用户名: 密码: 验证码:
支链对基于聚环氧乙烷链的刚柔嵌段液晶低聚物自组装结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得纳米尺寸的新型超分子材料以及研究这些结构的性质受到人们的广泛关注,由刚性芳香核及柔性链组成的刚棒-线团三嵌段低聚物能在纳米尺度上自组装出多种纳米液晶超分子结构。本论文设计合成了一系列T型,H型,直线型的刚棒-线团三嵌段液晶低聚物,并研究了这些分子在固态、液晶态和溶液中的自组装行为,主要讨论了在刚柔界面引入支链对这类三嵌段液晶低聚物自组装结构的影响。
     对含有二苯并吩嗪的T型刚棒线团三嵌段低聚物,从改变刚棒末端的聚环氧乙烷链长度,改变刚棒顶端烷基链的长度,在刚棒和柔性链界面引入甲基等支链方面对其自组装结构的影响进行了研究,研究结果表明:(1)随着聚环氧乙烷链的增长,分子固态时的自组装结构由层状到矩形柱状;(2)T型刚棒中心引入不同长度的烷基链,使分子自组装结构形成了六方穿孔层状结构或倾斜柱状结构;(3)随着T型分子刚柔界面侧甲基的引入,固态时自组装结构由层状结构、矩形柱状结构到三维体心四方结构。
     对于一系列π-共轭的倾斜的H型刚棒-线团低聚物自组装行为的研究结果表明:(1)H型分子随着柔性链的增长,固态时分子的自组装结构由层状到倾斜柱状;(2)随着H型分子刚柔界面侧甲基的引入,固态时自组装结构由一维层状,二维倾斜柱状到三维体心四方结构。
     对于在刚柔界面含有侧甲基的四个系列的直线型刚棒-线团三嵌段液晶分子,通过调控柔性链体积分数和刚棒嵌段中心支链的长度,可以在液晶态时控制三维超分子纳米结构的形成,研究结果表明:随着刚柔界面甲基支链的引入,液晶态时自组装结构由六方穿孔层状结构到六方紧密堆积结构、由矩形柱状结构到体心四方结构、由六方穿孔层状结构到双连续立方结构、由六方穿孔层状结构到体心四方结构、由倾斜柱状结构到体心四方结构。
The development of novel supramolecular materials with nanometer-scale architectures and these architectures'properties are currently of great interest in molecular design. Liquid crystalline assemblies of Rod-coil tri-block oligomers containing rigid rod segment and flexible coils(rod-coil molecules)provide a rich variety of different liquid crystalline structures with nanoscale dimensions. This thesis mainly discusses the self-assembly behaviors at solid state, liquid crystalline state and in solution of T-shaped, H-shaped and linear shaped rod building block oligomers, as well as the influence of side chain of molecular on the self-assembly behaviors of such tri-block oligomers.
     T-shaped coil-rod-coil tri-block oligomers, consisting of a dibenzo[a,c]-phenazine unit were synthesized and the self-assembling behavior of these molecules was investigated in the crystalline phase. We summarize the influence on the self-assembly structures of the T-shaped rod-coil oligomers by changing length of the alkoxyl chains at the end of the rod; the length of alkyl chains in the center of the rod; introduction of lateral methyl groups attached to the surface of rod and coil segments. The experimental results reveal that the length of the flexible PEO coil chain influence construction of various supra-nanostructures from lamellar structure to rectangular columnar structure. It is also shown that introduction of different length of alkyl side chain groups in the backbone of the T-shaped molecules affect the self-organization behavior to form hexagonal perforate layer or oblique columnar structures. In addition, lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the crystalline phase. T-shaped molecules containing a lateral methyl group at the surface of rod and PEO coil segments, self-assemble into3D body-centered tetragonal structures in the crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self-organize into2D oblique columnar crystalline structures.
     A class of π-conjugated, skewed H-shaped oligomers was synthesized and the self-assembling behavior of these molecules was investigated in the crystalline phase. The results indicates that that the length of the flexible PEO coil chain influence construction of various supra-nanostructures from lamellar structure to oblique columnar structure. H-shaped molecule containing a lateral methyl group at the surface of rod and PEO coil segments, self-assembles into3-D body-centered tetragonal nanostructures in the crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self-organize into1-D lamellar structure or2-D columnar nanostructures.
     Four categories of linear-typed molecules with lateral methyl groups in the surface of rod and coil segments self-assemble into3-D assemblies in the liquid crystalline mesophase, depending on the the length of poly(ethylene oxide) coil or lateral chain in the center of the rod. The experimental results reveal that the molecules containing a lateral methyl group at the surface of rod and PEO coil segments, self-assembles into3-D hexagonal close-packed structure or3-D body-centered tetragonal micelle or3-D bicontinuous cubic nanostructure in the liquid-crystalline phase, while molecules without a lateral methyl group based on PEO coil chain self-organize into1-D lamellar structure or2-D columnar nanostructures.
引文
[1]范星河.图解液晶聚合物.北京:化学工业出版社,2005.
    [2]周其凤,王新久.高分子液晶.北京:科学出版社,2001.
    [3]吴人诚.液晶高分子.北京:科学出版社,1988.
    [4]张其锦.聚合物液晶导论.合肥:中国科学技术大学出版社,1994.
    [5]Briggs D.聚合物表面分析.北京:化学工业出版社,2001.
    [6]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.
    [7]Ciardelli F, Tsuchida E.高分子金属络合物.北京:北京大学出版社,1999.
    [8]T. J. Sluckin, D. A. Dunmur, H. Stegemeyer. Crystals that Flow, Classic Papers from the History of Liquid Crystals. London and New York:Taylor & Francis,2004:20
    [9]D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, V. Vill. Handbook of Liquid Crystals. Wiley-VCH:Weinheim,1998:52-65
    [10]谢毓章.液晶物理学.北京:科学出版社,1987.
    [11]何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2001.
    [12]王良御,廖松生.液晶化学.北京:科学出版社,1988,.
    [13]施善定,黄嘉华.液晶与显示应用.上海:华东化工学院出版社,1993.
    [14]S. L. wolek, P. W.Morgan, J. R. Morgan, J. R. Schaefgen, L. W. Gulrich. Synthesis, anisotropic Solutions and Fibers of Poly(1,4-benzamide). Macromolecules, 1977,10(6):1390-1396
    [15]V. A. Belykov, V. E. Dmitrienke. Sov. Phys. Usp.,1985,28:535-561
    [16]薛九枝.液晶显示基础知识讲座(一)液晶的结构与分类.现代显示,1995,2(1):53-61
    [17]Whitesides G. M., Mathias J. P., Seto C. T., Molecular Self-Assembly And Nanoehemistry-A Chemical Strategy For The Synthesis Of Nanostructures. Science,1991,254,1312.
    [18]Whitesides G M., Grzybowski B., Self-assembly at all Seales. Science,2002, 295,2418.
    [19]Singh R., Mara V. M., Moharir P. S., Complex Chaotic Systems And Emergent Phenomena. Journal of Nonlinear Science,1998,8(3),235-259.
    [20]J. B. Sehlenof, M. Li, H. Ly, Stability and Self-Exchange in Alkanethiol Monolayers. Journal of the American Chemical Society,1995,117(30), 12528-12536.
    [21]P. E. Laibiis, G M. Whitesides, D. L. A. e. al, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society,1991,115(19),7152-7167.
    [22]L. Dubois, R. G Nuzzo, Synthesis, structure, and properties of model organic surfaces. Annual Review of Physical Chemistry,1992,43,437-463.
    [23]C. E. D. Chidsey, G F. Liu, Y. P. Rowntree, G Seoles, Journal of Chemical Physics,1989,91,4421.
    [24]Lijima, S., Helieal Microtubules of Graphitic Carbon. Nature,1991,354,56-58
    [25]Olivier Coulembier, Daniel P. Sanders, et al. Hydrogen-Bonding Catalysts Based on Fluorinated Alcohol Derivatives for Living Polymerization. Angewandte Chemie International Edition,2009,48(28),5170-5173.
    [26]Latimer, W. M.; Rodebush, W. H. POLARITY AND IONIZATION FROM THE STANDPOINT OF THE LEWIS THEORY OF VALENCE. Journal of the American Chemical Society,1920,42(7),1419-1433.
    [27]Huggnis, M. L.50 Years of Hydrogen Bond Theory. Angewandte Chemie International Edition,1971,10(3),147-152.
    [28]Schuster, P.; Zundel, G.; Sandorfy, C. The Hydrogen Bond:Recent Developments in Theory and Experimenst. Vol.1-3. North-Holland, Amsterdam.1976.
    [29]谢晶曦,常俊标,王绪明,《红外光谱在有机化学和药物化学中的应用》,科学出版社,2001.
    [30]Parr, R. D.; Zeng, H. Q.; Zhu, J. Et al. Stable Three-Center Hydrogen Bonding in a Partially Rigidified Structure. Chemistry A European Journal,2001,7(20), 4352-4357.
    [31]Curtis M, Cao J, Kampf J. Solid-state packing of conjugated oligomers:From π-stacks to the herringbone structure. Journal of the American Chemical Society, 2004,126(13),4318-4328.
    [32]Moon H, Zeis R, Borkent E, et al. Synthesis, crystal structure, and transistor performance of tetracene derivatives. Journal of the American Chemical Society, 2004,126(41),15322-15323.
    [33]Swartz C, Parkin S, Bullock J, et al. Synthesis and characterization of electron-deficient pentacenes. Organic Letters,2005,7(15),3163-3166.
    [34]Wailg, W.; Li, L. S.; Helms, G.; Zhou, H. H.; Alexnader Li, D. Q. To Fold or to Assemble? Journal of the American Chemical Society,2003,125(5), 1120-1121.
    [35]Nguyne, J. Q.; Iverson, B. L. An Amphiphilic Folding Molecule That Undergoes an Irreversible Conformational Change. Journal of the American Chemical Society,1999,121(11),2639-2640.
    [36]Ashton, P. R.; Ballardini, R.; Balzani, V. Et al. Simple Mechanical Molecular and Supramolecular Machines:Photochemical and Electrochemical Control of Switching Processes. Chemistry A European Journal,1997,3(1),152-170.
    [37]Ho-Joong Kim, Wang-Cheol Zin, and Myongsoo Lee. Anion-Directed Self-Assembly of Coordination Polymer into Tunable Secondary Structure. Journal of the American Chemical Society,2004,126(22),7009-7014.
    [38]Myongsoo Lee and Yong-Sik Yoo. Supramolecular organization of block oligomers based on rod-shaped mesogen into liquid crystalline assembly. Journal of Materials Chemistry,2002,12(8),2161-2198.
    [39]C. Tschierske, Micro-segregation, molecular shape and molecular topology-partners for the design of liquid crystalline materials with complex mesophase morphologies. Journal of Materials Chemistry,2001,11(11), 2647-2671.
    [40]M. Lee and N.-K. Oh, Liquid-crystalline rod-coil polymers based on poly(ethylene oxide)s and the influence of the complexation of LiCF3SO3 on the liquid-crystalline assembly. Journal of Materials Chemistry,1996,6(7), 1079-1086.
    [41]M. Lee, N.-K. Oh and M.-G Choi, Thermotropic and lyotropic mesophase formation of poly(ethylene oxide) substituted rod-coil oligomer. Polymer Bulletin,1996,37(4),511-518.
    [42]M. Lee, N.-K. Oh and W.-C. Zin, Hexagonal columnar liquid-crystalline phase from a rod-coil molecule. Chemical Communications,1996,75,1787-1788.
    [43]M. Lee, B.-K. Cho, H. Kim and W.-C. Zin, Cubic and Columnar Supramolecular Architectures of Rod-Coil Molecules in the Melt State. Angewandte Chemie International Edition,1998,37(5),638-640.
    [44]M. Lee, B.-K. Cho, H. Kim, J.-Y. Yoon and W.-C. Zin, Self-Organization of Rod-Coil Molecules with Layered Crystalline States into Thermotropic Liquid Crystalline Assemblies. Journal of the American Chemical Society,1998, 120(36),9168-9179.
    [45]M. Lee, B.-K. Cho, Y.-G. Jang and W.-C. Zin, Spontaneous Organization of Supramolecular Rod-Bundles into a Body-Centered Tetragonal Assembly in Coi-Rod-Coil Molecules. Journal of the American Chemical Society,2000, 122(31),7449-7455.
    [46]B.-K. Cho, M. Lee, N.-K. Oh and W.-C. Zin, Chain Length-Dependent Three-Dimensional Organization of Molecular Rods with Flexible Coils. Journal of the American Chemical Society,2001,123(39),9677-9678.
    [47]D. Demus and L. Richter, inTexture of Liquid Crystals, Verlag Chemie, Weinheim, Germany,1978.
    [48]G. W. Gray and J. W. Goodby, in Smectic Liquid Crystals. Textures and Structures, Leonard Hill, Glasgow.1984.
    [49]Kim H. J., Jeong Y. H., Lee E. et al. Channel Structures from Self-Assembled Hexameric Macrocycles in Laterally Grafted Bent Rod Molecules. Journal of the American Chemical Society,2009,131,17371-17375.
    [50]K. L. Zhong, Z. Huang, Z. Man, L. Y. Jin, B. Yin, M. Lee, Synthesis and self-assembly of rod-coil molecules with n-shaped rod building block. Journal of Polymer Science Part A:Polymer Chemistry,2010,48(6),1415-1422.
    [51]Liu L. B., Kim J. K., Lee M. et al. Interfacial Organization of Y-Shaped Rod-Coil Molecules Packed into Cylindrical Nanoarchitectures. ChemPhysChem.2008,9(11),1585-1592.
    [52]Bae J, Kim J, Oh N, et al. Organization of Rigid Wedge-Flexible Coil Block Copolymers into Liquid Crystalline Assembly. Macromolecules,2005,38, 4226-4230.
    [53]Ryu J-H, Lee E, Lim Y-b, et al. Carbohydrate-Coated Supramolecular Structures: Transformation of Nanofibers into Spherical Micelles Triggered by Guest Encapsulation. Journal of the American Chemical Society,2007,129, 4808-4814.
    [54]Huang Z, Ryu J, Lee E, et al. Tunable Columnar Organization by Twisted Stacking of End-Capped Aromatic Rods. Chemistry of Materials,2007,19, 6569-6574.
    [55]Ryu J., Kim H., Huang Z., et al. Self-Assembling Molecular Dumbbells:From Nanohelices to Nanocapsules Triggered by Guest Intercalation. Angewandte Chemie International Edition,2006,45,5304-5307.
    [56]Ryu J-H, Oh N-K, Lee M. Tubular assembly of amphiphilic rigid macrocycle with flexible dendrons. Chemical Communications,2005,13,1770-1772.
    [57]Clar, E. Polycyclic Aromatic Hydrocarbons. Academic Press:New York,1964.
    [58]Foster, E. J.; Babuin, J.; Nguyen, N.; Williams, V. E. Synthesis of unsymmetrical dibenzoquinoxaline discotic mesogens. Chemical Communications,2004,18,2052-2053.
    [59]Foster, E. J.; Lavigueur, C.; Ke, Y.-C.; Williams, V. E. Self-assembly of hydrogen-bonded molecules:discotic and elliptical mesogens. Journal of Materials Chemistry,2005,15,4062-4068.
    [60]Foster, E. J.; Jones, R. B.; Lavigueur, C.; Williams, V. E. Structural Factors Controlling the Self-Assembly of Columnar Liquid Crystals. Journal of the American Chemical Society 2006,128(26),8569-8574.
    [61]Lavigueur, C.; Foster, E. J.; Williams, V. E. Liquid Crystals,2007,34,833.
    [62]Lavigueur, C.; Foster, E. J.; Williams, V. E. Self-Assembly of Discotic Mesogens in Solution and in Liquid Crystalline Phases:Effects of Substituent Position and Hydrogen Bonding. Journal of the American Chemical Society, 2008,130(35),11791-11800.
    [63]Voisin, E.; Foster, E. J.; Rakotomalala, M.; Williams, V. E. Effects of Symmetry on the Stability of Columnar Liquid Crystals. Chemistry of Materials,2009, 21(14),3251-3561.
    [64]Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Directional Control in Thermally Driven Single-Molecule Nanocars. Nano Letters,2005,5, 2330-2334.
    [65]Grill, L.; Rieder, K. H.; Moresco, F.; Rapenne, G; Stojkovic, S.; Bouju, X.; Joachim, C. Rolling a Single Molecular Wheel at the Atomic Scale. Nature Nanotechnology,2007,2,95-98.
    [66]Shirai, Y; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Chiu, Y-H.; Alemany, L. B.; Sasaki, T.; Morin, J.-F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-Rolling Molecules. Journal of the American Chemical Society,2006, 128,4854-4864.
    [67]Sasaki, T.; Osgood, A. J.; Alemany, L. B.; Kelly, K. F.; Tour, J. M. Synthesis of a Nanocar with an Angled Chassis. Toward Circling Movement. Organic Letters, .2008,10,229-232.
    [68]Sasaki, T.; Osgood, A. J.; Kiappes, J. L.; Kelly, K. F.; Tour, J. M. Synthesis of a Porphyrin-Fullerene Pinwheel. Organic Letters,2008,10,1377-1380.
    [69]Morin, J.-F.; Sasaki, T.; Shirai, Y.; Guerrero, J. M.; Tour, J. M. Synthetic Routes toward Carborane-Wheeled Nanocars. Journal of Organic Chemistry,2007,72, 9481-9490.
    [70]Morin, J.-F.; Shirai, Y.; Tour, J. M. En Route to a Motorized Nanocar. Organic Letters,2006,8,1713-1716.
    [71]Tschierske C. Liquid crystal engineering"Cnew complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chemical Society Reviews,2007,36,1930-1970.
    [72]Chen B, Baumeister U, Pelzl G, et al. Carbohydrate Rod Conjugates:Ternary Rod-Coil Molecules Forming Complex Liquid Crystal Structures. Journal of the American Chemical Society,2005,127,16578-16591.
    [73]Cheng X, Prehm M, Das M K, et al. Calamitic Bolaamphiphiles with (Semi)Perfluorinated Lateral Chains:Polyphilic Block Molecules with New Liquid Crystalline Phase Structures. Journal of the American Chemical Society, 2003,125,10977-10996.
    [74]Ke-Li Zhong, Qi Wang, Tie Chen, Zhegang Huang, Bingzhu Yin, Long Yi Jin Self-Assembly of Rod-Coil Molecules into Lateral Chain-Length-Dependent Supramolecular Organization. Journal of Applied Polymer Science,2012,123, 1007-1014.
    [75]Tsai-Ming Chung, Hsiao-Fang Wang, Tao Lin, Yeo-Wan Chiang, Yi-Chun Chen, Bao-Tsan Ko, and Rong-Ming Ho. Helical Phase Driven by Solvent Evaporation in Self-Assembly of Poly(4-vinylpyridine)-block-poly(L-lactide) Chiral Block Copolymers. Macromolecules,2012,45,9727-9733.
    [76]George S J, Ajayaghosh A, Jonkheijm P, et al. Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s:Gelation-Induced Helix Transition in a Higher-Order Supramolecular Self-Assembly of a Rigid π-Conjugated System. Angewandte Chemie International Edition,2004,43,3422-3425.
    [77]Yi Jin L, Bae J, Ahn J-H, et al. Structural inversion in 3-D hexagonal organization of coil-rod-coil molecule. Chemical Communications,2005,9, 1197-1199.
    [78]Tian, L.; Zhong, K.-L.; Liu, Y.; Huang, Z.; Jin, L. Y; Hirst, L. S. Synthesis and self-assembly of coil-rod-coil molecules with lateral methyl and ethyl groups in the center of the rod segment. Soft Matter,2010,6,5993-5998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700