemie International Edition,1996,35:202-204
    [14]Ghosh S. K., Zhang J. P., Kitagawa S. Reversible Topochemical Transformation of a Soft Crystal of a Coordination Polymer [J]. Angewandte Chemie International Edition,2007,46: 7965-7968
    [15]Liu T. F., Chen Y. P., Yakovenko A. A., et al. Interconversion between Discrete and a Chain of Nanocages:Self-Assembly via a Solvent-Driven, Dimension-Augmentation Strategy[J]. Journal of the American Chemical Society,2012,134:17358-17361
    [16]Xu G, Yamada T., Otsubo K., et al. Facile "Modular Assembly" for Fast Construction of a Highly Oriented Crystalline MOF Nano film[J]. Journal of the American Chemical Society, 2012,134:16524-16527
    [17]Bury W., Fairen-Jimenez D., Lalonde M. B., et al. Control over Catenation in Pillared Paddlewheel Metal-Organic Framework Materials via Solvent-Assisted Linker Exchange[J]. Chemistry of Materials,2013,25(5):739-744
    [18]Schoedel A., Cairns A. J., Belmabkhout Y., et al. The asc Trinodal Platform:Two-Step Assembly of Triangular, Tetrahedral, and Trigonal-Prismatic Molecular Building Blocks[J]. Angewandte Chemie International Edition,2013,52:2902-2905
    [19]Sunatsuki Y, Ikuta Y, Matsumoto N., et al. An Unprecedented Homochiral Mixed-Valence Spin-Crossover Compound[J]. Angewandte Chemie International Edition, 2003,42:1614-1618
    [20]O'Keeffe M., Yaghi O. M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets[J]. Chemical Reviews,2012, 112:675-702
    [21]Zhang S. Y., Zhang Z. J., Zaworotko M. J. Topology, chirality and interpenetration in coordination polymers[J]. Chemical Communications,2013,49:9700-9703
    [22]Bailar Jr. J. C. Coordination polymers[J]. Prep. Inorg. React.,1964,1:1
    [23]Alldendorf M. D., Bauer C. A., Bhakta R. K., et al. Luminescent Metal-Organic Frameworks [J]. Chemical Society Reviews,2009,38:1330-1352
    [24]Ma S. Q., Eckert J., Forster P. M., et al. Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metal-Organic Frameworks [J]. Journal of American Chemical Society,2008,130(47):15896-15902
    [25]Perry IV J. J., Perman J. A., Zaworotko M. J. Design and Synthesis of Metal-Oragnic Frameworks Using Metal-Organic Polyhedra as Supramoecluar Building Blocks[J]. Chemical Society Reviews,2009,38:1400-1417
    [26]Uemura T., Kaseda T., Kitagawa S. Controlled Synthesis of Anisotropic Polymer Particles Templated by Porous Coordination Polymers[J]. Chemistry of Materials,2013,25, 3772-3776
    [27]Liu Y. Y., Zhang W. N., Huo F. W., et al. Designable Yolk-Shell Nanoparticle@MOF Petalous Heterostructures[J]. Chemistry of Materials,2014,26:1119-1125
    [28]Zhang Q. J., Li B. H., Chen L. First-Principles Study of Microporous Magnets M-MOF-74 (M= Ni,Co, Fe, Mn):the Role of Metal Centers[J]. Inorganic Chemistry,2013,52: 9356-9362
    [29]Zhao J. W., Zhang J., Niu J. Y., et al. Tetrahedral Polyoxometalate Nanoclusters with Tetrameric RareEarth Cores and Germanotungstate Vertexes[J]. Crystal Growth & Design, 2013,13 (10):4368-4377
    [30]Demadis K. D., Panera A., Anagnostou Z., et al. Disruption of Coordination Polymer Architecture in Cu2+ BisPhosphonates and Carboxyphosphonates by Use of 2,2'-Bipyridineas Auxiliary Ligand:Structural Variability and Topological Analysis[J]. Crystal Growth & Design,2013,13 (10):4480-4489
    [31]Han L., Xu L. P., Qin L., et al. Syntheses, Crystal Structures, and Physical Properties of Two Noninterpenetrated Pillar-Layered Metal-Organic Frameworks Based on N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide Pillar[J]. Crystal Growth & Design,2013,13 (10):4260-4267
    [32]Zhao Y., Ma L. F., Wang L. Y., et al. A new copper-based metal-organic framework as a promising heterogeneous catalyst for chemo-and regio-selective enamination of β-ketoesters[J]. Chemical Communications,2013,49:10299-10301
    [33]Chandrasekhar V., Mohapatra C.2D-Coordination Polymer Containing Interconnected 82-Membered Organotin Macrocycles[J]. Crystal Growth & Design,2013,13(11): 4655-4658
    [34]Chaudhari A. K., Nagarkar S. S., Ghosh S. K., et al. Structural Dynamism and Controlled Chemical Blocking/Unblocking of Active Coordination Space of a Soft Porous Crystal [J]. Inorganic Chemistry,2013,52 (21):12784-12789
    [35]Angelique B., Roland A. F. Metal Organic Framework Thin Films:From Fundamentals to Applications[J]. Chemical Reviews,2012,112:1055-1083
    [36]Cook T. R., Zheng Y. R., Stang P. J. Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes:Comparing and Contrasting the Design, Synthesis, and Functionality of Metal-Organic Materials[J]. Chemical Reviews,2013,113:734-777
    [37]Lin L. C., Kim J., Kong X. Q., et al. Understanding CO2 Dynamics in Metal-Organic Frameworks with Open Metal Sites[J]. Angewandte Chemie International Edition,2013,52: 4410-4413
    [38]Deng H. X., Grunder S., Cordova K. E., et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks [J]. Science,2012,336:1018-1023
    [39]Ren Y. X., Xiao S. S., Zheng X. J., et al. Self-assembly, crystal structures, and properties of metal-2-sulfoterephthalate frameworks based on [M4(μ3-OH)2]6+ clusters (M=Co, Mn, Zn and Cd)[J]. Dalton Transactions,2012,41:2639-2647
    [40]Ghosh S. K., Bureekaew S., Kitagawa S. A Dynamic, Isocyanurate-Functionalized Porous Coordination Polymer[J]. Angewandte Chemie International Edition,2008,47: 3403-3406
    [41]Lu W. G., Wei Z. W., Zhou H. C.,et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews,2014, DOI: 10.1039/c4cs00003j
    [42]Zhang J. P., Zhang Y. B., Chen X. M., et al. Metal Azolate Frameworks:From Crystal Engineering to Functional Materials[J]. Chemical Reviews,2012,112(2):1001-1033
    [43]Yaghi O. M., O'Keeffe M., Ockwig N. W., et al. Reticular synthesis and the design of new materials, Nature,2003,423:705-714
    [44]Kole G. K., Vittal J. J. Solid-state reactivity and structural transformations involving coordination polymers[J]. Chemical Society Reviews,2013,42:1755-1775
    [45]Kajiwara T., Higashimura H., Kitagawa S., et al. One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer[J]. Chemical Communications,2013,49: 10459-10461
    [46]Chen L., Guo J. Y., Xu Y., et al. A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho48 clusters [J]. Chemical Communications,2013,49: 9728-9730
    [47]Kongpatpanich K., Horike S., Kitagawa S., et al. A porous coordination polymer with a reactive diiron paddlewheel unit[J]. Chemical Communicatons,2014,50:2292-2294
    [48]Bu Y., Jiang F. L., Hong M. C., et al. From 3D interpenetrated polythreading to 3D non-interpenetrated polythreading:SBU modulation in a dual-ligand system[J]. CrystEngComm,2014,16:1249-1252
    [49]Ni X. L., Xiao X., Tao Z., et al. Cucurbit[n]uril-based coordination chemistry:from simple coordination complexes to novel poly-dimensional coordination polymers[J]. Chemical Society Reviews,2013,2:9480-9508
    [50]Zhu Q. L., Xu Q. Metal-organic framework composites[J]. Chemical Society Reviews, 2014, DOI:10.1039/c3cs60472a
    [51]Leong W. L., Vittal J. J. One-Dimensional Coordination Polymers:Complexity and Diversity in Structures, Properties, and Applications [J]. Chemical Reviews,2011,111(2): 688-764
    [52]Pang M. L., Zeng H. C., Eddaoudi M., et al. Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach[J]. Journal of the American Chemical Society,2013,135:10234-10237
    [53]Umeyama D., Horike S., Kitagawa S., et al. Integration of Intrinsic Proton Conduction and Guest-Accessible Nanospace into a Coordination Polymer[J]. Journal of the American Chemical Society,2013,135:11345-11350
    [54]Yang G. P., Hou L., Wang Y. Y., et al. Molecular braids in metal-organic frame wo rks[J]. Chemical Society Reviews,2012,41:6692-7000
    [55]Yang P., Li M. X., Shao M., et al. Porous and Nanorod-Like Coordination Polymers Assembled from a New V-Shaped Bis(1,2,4-triazolyl)tripyridine Ligand[J]. Crystal Growth & Design,2013,13 (10):4305-4314
    [56]Jin J. C., Wang Y. Y., Zhang W. H., et al. New types of di-, tetra-, hexa-and octanuclear Ag(I) complexes containing 1,3-adamantanedicarboxylic acid[J]. Dalton Transations,2009: 10181-10191
    [57]Suh M. P., Moon H. R., Lee E. Y, et al. A Redox-Active Two-Dimensional Coordination Polymer:Preparation of Silver and Gold Nanoparticles and Crystal Dynamics on Guest Removal [J]. Journal of the American Chemical Society,2006,128:4710-4718
    [58]Li X., Wu B. L., Wang R. Y, et al. Hierarchical Assembly of Extended Coordination Networks Constructed by Novel Metallacalix[4]arenes Building Blocks[J]. Inorganic Chemistry,2010,49:2600-2613
    [59]Qu L. L., Zhu Y. L., Li Y. Z., et al. Solvent-Induced Synthesis of Zinc(Δ) and Manganese(Δ) Coordination Polymers with a Semirigid Tetracarboxylic Acid[J]. Crystal Growth & Design,2011,11:2444-2452
    [60]Guillou N., Livage C., Drillon M., et al. The Chirality, Porosity, and Ferromagnetism of a 3D Nickel Glutarate with Intersecting 20-Membered Ring Channels[J]. Angewandte Chemie International Edition,2003,42:5314-5317
    [61]Komori-Orisaku K., Hoshino K., Yamashita S., et al. Water Molecules as Binders in Transformation of 2D Coordination Polymer [Cu(4,4'-bpy)2(OTf)2]n into Parallel Aligned 3D Architectures[J]. Bulletin of the Chemical Society of Japan,2010,83:276-278
    [62]Ockwig N. W, Delgado-Friedrichs O., O'Keeffe M., et al. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks [J]. Accounts of Chemical Research,2005,38:176-182
    [63]Rowsell J. L. C, Yaghi O. M. Metal-organic frameworks:a new class of porous materials[J]. Microporous and Mesoporous Materials,2004,73:3-14
    [64]Kurmoo M. Magnetic Properties of Segregated Layers Containing MⅡ3(μ3-OH)2 (M=Co or Ni) Diamond Chains Bridged by cis,cis,cis-1,2,4,5-Cyclohexanetetracarboxylate[J]. Inorganic Chemistry,2010,49:9700-9708
    [65]Carlucci L., Ciani G., Proserpio D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coordination Chemistry Reviews,2003,246:247
    [66]Batten S. R., Robson R. Interpenetrating nets:ordered, periodic entanglement [J]. Angew. Chem. Int. Ed.,1998,37:1460
    [67]Wang X. L., Wang E. B., Su Z. M., et al. An unprecedented five-fold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chemical Communications,2005:5450-5452
    [68]Feng R., Jiang F. L., Hong M. C., et al. A luminescent homochiral 3D Cd(Ⅱ) framework with a threefold interpenetrating uniform net 86[J]. Chemical Communicatins,2009: 5296-5298
    [69]Wang Z. L., Fang W. H., Yang G. Y. The first three-fold interpenetrated framework with two different four-connected uniform net of 66 dia and new chiral 86 mdf networks[J]. Chemical Communications,2010,46:8216-8218
    [70]Yao Q. X., Hedin N., Zou Z. D., et al. Interpenetrated metal-organic frameworks and their uptake of CO2 at relatively low pressures[J]. Journal of Materials Chemistry,2012,22: 10345-10351
    [71]Elsaidi S. K., Mohamed M. H., Zaworotko M. J., et al. Putting the Squeeze on CH4 and CO2 through Control over Interpenetration in Diamondoid Nets[J]. Journal of the American Chemical Society,2014, DOI:10.1021/ja500005k
    [72]Zeng M. H., Zhang W. X., Sun X. Z., et al. Spin Canting and Metamagnetism in a 3D Homometallic Molecular Material Constructed by Interpenetration of Two Kinds of Cobalt(Ⅱ)-Coordination-Polymer Sheets[J]. Angewandte Chemie International Edition,2005, 44:3079-3082
    [73]Zhang S., Sun N. X., Zheng Y. Z., et al. Two porous Co(Ⅱ) bithiophenedicarboxylate metal-organic frameworks:from a self-interpenetrating framework to a two-fold interpenetrating a-Po topological network[J]. RSC Advances,2014,4:5740-5745
    [74]Lin C. H., Chen C. H. Chen J. D. A novel interpenetrating diamondoid network fro self-assembly of N,N'-di(4-pyridyl)adipoamide and copper sulfate:an unusal 12-fold, [6+6] mode[J]. Crystal Growth & Design,2008,8(4):1094-1096
    [75]He Y. P., Tan Y. X., Zhang J. Deliberate Design of a Neutral Heterometallic Organic Framework Containing a Record 25-Fold Interpenetrating Diamondoid Network[J]. CrystEngComm,2012,14:6359-6361
    [76]Wu H., Yang J., Ma J. F., et al. An Exceptional 54-Fold Interpenetrated Coordination Polymer with103-srs Network Topology[J]. Journal of the American Chemical Society, 2011,133(30):11406-11409
    [77]Pang J. D., Jiang F., Hong M. C., et al. Coexistence of cages and one-dimensional channels in a porous MOF with high H2 and CH4 uptake[J]. Chemical Communications,2014, 50:2834-2836
    [78]Duan J. G., Higuchi M., Kitagawa S., et al. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy[J]. Chemical Science, 2014,5:660-666
    [79]Yang R., Li L., Su. C. Yong, et al. Two robust porous metal-organic frameworks sustained by distinct catenation:selective gas sorption and single-crystal to single-crystal guest exchange[J]. Chemistry An Asian Journal,2010,5:2358-2368
    [80]Han D., Jiang F. L., Hong M. C., et al. A non-interpenetrated porous metal-organic framework with high gas-uptake capacity[J]. Chemical Comunications,2011,47:9861-9863
    [81]He W. W., Lan Y. Q., Su Z. M., et al. Controllable synthesis of a non-interpenetrating microporous metal-organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine[J]. Chemical Communications,2012,48: 10001-10003
    [82]Qi F., Stein R. S., Friscic T. Mimicking mineral neogenesis for the clean synthesis of metal-organic materials from mineral feedstocks:coordination polymers, MOFs and metal oxide separation[J]. Green Chem,2014,16:121-132
    [83]Hirai K., Sumida K., Furukawa S., et al. Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer-quartz crystal microbalance hybrid sensor[J]. Journal of Materials Chemistry C.,2014, DOI:10.1039/c3tc32101k
    [84]Garai M., Biradha K. Coordination polymers of organic polymers synthesized via photopolymerization of single crystals:two-dimensional hydrogen bonding layers with amazing shock absorbing nature[J]. Chemical Communications,2014,50:3568-3570
    [85]Wu D., Gassensmith J. J., Navrotsky A. Direct Calorimetric Measurement of Enthalpy of Adsorption of Carbon Dioxide on CD-MOF-2, a Green Metal-Organic Framework[J]. Journal of the American Chemical Society,2013,135:6790-6793
    [86]Hazra A., Gurunatha K. L., Maji T. K. Charge-Assisted Soft Supramolecular Porous Frameworks:Effect of External Stimuli on Structural Transformation and Adsorption Properties[J]. Crystal Growth & Design,2013,13 (11):4824-4836
    [87]Murray L. J., Dinca M., Long J. R. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews,2009,38:1294-1314
    [88]Li J. R., Kuppler R. J., Zhou H. C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chemical Society Reviews,2009,38:1477-1504
    [89]Galli S., Masciocchi N., Colombo V., et al. Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs[J]. Chemistry of Materials,2010,22: 1664-1672
    [90]Xue D. X., Cairns A. J., Belmabkhout Y, et al. Tunable Rare-Earth fcu-MOFs:A Platform for Systematic Enhancement of CO2 Adsorption Energetics and Uptake[J]. Journal of the American Chemical Society,2013,135 (20):7660-7667
    [91]Li J. R., Yu J. M., Lu W. G., et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption [J]. Nature Communications,2013,4:1538-1545
    [92]Yang S. H., Lin X., Blake A. J., et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework [J]. Nature Chemistry, 2009,1:487-493
    [93]McKinlay A. C., Xiao B., Wragg D. S., et al. Exceptional Behavior over the Whole Adsorption-Storage-Delivery Cycle for NO in Porous Metal Organic Frameworks[J]. Journal of the American Chemimal Society,2008,130:10440-10444
    [94]Li Y. W., Li J. R., Wang L. F., et al. Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions[J]. Journal of Materials Chemistry A,2013,1:495-499
    [95]Maji T. K., Uemura K., Chang H. C., et al. Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption [J]. Angewandte Chemie International Edition,2004,43:3269-3272
    [96]Du L. T., Lu Z. Y., Zheng K. Y., et al. Fine-Tuning Pore Size by Shifting Coordination Sites of Ligands and Surface Polarization of Metal-Organic Frameworks To Sharply Enhance the Selectivity for CO2[J]. Journal of the American Chemical Society,2013,135:562-565
    [97]An J., Petoud S., Rosi N. L., et al. Zina-Adeinate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations[J]. Journal of the American Chemical Society,2011,113(5):1220-1223
    [98]Takashima Y., Martinez V. M., Kitagawa S., et al. Molecular Decoding using luminescence from an entangled porous frame work [J]. Nature Communications,2011,2:168
    [99]Hu Z. C., Pramanik S., Li J., et al. Selective, sensitive, and reverible detection of vapor-phase high explosives via two-dimensional mapping:a new strategy for MOF-based sensors[J]. Crystal Growth & Design,2013,13:4204-4207
    [100]Zheng S. R., Chen R. L., Zhang W. G., et al. Construction of terpyridine-Ln(Ⅲ) coordination polymers:structural diversity, visible and NIR luminescence properties and response to nerve-agent mimics[J]. CrystEngComm,2014,16:2898-2909
    [101]Heine J., Buschbaum K. M. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks [J]. Chemical Society Reviews,2013,42:9232-9242
    [102]Cheng K. Y., Wang J. C., Ho M. L., et al. Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing[J]. Dalton Transactions,2014, DOI:10.1039/c3dt53504e
    [103]Hu Z. C., Deibert B. J., Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews,2014, DOI: 10.1039/c4cs00010b
    [104]Chaudhari A. K., Nagarkar S. S., Ghosh S. K., et al. A Continuous π-Stacked Starfish Array of Two-Dimensional Luminescent MOF for Detection of Nitro Explosives[J]. Crystal Growth & Design,2013,13:3716-3721
    [105]Yang S. Y., Deng X. L., Naumov P., et al. Crystallographic Snapshots of the Interplay between Reactive Guest and Host Molecules in a Porous Coordination Polymer: Stereochemical Coupling and Feedback Mechanism of Three Photoactive Centers Triggered by UV-Induced Isomerization, Dimerization, and Polymerization Reactions [J]. Journal of the American Chemical Society,2014,136:558-561
    [106]Wang X. J., Liu Y. H., Hou H. W., et al. Series of Cd(Ⅱ) Metal-Organic Frameworks Based on a Flexible Tripodal Ligand and Polycarboxylate Acids:Syntheses, Structures, and Photoluminescent Properties [J]. Crystal Growth & Design,2012,12:2435-2444
    [107]Yang Y., Du P., Ma J. F., et al. A Series of Coordination Polymers Constructed by Flexible 4-Substituted Bis(1,2,4-triazole) Ligands and Polycarboxylate Anions:Syntheses, Structures, and Photoluminescent Properties[J]. Crystal Growth & Design,2013,13(11): 4781-4795
    [108]Wu Q. G., Esteghamatian M., Hu N. X., et al. Synthesis, Structure, and Electroluminescence of BR2q (R= Et, Ph,2-Naphthyl and q= 8-Hydroxyquinolato)[J]. Chemistry of Materials,2000,12:79-83
    [109]Yu G., Yin S., Liu Y., et al. Structures, Electronic States, and Electroluminescent Properties of a Zinc(Ⅱ) 2-(2-Hydroxyphenyl)benzothiazolate Complex[J]. Journal of the American Chemical Society,2003,125:14816-14824
    [110]Chen W., Wang J. Y, Chen C., et al. Photoluminescent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J]. Inorganic Chemistry,2003, 42:944-946
    [111]Wanderley M. M., Wang C., Wu C. D., et al. A Chiral Porous Metal-Organic Framework for Highly Sensitive and Enantioselective Fluorescence Sensing of Amino Alcohols[J]. Journal of the American Chemical Society,2012,134(22):9050-9053
    [112]Hou L., Jia L. N., Shi W. J., et al. A polar tetrazolyl-carboxyl microporous Zn(Ⅱ)-MOF: sorption and luminescent properties [J]. Dalton Transactions,2013,42:3653-3659
    [113]Shustova N. B., Cozzolino A. F., Reineke S., et al. Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal-Organic Frameworks with Open Metal Sites[J]. Journal of the American Chemical Society,2013,135:13326-13329
    [114]Chen B., Yang Y., Zapata F., et al. Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules[J]. Advanced Materials,2007,19: 1693-1696
    [115]Zhao D., Wan X. Y., Song H. J., et al. Metal-organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate[J]. Sensors and Actuators B:Chemical,2014,197:50-57
    [116]Wu Z. F.,Tan B., Feng M. L., et al. A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds[J]. Journal of Materials Chemistry A,2014, DOI:10.1039/C3TA15071B
    [117]Lin X. M, Gao G. M., Zheng L. Y., et al. Encapsulation of Strongly Fluorescent Carbon Quantum Dots in Metal-Organic Frameworks for Enhancing Chemical Sensing[J]. Analytical Chemistry,2014,86:1223-1228
    [118]Zhou J. M., Shi W., Li H. M., et al. Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescent Sensing of Pollutional Small Molecules and Ions in Ln4O4 Cluster Based Microporous Metal-Organic Frameworks [J]. The Journal of Physical Chemistry, 2014,118:416-426
    [119]Chen B. L., Wang L. B., Zapata F., et al. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions[J]. Journal of the American Chemimal Society,2008,130:6718-6719
    [120]Xie Z. G, Ma L. Q., deKrafft K. E., et al. Porous Phosphorescent Coordination Polymers for Oxygen Sensing[J]. Journal of the American Chemimal Society,2010,132: 922-923
    [121]Goswami S., Adhikary A., Konar S., et al. A 3D Iron(II)-Based MOF with Squashed Cuboctahedral Nanoscopic Cages Showing Spin-Canted Long-Range Antiferromagnetic Ordering[J]. Inorganic Chemistry,2013,52:12064-12069
    [122]Brozek C. K., Dinca M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+- Substituted MOF-5 and RedoxReactivity in Cr-and Fe-MOF-5[J]. Journal of the American Chemical Society,2013, 135:12886-12891
    [123]Feng X., Ma L. F., Wang L. Y., et al. A Series of Heterometallic Three-Dimensional Frameworks Constructed from Imidazole-Dicarboxylate:Structures, Luminescence, and Magnetic Properties[J]. Crystal Growth & Design,2013,13 (10):4469-4479
    [124]Tan Y. X., Zheng Y. J., Zhang J., et al. Solvent Controlled Assemblyof Four Mn(Ⅱ)-2,5-Thiophenedicarboxylate Frameworks with Rod-packing Architectures and Magnetic Properties [J]. CrystEngComm,2013,15,6009-6014
    [125]Lama P., Aijaz A., Sauudo E. C., et al. Synthesis, Structure, and Magnetic Properties of Cobalt(Ⅱ) Coordination Polymers from a New Tripodal Carboxylate Ligand:Weak Ferromagnetism and Metamagnetism[J]. Crystal Growth & Design,2010,10:283-290
    [126]Ma L. F., Wang Y. Y., Wang L. Y., et al. Two Coordination Polymers Involving Triangular and Linear Trinuclear Co(Ⅱ) Clusters Created Via In situ Ligand Synthesis[J]. Crystal Growth & Design,2009,9:2036-2038
    [127]Zeng M. H., Zhou Y. L., Wu M. C, et al. A Unique Cobalt(Ⅱ)-Based Molecular Magnet Constructed of Hydroxyl/Carboxylate Bridges with a 3D Pillared-Layer Motif[J]. Inorganic Chemistry,2010,49:6436-6442
    [128]Kahn O. Molecular Magnetism[M]. New York:VCH Publishers,1993
    [129]Miller J. S., Drillon M. Magnetism:Molecules to Materials I-V[M]. Wiley-VCH Publishers:Weinheim, Germany,2001
    [130]Lage V. t, Hornick C, Rabu P., et al. Molecular magnets:Hybrid organic-inorganic layered compounds with very long-range ferromagnetism[J]. Coordination Chemistry Reviews,1998:1533-1553
    [131]Liu Y. Y, Ma J. F., Yang J., et al. Syntheses and Characterization of Six Coordination Polymers of Zinc(Ⅱ) and Cobalt(Ⅱ) with 1,3,5-Benzenetricarboxylate Anion and Bis(imidazole) Ligands[J]. Inorganic Chemistry,2007,46:3027-3037
    [132]Rueff J. M., Masciocchi N., Rabu P., et al. Structure and Magnetism of a Polycrystalline Transition Metal Soap-CoⅡ[OOC(CH2)10COO](H20)2[J]. European Journal of Inorganic Chemistry,2001,11:2843-2848
    [133]Rabu P., Rueff J. M., Huang Z. L., et al. Copper(Ⅱ) and cobalt(Ⅱ) dicarboxylate-based layered magnets:influence of π electron ligands on the long range magnetic ordering [J]. Polyhedron,2001,20:1677-1685
    [134]Rueff J. M., Masciocchi N., Rabu P., et al. Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono-and Dicarboxylate Soaps[J]. European Chemistry of Journal,2002,8:1813-1820
    [135]Yang E. C., Zhang C. H., Liu Z. Y, et al. Three copper(Ⅱ) 4-amino-1,2,4-triazole complexes containing differently deprotonated forms of 1,3,5-benzenetricarboxylic acid: Synthesis, structures and magnetism[J]. Polyhedron,2012,40:65-71
    [136]Li Z. X., Jie W. Q., Zha G. Q., et al. Nitrate-templated 1D EE-azide-cobalt chain exhibits canted antiferromagnetism and slow magnetic relaxation[J]. European Journal of Inorganic Chemistry,2012,3537-3540
    [137]Zhang M. Y., Shan W. J., Han Z. B. Syntheses and magnetic properties of three Mn(Ⅱ) coordination polymers based on a tripodal flexible ligand[J]. CrystEngComm,2012,14: 1568-1574
    [138]Tan Y. X., He Y. P., Zhang Y, et al. Solvent controlled assembly of four Mn(II)-2,5-thiophenedicarboxylate frameworks with rod-packing architectures and magnetic properties[J]. CrystEngComm,2013,15:6009-6014
    [139]Inoue K., Kikuchi K., Ohba M., et al. Structure and Magnetic Properties of a Chiral Two-Dimensional Ferrimagnet with Tc of 38 K[J]. Angewandte Chemie International Edition, 2003,42:4810-4813
    [140]Dietzel P. D. C, Morita Y, Blom R., et al. An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains [J]. Angewandte Chemie International Edition,2005,44:6354-6358
    [141]Zhang X. M., Hao Z. M., Zhang W. X., et al. Dehydration-Induced Conversion from a Single-Chain Magnet into a Metamagnet in a Homometallic Nanoporous Metal-Organic Framework[J]. Angewandte Chemie International Edition,2007,46:3456-3459
    [142]Zhang X. M., Hao Z. M., Zhang W. X., et al. Dehydration-Induced Conversion from a Single-Chain Magnet into a Metamagnet in a Homometallic Nanoporous Metal-Organic Framework[J]. Angewandte Chemie International Edition,2007,46:3456-3459
    [143]Huang Y G., Yuan D. Q., Pan L., et al. A 3D Porous Cobalt-Organic Framework Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition[J]. Inorganic Chemistry,2007,46:9609-9615
    [144]Han Z. B., Lu R. Y, Liang Y F., et al. Mn(Ⅱ)-Based Porous Metal-Organic Framework Showing Metamagnetic Properties and High Hydrogen Adsorption at Low Pressure[J]. Inorganic Chemistry,2012,51:674-679
    [145]Fujiwara E., Fujiwara H., Kobayashi H., et al. A Series of Organic Conductors, x-(BETS)?FeBrxCl4-x (0≤x≤4), Exhibiting Successive Antiferromagnetic and Superconducting Transitions[J]. Advanced Materials,2002,14:1376-1379
    [146]Hou Y. L., Zhou Z. P., Li D., et al. A copper(Ⅰ)/copper(Ⅱ)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes[J]. Chemical Communications,2014,50:2295-2297
    [147]Zou R. Q., Sakurai H., Xu Q. Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal-Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions[J]. Angewandte Chemie International Edition,2006,45:2542-2546
    [148]Ramaswamy P., Matsuda R., Kitagawa S., et al. High proton conductive nanoporous coordination polymers with sulfonic acid group on the pore surface[J]. Chemical Communications,2014,50:1144-1146
    [149]Zeng M. H., Yin Z., Zhang W. X., et al. Nanoporous cobalt(II) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification[J]. Journal of the American Chemical society,2014, DOI:10.1021/ja500191r
    [150]Niu Z., Ma J. G., Cheng P., et al. Water molecule-driven reversible single-crystal to single-crystal transformation of a multi-metallic coordination polymer with controllable metal ion movement[J]. Chemical Communications,2014,50:1839-1841
    [151]Ma J. P., Liu S. C., Dong Y. B., et al. Reversible visual thermochromic coordination polymers via single-crystal to single-crystal transformation[J]. CrystEngComm,2014,16: 304-307
    [152]Ge J. Y., Wang J. C., Dong Y. B., et al. Oxygen and methanol mediated irreversible coordination polymer structural transformation from a 3D Cu(I)-framework to a 1D Cu(II)-chain[J]. Chemical Communications,2014, DOI:10.1039/c4cc00857j
    [153]Sun F., Yin Z., Wang Q. Q., et al. Tandem Postsynthetic Modification of a Metal-Organic Framework by Thermal Elimination and Subsequent Bromination:Effects on Absorption Properties and Photoluminescence[J]. Angewandte Chemie International Edition, 2013,52:4538-4543
    [154]Lin Z. J., Liu T. F., Huang Y. B., et al. A Guest-Dependent Approach to Retain Permanent Pores in Flexible Metal-Organic Frameworks by Cation Exchange [J]. Chemistry-A European Journal,2012,18:7896-7902
    [155]Wu J. Y, Ding M. T, Wen Y S., et al. Alkali Metal Cation (K+, Cs+) Induced Dissolution/Reorganization of Porous Metal Carboxylate Coordination Networks in Water[J]. Chemistry-A European Journal,2009,15:3604-3614
    [156]Moulton B. and Zaworotko M. J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solid [J]. Chemical Reviews,2001, 101:1629
    [157]Champness N. R. and Schroder M. Supramolecular isomerism. In:Atwood J. L. and Steed J. W. Encyslopedia of supramolecular chemistry[M]. New York:Marcel Dekker,2004: 1420
    [158]Panda T., Kundu T., Banerjee R. Structural isomerism leading to variable proton conductivity in indium(III) isophthalic acid based frameworks[J]. Chemical Communications, 2013,49:6197-6199
    [159]Neal E. A., Goldup S. M. Chemical consequences of mechanical bonding in catenanes and rotaxanes:isomerism, modification, catalysis and molecular machines for synthesis[J]. Chemical Communications, DOI:10.1039/c3cc47842d
    [160]Zhang Z. H., Feng S., He M. Y., et al. Fluorinated metal-organic frameworks of 1,4-bis(1,2,4-triazol-1-ylmethyl)-2,3,5,6-tetrafluorobenzene:synergistic interactions of ligand isomerism and counteranions[J]. Dalton Transactions,2014,43:646-655
    [161]Hartlieb K. J., Blackburn A. K., Stoddart J. F., et al. Topological isomerism in a chiral handcuff catenane[J]. Chemical Science,2014,5:90-100
    [162]Kumar D. K., Das A., Dastidar P. Isomerism in Coordination Complexes and Polymers Derived from Bispyridylurea Ligands:Effect of Solvents, Conformational Flexibility, and Positional Isomerism of the Ligands[J]. Crystal Growth & Design,2007,7(10):2096-2105
    [163]Tan Y. S., Sudlow A. L., Tiekink R. T., et al. Supramolecular Isomerism in a Cadmium Bis(N-Hydroxyethyl, N-sopropyldithiocarbamate) Compound:Physiochemical Characterization of Ball (n=2) and Chain (n=oo) Forms of {Cd[S2CN(iPr)CH2CH2OH]2·solvent}n[J]. Crystal Growth & Design,2013,13,3046-3056
    [164]Dura G., Rodriguez A. M., Manzano B. R., et al. Self-Assembly of Silver(I) and Ditopic Heteroscorpionate Ligands. Spontaneous Chiral Resolution in Helices and Sequence Isomerism in Coordination Polymers[J]. Crystal Growth & Design,2013,13:3275-3282
    [165]Feng L., Chen Z. X., Zhou Y. M., et al. Supramolecular Isomerism of Metal-Organic Frameworks Derived from a Bicarboxylate Linker with Two Distinct Binding Motifs[J]. Crystal Growth & Design,2009,9(3):1505-1510
    [166]Tzeng B. C., Chiu T. H., Lin S. Y., et al. Structural Isomerism of Luminescent Dinuclear Pt(Ⅱ)-Thiolate Diimines[J]. Crystal Growth & Design,2009,9(12):5356-5362
    [167]Wang S., Tun R. R., Bai J. F., et al. A Series of Four-Connected Entangled Metal Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supramolecular Isomerism[J]. Crystal Growth & Design,2012,12:79-92
    [168]Yin P. X., Zhang J., Yao Y. G., et al. Supramolecular Isomerism and Various Chain/Layer Substructures in Silver(I)Compounds:Syntheses, Structures, and Luminescent Properties [J]. Crystal Growth & Design,2009,9(11):4884-4896
    [169]Wang T. T., Ren M., Zheng L. M., et al. Effect of Structural Isomerism on Magnetic Dynamics:from SingleMolecule Magnet to Single-Chain Magnet[J]. Inorganic Chemistry, 2014,53:3117-3125
    [170]Biswas S., Benmansour S., Ghosh A., et al. Supramolecular 2D/3D Isomerism in a Compound Containing Heterometallic Cu2ⅡCoⅡ Nodes and Dicyanamide Bridges[J]. Inorganic Chemistry,2014,53,2441-2449
    [171]Mukherjee G. and Biradha K. 1D,2D and 3D coordination polymers of 1,3-phenylene diisonicotinate with Cu(Ⅰ)/Cu(Ⅱ):Cu2I2 building block, anion influence and guest[J]. CrystEngComm,2014, DOI:10.1039/C4CE00123K
    [172]Meng Z., Song X. Z., Zhang H. J. Supramolecular isomerism, single-crystal to single-crystal transformation induced by release of in situ generated 12 between two supramolecular frameworks [J]. Dalton Transactions,2013,42:5619-5622
    [173]Huang W., Jin Y. C, Wu D. Y. Anion-tunable configuration isomerism and magnetic coupling in a teranuclear discrete, one-dimensional (1D) chiral chain and 1D-decker copper(Ⅱ) complexes of a carbohydrazine derivative [J]. Inorganic Chemistry,2014,53:73-79
    [174]Pachfule P., Chen Y. F., Banerjee R., et al. Structure isomerism and effect of fluorination ob gas adsorption in copper-tetrazolate based metal organic frameworks [J]. Chemistry of Materials.2011,23:2908-2916
    [175]Yang Q. X., Chen X. Q., Zheng H. G., et al. Metal-organic frameworks constructed from flexible V-shaped ligands:adjustment of the topology, interpenetration and porosity via a solvent systerm[J]. Chemical Communications,2012,48:10016-10018
    [176]Chen D. S., Su Z. M., Xing H. Z., et al. Conformational supramolecular isomerism in two-dimensional fluorescent coordination polymers based on flexible tetracaboxylate ligand[J]. Crystal Growth & Design,2013,13:4092-4099
    [177]Deng D. S., Ji B. M., Du C. X., et al. Temperature, Cooling Rate, and Additive-Controlled Supramolecular Isomerism in Four Pb(Ⅱ) Coordination Polymers with an in Situ Ligand Transformation Reaction[J]. Crystal Growth & Design,2012,12:5338-5348
    [178]Cheng P. C., Kuo P. T., Chen J. D., et al. Ligand-Isomerism Controlled Structural Diversity of Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Crystal Growth & Design,2013,13:623-632
    [179]Hao X. R., Wang X. L., Shao K. Z., et al. Remarkable solvent-size effects in constructing novel porous 1,3,5-benzenetricarboxylate metal-organic frameworks [J]. CrystEngComm,2012,14:5596-5603
    [180]Bajpai A., Venugopalan P. and Moorthy J. N. Self-assembly od rigid three-connecting mesitylenetribenzoic acid:multifarious supramolecular synthons and solvent-induced supramolecular isomerism[J]. Crystal. Growth & Design,2013,13:4721-4729
    [181]Ghosh S., Mukherjee P. S., Ghosh A., et al. Solvent-templated supramolecular isomerism in 2D coordination polymer constructed by Ni2ⅡCoⅡ nodes and dicyanamido spacers:drastic change in magnetic behaviours[J]. Dalton Transactions,2013,42: 13554-13564
    [182]Liu B., Miao H., Wang Y. Y., et al. Solvent influence structural variation from a 3D 4-fold interpenetrated framework to a 2D layer-type porous coordination polymer:structure analysis and high selective gas adsorption properties[J]. CrystEngComm.,2012,14, 2954-2958
    [183]Ma L. Q., Lin W. B. Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metal-Organic Frame wo rks[J]. Journal of the American Chemimal Society,2008,130: 13834-13835
    [184]Kanoo P., Gurunatha K. L., Maji K. Temperature-Controlled Synthesis of Metal-Organic Coordination Polymers:Crystal Structure, Supramolecular Isomerism, and Porous Property[J]. Crystal Growth & Design,2009,9(9):4147-4156
    [185]Carson F., Su J., Zou X. D., et al. Framework isomerism in vanadium metal-organic frameworks:MIL-88B(V) and MIL-101(V)[J]. Crystal Growth & Design,2013,13, 5036-5044
    [186]Li F., Zhang W. X., Zhang J. P., et al.Metal-ion controlled solid-state reactivity and photoluminescence in two isomorphous coordination polymers[J]. Inorganic Chemistry Frontiers,2014,1:172
    [187]Sheldrick G. M. Program for the Refinement of Crystal Structures[M]. SHELXL-97; University of Gottingen:Germany,1997
    [188]Sheldrick G. M. Program for Area Detector. Absorption Correction[M]. SADABS 2.05; University of Gottingen:Germany,2002
    [189]Hu F. L., Wu W., Lang J. P., et al. Construction of Entangled Coordination Polymers Based on M2+ Ions,4,4'-{[1,2-Phenylenebis(methylene)]bis(oxy)} dibenzoate and Different N-Donor Ligands[J]. Crystal Growth & Design,2013,13 (11):5050-5061
    [190]Yang W., Wang C., Jiang J. Z., et al. Self-Assembled Zn(Ⅱ) Coordination Complexes Based on Mixed V-Shaped Asymmetric Multicarboxylate and N-Donor Ligands[J]. Crystal Growth & Design,2003,13 (11):4695-4704
    [191]Zhang Z., Ma J. F., Liu Y. Y., et al. A Series of Coordination Polymers Constructed from a Multidentate N-Donor Ligand and Varied Carboxylate Anions:Syntheses, Structures, and Luminescent Properties[J]. Crystal Growth & Design,2013,13 (10):4338-4348
    [192]Yang P., Wu J. J., Ye. B. H., et al. Ligand-Directed Construction of Zn(Ⅱ) Complexes from Zero-Dimensional Metallomacrocycle to One-, Two-, and Three-Dimensional Coordination Polymers Based on N-Donor and β-Diketone Bifunctional Ligands[J]. Crystal Growth & Design,2012,12 (1):99-108
    [193]Olszewska A., Machura B., Penkala M., et al. Effect of N-donor ancillary ligands on structural and magnetic properties of oxalate copper(Ⅱ) complexes [J]. New Journal of Chemistry,2014,38:1611-1626
    [194]Hamann J. N., Tuczek F. New catalytic model systems of tyrosinase:fine tuning of the reactivity with pyrazole-based N-donor ligands[J]. Chemical Communications,2014,50: 2298-2300
    [195]Wei Y. L., Li X. Y., Kang T. T., et al. A series of Ag(Ⅰ)-Cd(Ⅱ) hetero-and Ag(Ⅰ) homo-nuclear coordination polymers based on 5-iodo-isophthalic acid and N-donor ancillary ligands[J]. CrystEngComm,2013,15:10287-10303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700