用户名: 密码: 验证码:
三种新型稀土掺杂纳/微米材料的制备,结构及其上转换/下转换发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳/微米稀土上转换/下转换发光材料有重要的应用前景,如固体激光器、激光防伪、生物荧光探针、三维立体显示、发光二极管背光源和太阳能电池等方面。而它们的成分、尺寸、形貌和结构等对其发光性能有十分重要的影响,探索它们之间的关系以及按人们的意愿设计和组装具有独特性能和结构的上转换/下转换发光材料具有重要的意义。虽然各国在稀土上转换发光材料方面的研究投入了巨大的人力、财力和物力,但是研究结果表明,上转换发光效率太低以至于真正可以实际应用的材料仍然很少。因此上转换研究的重点之一就是进一步加强基础研究,寻找一些新的发光机理,新的制备方法和新的材料组合来提高上转换发光效率。与上转换发光相反,下转换就是将一个高能量光子转变为两个或者以上低能量光子的发光过程。近几年来,如何提高太阳能电池的能量转换效率成为人们研究的热点。近红外量子剪裁下转换发光材料,可以将一个高能量的光子转化为光谱响应性好的两个或多个近红外光子,从而提高了电池的光谱响应性并减少了载流子热能化损耗。但这些研究主要集中在高温固相法合成的块体材料中,且量子效率有待进一步提高。本论文我们集上转换和下转换发光等性能于一体,制备并研究了不同形貌、不同尺寸和不同稀土离子掺杂的含氧化合物Y2Si05、氟化物GdF3/BaGdF5/ErF3以及氟氧化物Lu6O5Fg的.发光性质。主要内容及结果如下:
     1.考虑到含氧化合物的化学稳定性好,首先选择Y2SiO5作为上转换发光的基质材料。
     研究了在980nm激发下Y1.98-2xYb2x Er0.02SiO5(0.00≤x<0.15)上转换发光的过程。发现红光猝灭浓度比绿光的高,这是因为Er3+离子向Yb3+离子的反向能量传递起主导作用。此外,Yb3+/Tm3+和Yb3+/Ho3+掺杂的Y2Si05样品分别发射蓝光和黄光,通过调节掺杂离子Yb3+/Ho3+/Tm3+勺浓度和激发功率进而改变蓝光和黄光发射强度比,从而在Y2SiO5:0.4%Tm3+,5%Yb3+,0.1%Ho3+样品中实现了上转换白光发射。
     2.考虑到氟化物声子能量低,可以降低无辐射弛豫跃迁几率,从而提高发光效率,所以选择了氟化物同时作为上转换发光及近红外量子剪裁下转换发光的基质。
     Gd3+本身在常温下具有磁性,所以本着磁光多功能材料的目标选择含有Gd3+的GdF3和BaGdF5作为基质。首先利用第一性原理分析了GdF3的能带结构,研究结果表明GdF3是直接半导体,其带隙为7.344eV。采用水热法合成了分散性良好且均匀的稀土离子掺杂的GdF3纳米棒。发现GdF3:0.15Yb3+/0.002Ho3+/0.008/Tm3+样品经过退火处理后,上转换发光的色坐标由偏红光移向白光区。还分析了稀土离子对Yb3+/Tb3+; Yb3+/Ho3+; Yb3+/Tm3+; Yb3+/Pr3+; Yb3+/Er3+掺杂在GdF3中的近红外量子剪裁机理和量子效率。其中GdF3:10%Yb3+,0.5%Pr3+的量子效率高达166%,GdF3:10%Yb3+,0.5%Er3+的量子效率高达150%,然而,在GdF3:x%Yb3+,0.5Ho3+(Tm3+,Tb3+)样品中并没有发现近红外量子剪裁的现象。故GdF3:10%Yb3+,0.5%Pr3+, GdF3:10%Yb3+,0.5%Er3+纳米材料在涂覆太阳能电池且提高太阳能电池光电转换效率方面有潜在的应用。
     对于BaGd0.9-x%Yb0.1Hox%F5(0≤x<1.1)样品,首先给出了BaGdF5晶体的结构数据,其中Gd3+在BaGdF5晶格中的位置相当于Gd3+随机取代BaF2中Ba2+的格位。采用水热法合成了具有纳米颗粒、微米级胶囊状、花生状形貌的BaGdF5:Yb3+/Ho3+样品,进一步分析了胶囊状、花生状形貌的形成机理为自组装生长机理。在980nm激发下,具有花生状形貌的BaGdo892Yb0.1Ho0.008F5样品有最强的上转换发射强度,对应的Yb3+→Ho3+能量传递效率为0.348%。BaGdF5在常温下的磁性大小为0.7emug-1/10kOe,这与生物分离方法中需要的磁性值1.0emug-1/10KOe相当。最后还研究了BaGdF5:Yb3+/Ho3+的近红外量子剪裁的性质,以反向能量传递的机理解释了近红外发射光谱特征,得到最佳的量子效率为192%。
     分别通过水热法和共沉淀法制备了具有不同形貌(薄片,八面体,花状和米粒状)的ErF3样品。由于ErF3中Er-Er之间的交叉弛豫能量传递占主导,所以在980nm光源的激发下,ErF3样品发射红光。通过适当地掺杂Li+增强了ErF3上转换/阴极射线发光强度。所以ErF3在生物学和场致发射显示器等行业具有潜在的应用价值。
     3.结合氧化物和氟化物的优点,选择氟氧化物作为上转换发光基质。
     Lu6O5F8作为一种新的氟氧化物,具有化学稳定性好,声子能量低的优点,但是至今没有关于LU6O5F8的合成方法、结构和发光性质的报道。本论文研究表明Lu6O5F8是正交晶系,一个晶胞中有76个原子,能带结构为间接半导体,带隙为4.13eV。
     为了提高上转换发射强度,本文采用共沉淀法制备了Li+离子和稀土离子Yb3+/Er3+(Ho3+,Tm3+)共掺的Lu6O5F8纳米晶,研究了它的上转换、下转换及阴极射线发光性质。结果表明适当Li+浓度的引入可以提高这三种发光形式的发光强度,但同一个样品的光致发光和阴极射线发光光谱不一样,归因于激发发射机理不一样。值得指出的是通过调节Li+的掺杂浓度最终在Lu6O5F8:6%Yb3+,0.3%Er3+,0.4%Tm3+,5%Li+样品中实现了上转换白光发射,同时Lu6O5F8:20%Yb3+,1%Er3+,3%Li+的上转换发射强度达到商用粉NaYF4:20%Yb3+/2%Er3+的5倍。
     此外利用添加剂辅助的水热法合成了具有多种大小均匀且形貌规整的Lu6O5F8:Eu3+/Tb3+/Ce3+/Dy3+纳/微米晶,包括纳米颗粒、球形、六棱柱形、花簇形、玫瑰花状等多种形貌。研究了Eu3+/Tb3+/Ce3+/Dy3+单掺的前驱体(NH4Lu2F7/Lu(OH)1.57F1.43)和最终产物Lu6O5F8在真空紫外、紫外和电子束激发下的发光性质。总之,集上转换,下转换,阴极射线发光,磁性于一体的多功能稀土掺杂材料在固态激光器,太阳能电池,场发射显示器,生物成像标记等方面有潜在的应用。
Inorganic nano/micro-rare earth doped upconversion (UC) and downconversion (DC) materials have potential applications prospect, such as solid-state laser, laser anti-counterfeiting brand, fluorescence probe, three dimensional display, light-emitting diode black light and solar cells, etc. It is common sense that the properties of inorganic nano/micro-materials are dependent on their composition, size, shape and crystalline structure. Investigation on the ralationships among these features, and then designing and assembling the structure with unique properties have great significance. Researchers have invested substantive manpower, material resources and funds, but the study suggests that the low efficiency of UC would limit their practical application. Therefore, the selection of new luminescence mechanism, new preparation method and new matrix in order to obtain high luminescence efficiency is a hot spot in this field. In contrary to UC process, DC process is defined as that absorbing one high-energy photon and emitting two or more low-energy photons. In recent years, how to enhance the energy conversion efficiency of solar cells has become an important issue of concern. Near infrared quantum cutting (NIR QC) DC emission process, converting one high-energy photon (UV/VIS) into two or more low-energy infrared photons which can be better absorbed by silicon crystal, is a promising approach to enhance the energy conversion efficiency of Si solar cells. The energy loss due to the thermalization in c-Si solar cells could be minimized. However, intensive studies on the NIR QC materials are focused on high temperature solid phase synthesis of bulk materials and the quantum efficiency should be further enhanced. We combined UC and DC in one multi, prepared and investigated effects of different morphologies, sizes and dopants on the luminescence properties of Y2SiO5GdF3/BaGdF5/ErF3and Lu6O5F8. The main points are listed below:
     (1) Considering oxy-compound possesses high chemical stability, we select Y2Si05as the host of UC emission firstly.
     Under excitation at980nm, the UC emission processes of Y1.98-2xYb2x Er0.02Si05(0.00≤x≤0.15) were studied. The concentration quenching of the red light emission is higher than that of green, due to the back energy transfer between Yb3+and Er3+ions (4F7/2(Er3+)+2F7/2(Yb)-→4I11/2(Er)+2F5/2(Yb)); Furthermore, Yb3+/Tm3+and Yb3+/Ho3+codoped Y2Si05samples emit strong blue and yellow light, respectively. Bright white luminescence upon980nm near-infrared excitation was obtained in Y2SiO5:0.4%Tm3+,5%Yb3+,0.1%Ho3+by tuning the doping concentrations and pump power.
     (2) Fluoride has very low vibrational energy, and its nonradiative loss could be suppressed and a high quantum efficiency of the desired luminescence could be obtained. So we select fluoride as not only UC luminescence but also NIR QC host at the same time.
     It is well known that Gd3+ions have a4f7electronic configuration, so we choose GdF3and BaGdF5as matrices, which are expected to be efficient magnetic-optical multifunctional materials. The band structures and densities of state of GdF3were studied with the help of first principles calculations, and the direct band gap of GdF3was estimated to be7.443eV wide. A series of GdF3:Yb3+/Ho3+/Tm3+nanorods were prepared by a simple and green hydrothermal method. After heat treatment, the emission color coordinates of GdF3:0.15Yb3+/0.002Ho3+/0.008/Tm3+moved from red region to the central white region of the chromaticity diagram. In addition, NIR QC mechanisms and quantum efficiencies of GdF3:Yb3+/Ln3+(Ln=Ho, Tm, Er, Pr, Tb) nanorods were investigated. The results indicated that the quantum efficiency of GdF3:10%Yb3+,0.5Er3+and GdF3:10%Yb3+/0.5Pr3+are150%and166%, respectively. However, there is not any NIR QC phenomenon on the GdF3:x%Yb3+/0.5Ho3+(Tm3+,Tb3+) samples. Therefore, GdF3:10%Yb3+/0.5Er3+and GdF3:10%Yb3+/0.5Pr3+nanomaterials are convenient for practical applications in the coating of solar cells.
     For BaGd0.9-x%Yb0.1Hox%F5(0≤x≤1.1) samples, the structure information of BaGdF5solid-solution is obtained as the BaF2cubic system with Gd3+ions occupying Ba2+sites with the same possibility. Nanoparticles, capsule-like and peanut-like BaGdF5:Yb3+/Ho3+nano/microcrystals were obtained by hydrothermal method, and possible mechanism for the formation of capsule-like and peanut-like morphologies was regarded as self-assemble process. Under excitation at980nm, BaGd0.891Yb0.1Ho0.008F5with the peanut morphology has the highest UC emission intensity, and the energy transfer efficiency of Yb3+→Ho3+was calculated to be0.348%. In addition, the measured field dependence of magnetization of the BaGdFs nanoparticles shows excellent paramagnetism. At last, NIR QC properties of BaGdF5:Yb3+/Ho3+were investigated, and the back energy transfer Yb3+→Ho3+process was proposed to analyze the characteristic of the NIR emission spectra. The optimal quantum efficiency is192%.
     ErF3samples with different morphologies (flakes, truncated octahedral, flower-like and rice-like submicrocrystals) were prepared by aqueous-based hydrothermal and co-precipitation route, respectively. ErF3shows almost bright red UC emission under excitation at980nm, because cross-relaxation process of Er3+ions is the main one populating the4F9/2level of Er3+. It is worthwhile to note that UC and cathodoluminescence (CL) intensities are enhanced via further doping with Li+. As a conclusion, ErF3has potential applications in the biological and field emission display devices and so forth.
     (3) Combining the merits of oxide and fluoride, oxyfluoride was also chosen as the UC and DC luminescence host.
     Lu6O5F8, as a novel oxyfluoride matrix, has good chemical stability and low vibrational energy advantages. However, Lu6O5F8has not been investigated up to now on the synthetic method, detailed crystal structure as well as luminescence properties. The result indicated that Lu6O5F8belongs to orthorhombic system, and seventy-six atoms are presented in one unit cell, and the indirect band gap of Lu6O5F8is estimated to be4.13eV wide.
     Li+-doped Lu6O5F8:20%Yb3+,1%Er3+(Tm3+) samples were prepared by coprecipitaion method and fabricated on the basis of the luminescence efficiency and intensity increment by Li+doping, and their UC, DC and CL properties in one compound were studied. It was found that doping of Li+could enhance all the intensities of UC, DC and CL. The differences between PL and CL spectra are due to the different excitation mechanisms. It is worthwhile to point out that according to the effects of Li+on emission intensity ratio, white UC emission was achieved in the Lu6O5F8:6%Yb3+,0.3%Er3+,0.4%Tm3+5%Li+compared to Li+free sample with the same activator concentration. The integrated UC emission intensity of Lu6O5F8:20%Yb3+,1%Er3+,3%Li+is5times as strong as that of commercial UC phosphor (NaYF4:20%Yb3+,2%Er3+).
     In addition, Lu6O5F8:Eu3+/Tb3+/Ce3+/Dy3+with diverse controlled morphologies were prepared by additive-assisted hydrothennal method。 Furthermore, excellent luminescence properties of Eu3+/Tb3+/Ce3+/Dy3+single doped NH4Lu2F7/Lu(OH)1.57F1.43precursors and final product Lu6O5F8under excitation at VUV/UV/electron beam were investigated. In a word, combining UC, DC, CL and magnetism in one multi, would find potential applications in solid-state laser, solar cell, field emission display and biological imaging.
引文
[1]苏锵,稀土化学[M].郑州:河南科学技术出版社,1993
    [2]李建宇,稀土发光材料及其应用[M].北京:化学工业出版社,2003
    [3]孙家跃,杜海燕,胡文祥,固体发光材料[M].北京:化学工业出版社,2003
    [4]G. Blasse, B. C. Grabmaier, Luminescent Materials. Springer-Verlag,1994,20-95
    [5]苏文斌,谷学新,邹洪,朱若华,稀土元素发光特性及其应用[J].化学研究,2001.12:55-59
    [6]N. Bloembergen, Solid state infrared quantum counters[J]. Physical Review Letters,1959,2: 84-85
    [7]F. E. Auzel, Materials and devices using double-pumped-phosphors with energy transfer[J] Poreeedings of Ieee,1973,61:758-786
    [8]L. F. Johnson, G. J. Guggenheim, Infrared-Pumped Visible Laser [J], Applied Physics Letters, 1971,19:44-47
    [9]J. S. Chivian, W. E. Case, D. D. Eden, The photon avalance:a new phenomenon in Pr3+-based infrared quantum counters [J], Applied Physics Letters,1979,35:124-125
    [10]张玉萍,高功率全固态绿光激光器的研究[博士学位论文],天津:天津大学,2007
    [11]Downing E, Hesselink L, Ralston J, et al. A Three-Color, Solid-State, Three-Dimensional Display [J]. Science,1996,273:1185-1189
    [12]杨志萍,杜海燕,孙家跃,上转换发光材料的合成与应用[J].化工新型材料,2009,37(2):6-9
    [13]陈晓波,冯衍,李美先,Tm0.03Yb0.18La0.79P5O14和Tm(0.1)Yb(3)·ZBLAN玻璃的上转换敏化蓝色发光,中国激光[J].1999,26(5):437-443
    [14]G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov and P. N. Prasad, (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging[J]. ACS Nano,2012, 6(9):8280-8287
    [15]T. S. Yang, Y. Sun, Q. Liu, W. Feng, P. Y. Yang, F. Y. Li, Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species[J]. Biomaterials,2012,33(14):3733-3742
    [16]L. Y. Wang, R. X. Yan, Z. Y. Huo, L. Wang, J. H. Zeng, J. Bao, X. Wang, Q. Peng, Y. D. Li, Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles[J]. Angewandte Chemie International Edition,2005,44(37):6054-6057
    [17]D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, Small Upconverting Fluorescent Nanoparticles for Biomedical Applications[J]. Small,2010,6(24):2781-2795
    [18]姜涛,固相燃烧法合成稀土钼酸盐发光材料及发光性质研究[硕士学位论文].大连:大连海事大学.2007
    [19]F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews,2009,38:976-989
    [20]I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln= Y, Gd)[J]. Journal of Materials Chemistry,2011,21:1387-1394
    [21]L. N. Guo, Y. H. Wang, Y. Z. Wang, J. Zhang, P. Y. Dong and W. Zeng, Structure, enhancement and white luminescence of multifunctional Lu6O5F8:20%Yb3+,1%Er3+(Tm3+) nanoparticles via further doping with Li+ under different excitation sources[J]. Nanoscale, 2013,5:2491-2504
    [22]M. Pedroni, F. Piccinelli, T. Passuello, M. Giarola, G. Mariotto, S. Polizzi, M. Bettinelli and A. Speghini, Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method:toward efficient materials with near infrared-to-near infrared upconversion emission[J]. Nanoscale,2011,3:1456-1460
    [23]G. F. Wang, Q. Peng and Y. D. Li, Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+ Nanocrystals[J]. Journal of the American Chemical Society,2009,131 (40): 14200-14201
    [24]N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. R. Hernandez, J. A. Capobianco, NIR-to-NIR Two-Photon Excited CaF2:Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-lmaging[J]. ACS Nano, 2011,5 (11):8665-8671
    [25]D. Q. Chen, Y. L. Yu, F. Huang, P. Huang, A. P. Yang, Z. X. Wang and Y. S. Wang, Monodisperse upconversion Er3+/Yb+:MFC1 (M=Ca, Sr, Ba) nanocrystals synthesized via a seed-based chlorination route[J]. Chemical Communications,2011,47:11083-11085
    [26]M. Bouffarda, J. P. Jouarta, M. F. Joubertb, Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF,[J], Optical Materials,2000,14(1):73-79
    [27]M. Pedroni, F. Piccinelli, T. Passuello, S. Polizzi, J. Ueda, P. Haro-Gonzalez, L. Martinez Maestro, D. Jaque, J. Garcia-Sole, M. Bettinelli, and A. Speghini, Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M= Ca, Sr) Colloids: Influence of the Host Crystal[J], Crystal Growth & Design,2013,13 (11):4906-4913
    [28]G. S. Yi and G. M. Chow, Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence[J]. Journal of Materials Chemistry,2005,15: 4460-4464
    [29]C. H. Liu and D. P. Chen, Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence[J]. Journal of Materials Chemistry, 2007,17:3875-3880
    [30]H. Hu, Z. G. Chen, T. Y. Cao, Q. Zhang, M. X. Yu, F. Y. Li, T. Yi and C. H. Huang, Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence[J] Nanotechnology,2008,19(37):375702(1-9)
    [31]Y. Wei, F. Q. Lu, X. R. Zhang, D. P. Chen, Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals[J]. Materials Letters,2007,61(6):1337-1340
    [32]S. Sivakumar, P. R. Diamente and F. C. J. M. van Veggel, Silica-Coated Ln1+-Doped LaF3 Nanoparticles as Robust Down-and Upconverting Biolabels[J]. Chemistry-A European Journal,2006,12(22):5878-5884
    [33]L. Zhang, Y. S. Wang, Y. Yang, F. Zhang, W. F. Dong, S. Y. Zhou, W. H. Pei, H. D. Chenc and H. B. Sun, Magnetic/upconversion luminescent mesoparticles of Fe3O4@LaF3:Yb3+, Er3+ for dual-modal bioimaging[J]. Chemical Communications,2012,48:11238-11240
    [34]R. X. Yan and Y. D. Li, Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals[J]. Advanced Functional Materials,2005,15(5):763-770
    [35]G. F. Wang, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, L. L. Wang, G. D. Wei, P. F. Zhu and R. Kim, Synthesis, Growth Mechanism, and Tunable Upconversion Luminescence of Yb3+/Tm3+-Codoped YF3 Nanobundles[J]. The Journal of Physical Chemistry C,2008,112(32):12161-12167
    [36]M. F. Zhang, H. Fan, B. J. Xi, X. Y. Wang, C. Dong, and Y. T. Qian, Synthesis, Characterization, and Luminescence Properties of Uniform Ln3+-Doped YF3 Nanospindles[J]. The Journal of Physical Chemistry C,2007,111 (18):6652-6657
    [37]L. Y. Wang, Y. Zhang, Y. Y. Zhu, One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals[J]. Nano Research,2010,3(5):317-325
    [38]S. Wang, S. Y. Song, R. P. Deng, H. L. Guo, Y. Q. Lei, F. Cao, X. Y. Li, S. Q. Su and H. J. Zhang, Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF3 sub-microflowers[J]. CrystEngComm,2010,12:3537-3541
    [39]Z. Q. Li, C. L. Li, Y. Y. Mei, L. M. Wang, G. H. Du and Y. J. Xiong, Synthesis of rhombic hierarchical YF3 nanocrystals and their use as upconversion photocatalysts after TiO2 coating[J] Nanoscale,2013,5:3030-3036
    [40]J. S. Zhang, W. P. Qin, J. S. Zhang, Y. Wang, C. Y. Cao, Y. Jin, G. D. Wei, G. F. Wang, L. L. Wang, Self-Assembly of Yb3+-Tm3+ Co-Doped YF3 Elongated Nanocrystals into Nanobundles of Straw and Up-Conversion Fluorescence[J], Journal of Nanoscience and Nanotechnology,2008,8(3):1388-1391
    [41]P. Y. Qiu, N. Zhou, Y. N. Wang, C. L. Zhang, Q. Wang, R. J. Sun, G. Gao and D. X. Cui, Tuning lanthanide ion-doped upconversion nanocrystals with different shapes via a one-pot cationic surfactant-assisted hydrothermal strategy[J]. CrystEngComm,2014,16:1859-1863
    [42]S. G. Xiao, X. L. Yang, J. W. Ding, and X. H. Yan, Up-Conversion in Yb3+-Tm3+Co-Doped Lutetium Fluoride Particles Prepared by a Combustion-Fluorization Method[J]. The Journal of Physical Chemistry C,2007,111 (23):8161-8165
    [43]C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z. Lian and J. Lin, Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process[J]. The Journal of Physical Chemistry C,2008,112 (35):13395-13404
    [44]V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini and J. A. Capobianco, Structural and optical investigation of colloidal Ln3+/Yb3+ co-doped KY3F10 nanocrystals[J]. Journal of Materials Chemistry,2009,19:3149-3152
    [45]C. X. Li, Z. Xu, D. M. Yang, Z. Y. Cheng, Z. Y. Hou, P. A. Ma, H. Z. Lian and J. Lin, Well-dispersed KRE3F10 (RE= Sm-Lu, Y) nanocrystals:solvothermal synthesis and luminescence properties [J]. CrystEngComm,2012,14:670-678
    [46]L. J. Gong, J. C. Yang, Y. Y. Li, M. Ma, C. F. Xu, G. Z. Ren, J. G. Lin, Q. B. Yang, Solvothermal synthesis and upconversion emission of monodisperse ultrasmall SrYbF5 nanocrystals[J]. Journal of Materials Science,2013,48(10):3672-3678
    [47]V. Mahalingam, F. Vetronel, R. Naccache, A. Speghini and J. A. Capobianco, Colloidal Tm3+/Yb3+-Doped LiYF4 Nanocrystals:Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation[J] Advanced Materials,2009,21(40):4025-4028
    [48]G. F. Wang, Q. Peng and Y. D. Li, Synthesis and upconversion luminescence of BaY2F8:Yb3+/Er3+nanobelts, Chemical Communications,2010,46:7528-7529
    [49]J. Zhou, X. J. Zhu, M. Chen, Y. Sun, F. Y. Li, Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging[J]. Biomaterials, 2012,33(26):6201-6210
    [50]L. W. Yang, Y. Y. Zhang, J. J. Li, Y. Li, J. X. Zhong and P. K. Chu, Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals[J]. Nanoscale,2010,2:2805-2810
    [51]H. B. Wang, Z. G. Yi, L. Rao, H. R. Liu and S. J. Zeng, High quality multi-functional NaErF4 nanocrystals:structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties[J]. Journal of Materials Chemistry C,2013,1:5520-5526
    [52]J. Zhuang, L. Liang, H. H. Y. Sung, and Q. Su, Controlled Hydrothermal Growth and Up-Conversion Emission of NaLnF4 (Ln= Y, Dy-Yb)[J]. Inorganic Chemistry,2007,46 (13):5404-5410
    [53]M. He, P. Huang, C. L. Zhang, H. Y. Hu, C. C. Bao, G. Gao, R. He and D. X. Cui, Dual Phase-Controlled Synthesis of Uniform Lanthanide-Doped NaGdF4 Upconversion Nanocrystals Via an OA/Ionic Liquid Two-Phase System for In Vivo Dual-Modality Imaging[J]. Advanced Functional Materials,2011,21(23):4470-4477
    [54]Q. Liu, Y. Sun, T. S. Yang, W. Feng, C. G. Li, and F. Y. Li, Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo[J]. Journal of the American Chemical Society,2011,133 (43):17122-17125
    [55]G. S. Yi, H. C. Lu, S. Y. Zhao, Y. Ge, W. J. Yang, D. P. Chen, and L. H. Guo, Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors[J]. Nano Letters,2004,4 (11): 2191-2196
    [56]S. J. Zeng, M. K. Tsang, C. F. Chan, K. L. Wong, B. Fei and J. H. Hao, Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er[J], Nanoscale,2012,4:5118-5124
    [57]J. H. Zeng, J. Su, Z. H. Li, R. X. Yan and Y. D. Li, Synthesis and Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb+, Er3+ Phosphors of Controlled Size and Morphology[J], Advanced Materials,2005,17(17):2119-2123
    [58]C. M. Zhang, P. A. Ma, C. X. Li, G. G. Li, S. S. Huang, D. M. Yang, M. M. Shang, X. J. Kang and J. Lin, Controllable and white upconversion luminescence in BaYF5:Ln3+ (Ln =Yb, Er, Tm) nanocrystals[J]. Journal of Materials Chemistry,2011,21:717-723
    [59]Y. S. Zhu, W. Xu, C. Y. Li, H. Z. Zhang, B. Dong, L. Xu, S. Xu and H. W. Song, Broad White Light and Infrared Emission Bands in YVO4:Yb3+,Ln3+(Ln3+= Er3+, Tm3+, or Ho3+)[J]. Applied Physics Express,2012,5(9):092701
    [60]J. Y. Sun, J. C. Zhu, J. H. Zeng, Z. G. Xia, H. Y. Du, Upconversion Luminescent Properties of YVO4:Tm3+, Ho3+, Yb3+[J]. Advanced Materials Research,2012,502:132-135
    [61]G. Mialon, S. Turkcan, G. Dantelle, D. P. Collins, M. Hadjipanayi, R. A. Taylor, T. Gacoin, A. Alexandrou, and J. P. Boilot, High Up-Conversion Efficiency of YVO4:Yb,Er Nanoparticles in Water down to the Single-Particle LevelfJ]. The Journal of Physical Chemistry C,2010,114 (51):22449-22454
    [62]L. Y. Yang, C. Wang, Y. J. Dong, N. Da, X. Hu, D. P. Chen, and J. R. Qiu, Three-photon-excited upconversion luminescence of YVO4 single crystal by infrared femtosecond laser irradiation[J]. Optics Express,2005,13(25):10157-10162
    [63]Y. J. Sun, H. J. Liu, X. Wang, X. G. Kong, and H. Zhang, Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+Nanocrystals Synthesized by a Hydrothermal Process[J]. Chemistry of Materials,2006,18 (11):2726-2732
    [64]T. Tsuboi, Upconversion emission in Er3+/Yb3+-codoped YVO4 crystals[J]. Physical Review B,2000 62,4200
    [65]W. Lu, X. Ma, H. Zhou, G. Chen, J. Li, Z. Zhu, Z. You, C. Tu, White Up-Conversion Luminescence in Rare-Earth-Ion-Doped YA1O3 Nanocrystals[J]. The Journal of Physical Chemistry C,2008,112:15071-15074
    [66]N. K. Giri, S. K. Singh, D. K. Rai, S. B. Rai, SrAl4O7:Tm3+/Yb3+ nanocrystalline blue phosphor:structural, thermal and optical properties[J]. Applied Physics B,2010,99(1-2): 271-277
    [67]P.J Deren, R Mahiou, W Strek, A Bednarkiewicz, G Bertrand, Up-conversion in KYb(WO4)2:Pr3+ crystal[J]. Molecular Physics,2002,19(1):145-148
    [68]M. C. Pujol, F. Guell, X. Mateos, Jna. Gavalda, R. Sole, J. Massons, M. Aguilo, F. Diaz, G. Boulon, and A. Brenier, Crystal growth and spectroscopic characterization of Tm3+-doped KYb(WO4)2 single crystals[J]. Physical Review B,2002,66,144304
    [69]M Rico, M.C Pujol, X Mateos, J Massons, C Zaldo, M Aguilo, F Diaz, Yb sensitising of Er3+ up-conversion emission in KGd(WO4)2'.Er.Yb single crystals[J]. Journal of Alloys and Compounds,2001,323-324(12):362-366
    [70]P.J Deren, A.A Demidovich, J-C Krupa, W Strek, Spectroscopic properties and upconversion in KYb(WO4)2:Ho3+, Journal of Alloys and Compounds,2002,341(1-2):130-133
    [71]F. Guell, R. Sole, Jna. Gavalda, M. Aguilo, M. Galan, F. Diaz, J. Massons, Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals[J]. Optical Materials,2007,30(2):222-226
    [72]Mateos, X., Guell, F., Pujol, M.C, Bursukova, M.A., Green luminescence of Er3+ in stoichiometric KYb(WO4)2 single crystals[J]. Applied Physics Letters,2002,80(24):4510-4512
    [73]B. S. Cao, Z. Q. Feng, Y. Y. He, H. Li, B. Dong, Opposite effect of Li+ codoping on the upconversion emissions of Er3+-doped TiO2 powders[J]. Journal of Sol-Gel Science and Technology,2010,54(1):101-104
    [74]A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, Fluorescence Upconversion Properties of Er3+-Doped TiO2 and BaTiO3 Nanocrystallites[J]. Chemistry of Materials,2003,15 (19): 3650-3655
    [75]Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, G. Y. Peng and Y. L. Song, The Effect of Li on the Spectrum of Er3+ in Li-and Er-Codoped ZnO Nanocrystals[J]. The Journal of Physical Chemistry C,2008,112 (32):12259-12263
    [76]Y. X. Liu, C. F. Xu and Q. B. Yang, White upconversion of rare-earth doped ZnO nanocrystals and its dependence on size of crystal particles and content of Yb3+ and Tm3+[J]. Journal of Applied Physics,2009,105:084701(1-6)
    [77]C. F. Zhang, F. Zhang, X. W. Sun, Y. Yang, J. Wang, and J. Xu, Frequency-upconverted whispering-gallery-mode lasing in ZnO hexagonal nanodisks[J]. Optics Letters,2009,34(21): 3349-3351
    [78]J. K. Song, U. Willer, J. M. Szarko, S. R. Leone, S. H. Li, and Y. P. Zhao, Ultrafast Upconversion Probing of Lasing Dynamics in Single ZnO Nanowire Lasers[J]. The Journal of Physical Chemistry C,2008,112 (5):1679-1684
    [79]Y. X. Liu, Q. B. Yang, C. F. Xu, Single-narrow-band red upconversion fluorescence of ZnO nanocrystals codoped with Er and Yb and its achieving mechanism[J]. Journal of Applied Physics,2008,104(6):064701(1-5)
    [80]X. Wang, X. G. Kong, Y. Yu, Y. J. Sun, and H. Zhang, Effect of Annealing on Upconversion Luminescence of ZnO:Er3+ Nanocrystals and High Thermal Sensitivity[J]. The Journal of Physical Chemistry C,2007,111 (41):15119-15124
    [81]X. Wang, X. G. Kong, G. Y. Shan, Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, and Y. J. Li, Luminescence Spectroscopy and Visible Upconversion Properties of Er3+ in ZnO Nanocrystals[J]. The Journal of Physical Chemistry B,2004,108 (48):18408-18413
    [82]V. Singh, V. K. Rai, Ⅰ. Ledoux-Rak, L. Badie, H.-Y. Kwak, Visible upconversion and infrared luminescence investigations of A12O3 powders doped with Er3+, Yb3+ and Zn2+ ions[J]. Applied Physics B,2009,97(4):805-809
    [83]B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, C. R. Li, Optical thermometry through infrared excited green upconversion emissions in Er3+ -Yb+ codoped Al2O3[J]. Applied Physics Letters,2007,90(18):181117(1-3)
    [84]A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, Upconversion in Er3+:Zr02 Nanocrystals[J]. The Journal of Physical Chemistry B,2002,106 (8):1909-1912
    [85]E. D. R. Cruz, L. A. D. Torres, R. A. R. Rojas, M. A. M. Nava, O. B. Garcia and P. Salas, Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+ [J]. Applied Physics Letters,2003,83(24):4903-4905
    [86]A. Patra, P. Ghosh, P. S. Chowdhury, M. A. R. C. Alencar, B. L. Whualkuer, N. Rakov, and G. S. Maciel, Red to Blue Tunable Upconversion in Tm3+-Doped ZrO2 Nanocrystals[J]. The Journal of Physical Chemistry B,2005,109 (20):10142-10146
    [87]Q. Lu, F. Y. Guo, L. Sun, A. H. Li, and L. C. Zhao, Surface Modification of ZrO2:Er3+ Nanoparticles to Attenuate Aggregation and Enhance Upconversion Fluorescence[J]. The Journal of Physical Chemistry C,2008,112(8):2836-2844
    [88]X. S. Qu, H. W. Song, X. Bai, G. H. Pan, B. Dong, H. F. Zhao, F. Wang and R. F. Qin, Preparation and Upconversion Luminescence of Three-Dimensionally Ordered Macroporous ZrO2:Er3+, Yb3+[J]. Inorganic Chemistry,2008,47 (20):9654-9659
    [89]T. Lopez-Luke, E. De la Rosa, P. Salas, C. Angeles-Chavez, L. A. Diaz-Torres, and S. Bribiesca, Enhancing the Up-Conversion Emission of ZrO2:Er3+ Nanocrystals Prepared by a Micelle Process[J]. The Journal of Physical Chemistry C,2007,111(45):17110-17117
    [90]D. Solis, E. D. la Rosa, O. Meza, L. A. D. Torres, P. Salas and C. A. Chavez, Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+-Er3+ nanocrystals[J]. Journal of Applied Physics,2010,108:023103
    [91]J. A. Capobianco, F. Vetrone, and J. C. Boyer, Enhancement of Red Emission (4F9/2→4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+ [J]. The Journal of Physical Chemistry B,2002,106 (6):1181-1187
    [92]G. Y. Chen, H. C. Liu, H. J. Liang, G. Somesfalean and Z. G. Zhang, Upconversion Emission Enhancement in Yb3+/Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions[J]. The Journal of Physical Chemistry C,2008,112 (31):12030-12036
    [93]T. G. Li, S. W. Liu, H. P. Zhang, E. H. Wang, L. J. Song, P. Wang, Ultraviolet upconversion luminescence in Y2O3:Yb3+,Tm3+ nanocrystals and its application in photocatalysis[J]. Journal of Materials Science,2011,46(9):2882-2886
    [94]Q. Lii, A. H. Li, F. Y. Guo, L. Sun and L. C. Zhao, Experimental study on the surface modification of Y2O3:Tm3+/Yb3+ nanoparticles to enhance upconversion fluorescence and weaken aggregation [J]. Nanotechnology,2008,19:145701
    [95]T. Hirai, T. Orikoshi, and Ⅰ. Komasawa, Preparation of Y2O3:Yb,Er Infrared-to-Visible Conversion Phosphor Fine Particles Using an Emulsion Liquid Membrane System[J]. Chemistry of Materials,2002,14 (8):3576-3583
    [96]J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, and M. Bettinelli, Optical Spectroscopy and Upconversion Studies of Ho3+-Doped Bulk and Nanocrystalline Y2O3[J]. Chemistry of Materials,2002,14 (7):2915-2921
    [97]G. Glaspell, J. Anderson, J. R. Wilkins and M. S. El-Shall, Vapor Phase Synthesis of Upconverting Y2O3 Nanocrystals Doped with Yb3+, Er3+, Ho3+, and Tm3+ to Generate Red, Green, Blue, and White Light[J]. The Journal of Physical Chemistry C,2008,112 (30): 11527-11531
    [98]Q. P. Lu, Y. B. Hou, A. W. Tang, H. H. Wu and F. Teng, Upconversion multicolor tuning: Red to green emission from Y2O3:Er, Yb nanoparticles by calcination[J]. Applied Physics Letters,2013,102:233103
    [99]J. Zhang, S. W. Wang, T. J. Rong, and L. D. Chen, Upconversion Luminescence in Er3-Doped and Yb3+/Er3+ Codope Yttria Nanocrystalline Powders[J]. Journal of the American Ceramic Society,2004,87(6):1072-1075
    [100]K. Z. Zheng, D. S. Zhang, D. Zhao, N. Liu, F. Shi and W. P. Qin, Bright white upconversion emission from Yb3+, Er3+, and Tm3+-codoped Gd2O3 nanotubes[J]. Physical Chemistry Chemical Physics,2010,12:7620-7625
    [101]G. Tian, Z. J. Gu, X. X. Liu, L. J. Zhou, W. Y. Yin, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties[J]. The Journal of Physical Chemistry C,2011,115 (48):23790-23796
    [102]Y. Q. Lei, H. W. Song, L. M. Yang, L. X. Yu, Z. X. Liu, G. H. Pan, X. Bai and L. B. Fan, Upconversion luminescence, intensity saturation effect, and thermal effect in Gd203:Er3+,Yb3+ nanowires[J]. The Journal of Chemical Physics,2005,123:174710
    [103]H. Guo, N. Dong, M. Yin, W. P. Zhang, L. R. Lou, and S. D. Xia, Visible Upconversion in Rare Earth Ion-Doped Gd2O3 Nanocrystals[J]. J. Phys. Chem. B,2004,108 (50):19205-19209
    [104]K. Z. Zheng, W. Y. Song, C. J. Lv, Z. Y. Liu and W. P. Qin, Controllable Synthesis and Size-dependent Upconversion Luminescence Properties of Lu2O3:Yb3+/Er3+ Nanospheres[J]. CrystEngComm,2014, DOI:10.1039/C4CE00036F
    [105]W. J. Luo, Y. G. Wang, Y. P. Chen, T. Wen, M. Liu, Y. X. Wang, Fuhui Liao and J. H. Lin, The synthesis, crystal structure and multicolour up-conversion fluorescence of Yb3+/Ln3+ (Ln= Ho, Er, Tm) codoped orthorhombic lutetium oxyfluorides[J]. Journal of Materials Chemistry C,2013,1:5711-5717
    [106]Y. Gao, M. M. Fan, Q. H. Fang and F. Yang, Uniform Lu2O3 hollow microspheres: template-directed synthesis and bright white up-conversion luminescence properties[J]. New Journal of Chemistry,2014,38:146-154
    [107]L. Li, H. H. Lin, X. Q. Zhao, Y. J. Wang, X. J. Zhou, C. G. Ma, X. T. Wei, Effect of Yb3+ concentration on upconversion luminescence in Yb+, Tm+ co-doped Lu2O3 nanophosphors[J]. Journal of Alloys and Compounds,2014,586:555-560
    [108]K. Z. Zheng, Y. Liu, Z. Y. Liu, Z. Chen and W. P. Qin, Color control and white upconversion luminescence of LaOF:Ln3+(Ln= Yb, Er, Tm) nanocrystals prepared by the sol-gel Pechini method[J].Dalton Trans.,2013,42:5159-5166
    [109]G. S. Yi, Y. F. Peng, and Z. Q. Gao, Strong Red-Emitting near-Infrared-to-Visible Upconversion Fluorescent Nanoparticles[J]. Chemistry of Materials,2011,23 (11):2729-2734
    [110]H. W. Song, L. Tao, W. Xu, Y. S. Zhu, L. Xu, H. C. Zhu, Y. X. Liu, S. Xu and P. W. Zhou, Modulation of Upconversion Luminescence in Er3+, Yb3+-codoped Lanthanide Oxyfluorides (YOF, GdOF, LaOF) Inverse Opals[J]. Journal of Materials Chemistry C, 2014, DOI:10.1039/C4TC00024B
    [111]T. Passuelloa, F. Piccinellia, M. Pedronia, M. Bettinellia, F. Mangiarinib, R. Naccacheb, F. Vetroneb, J.A. Capobiancob, A. Speghinia, White light upconversion of nanocrystalline Er/Tm/Yb doped tetragonal Gd4O3F6[J]. Optical Materials,2011,33(4):643-646
    [112]尚开,Yb3+-Er3+掺杂12CaO7·Al2O3分体上转换发光[硕士学位论文],长春:东北师范大学,2010
    [113]陈晓波,张光寅等,Tm/Yb共掺氟氧化物玻璃的间接上转换敏化发光的研究[J],物理学报,1999,48(5),7840
    [114]佟剑波,黄茜,张晓丹,张存善,赵颖,纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究[J].物理学报,2012,61(4):047801-(1-7)
    [115]徐玲玲,稀土掺杂氧化物显示用荧光粉的合成与发光性质研究[博士学位论文],哈尔滨:哈尔滨工业大学,2008
    [116]D. Vennerberg and Z. Q. Lin, Upconversion Nanocrystals:Synthesis, Properties, Assembly and Applications[J]. Science of Advanced Materials,2011,3(1):26-40
    [117]X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li and Q. Q. Wang, Highly efficient fluorescence of NdF3/SiO2 core/shell nanopartieles and the applications for in vivo NIR detection[J]. Advanced Materials,2008,20(21):4118-4123.
    [118]F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan and J. A. Capobianco, The active·core/active·shell approach:A strategy to enhance the upconversion luminescence in lanthanide-doped nanopadicles[J]. Advanced Functional Materials,2009, 19(18):2924-2929
    [119]林君,李春霞,稀土氟化物纳/微米材料的水热合成、形成机理和发光性质[J]发光学报2011,32(6):519-534
    [120]朱筠清,纳微米结构的设计合成、结构表征及发光性能研究[硕士学位论文],安徽:合肥工业大学,2009
    [121]杨志萍,杜海燕,孙家跃,上转换发光材料的合成与应用[J],化工新型材料,2009,37(2):6-8
    [122]W. Feng, L. D. Sun, Y. W. Zhang, C. H. Yan, Synthesis and assembly of rare earth nanostructures of coordination chemistry in solution-based process[J] Coordination Chemistry Reviews,2010,254:1038-1053
    [123]D. K. Ma, S. M. Huang, Y. Y. Yu, Y. F. Xu and Y. Q. Dong, Rare-Earth-Ion-Doped Hexagonal-Phase NaYF4 Nanowires:Controlled Synthesis and Luminescent Properties[J]. The Journal of Physical Chemistry C 2009,113(19):8136-8142
    [124]S. Y. Hou, Y. C. Zou, X. C. Liu, X. D. Yu, B. Liu, X. J. Sun and Y. Xing, CaF2 and CaF2:Ln3+(Ln=Er, Nd, Yb) hierarchical nanoflowers:hydrothermal synthesis and luminescent properties[J] CrystEngComm,2011,13:835-840
    [125]F. He, N. Niu, L. Wang, J. Xu, Y. Wang, G. X. Yang, S. L. Gai and P. P. Yang, Influence of surfactants on the morphology, upconversion emission, and magnetic properties of β-NaGdF4:Yb3+,Ln3+(Ln= Er, Tm, Ho)[J]. Dalton Transactions,2013,42:10019-10028
    [126]郑代顺,钱可元,功率型白光LED研究进展[J],2006,3:1-7
    [127]S. Wang, R.P.Deng, H. L. Guo, S. Y. Song, F. Cao, X. Y. Li, S. Q. Su and H. J. Zhang, Lanthanide doped Y6O5F8/YF3 microcrystals:phase-tunable synthesis and bright white upconversion photoluminescence properties[J] Dalton Transactions,2010,39: 9153-9158
    [128]Z. G. Xia, W. Zhou, H. Y. Du, J. Y. Sun, Synthesis and spectral analysis of Yb3+/Tm3+/Ho3+-doped Na0.5Gd0.5WO4 phosphor to achieve white upconversion luminescence[J]. Materials Research Bulletin,2010,45:1199-1202
    [129]L. W. Yang, H. L. Han, Y. Y. Zhang and J. X. Zhong, White Emission by Frequency Up-Conversion in Yb3+-Ho3+-Tm3+ Triply Doped Hexagonal NaYF4 Nanorods[J]. The Journal of Physical Chemistry C,2009,113 (44):18995-18999
    [130]J. Ueda, S. Tanabe, Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics [J]. Journal of Applied Physics,2009,106:043101
    [131]B. M. van der Ende, L. Aarts and A. Meijerink, Near-Infrared Quantum Cutting for Photovoltaics[J]. Advanced Materials,2009,21(30):3073-3077
    [132]J. J. Eilers, D. Biner, J.T. Van Wijngaarden, K. Kramer, H. U. Gudel, A. Meijerink, Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+couple in Cs3Y2Br9[J]. Applied Physics Letters,2010,96(15):151106 (1-3)
    [133]P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+[J]. Physical Review B,2005,71,014119
    [134]B. M. van der Ende. L. Aarts, and A. Meijerink, Lanthanide ions as spectral converters for solar cells[J]. Physical Chemistry Chemical Physics,2009,11:11081-11095
    [135]L. Aarts, B. van der Ende, M. F. Reid and A. Meijerink, Downconversion for Solar Cells in YF3:Pr3+, Yb3+[J]. Spectroscopy Letters,2010,43(5):373-381
    [136]B.S. Richards, Luminescent layers for enhanced silicon solar cell performance: Down-conversion[J]. Solar Energy Materials and Solar Cells,2006,90(9),23:1189-1207
    [137]S. Ye, B. Zhu, J. X. Chen, J. Luo, J. R. Qiu, Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals[J]. Applied Physics Letters,2008, 92(14):141112(1-3)
    [138]Z. J. Fang, R. P. Cao, F. T. Zhang, Z. J. Ma, G. P. Dong and J. R. Qiu, Efficient spectral conversion from visible to near-infrared in transparent glass ceramics containing Ce"+-Yb+ codoped Y3Al5O12 nanocrystals[J]. Journal of Materials Chemistry C,2014,2:2204-2211
    [139]J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, Z. J. Ma and J. R. Qiu, Broadband spectral modification from visible light to near-infrared radiation using Ce3+-Er3+ codoped yttrium aluminium garnet[J]. Physical Chemistry Chemical Physics,2010,12:13759-13762
    [140]W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo and X. Y. Chen, Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors[J]. Physical Chemistry Chemical Physics,2012,14:6974-6980
    [141]D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Near-infrared quantum cutting in transparent nanostructured glass ceramics[J]. Optics Letters,2008,33(16):1884-1886
    [142]H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, Near-infrared quantum cutting in Ho3+/Yb3+codoped nanostructured glass ceramic[J]. Optics Letters,2011,36(6):876-878
    [143]D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan and Y. S. Wang, Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple[J]. Optics Letters,2010,35(2):220-222
    [144]X. Y. Huang, X. H. Ji and Q. Y. Zhang, Broadband Downconversion of Ultraviolet Light to Near-Infrared Emission in Bi3+-Yb3+-Codoped Y2O3 Phosphors[J]. Journal of the American Ceramic Society,2011,94(3):833-837
    [145]Q. Y. Zhang, C. H. Yang, Z. H. Jiang, X.H. Ji, Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors[J]. Applied Physics Letters,2007, 90(6):061914(1-3)
    [146]K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, and M. Yin, Efficient near-infrared quantum cutting in NaYF4:Ho+, Yb3+ for solar photovoltaics[J]. Optics Express,2011, 19(3):1749-1754
    [147]X. T. Wei, S. Huang, Y. H. Chen, C. X. Guo, M. Yin and W. Xu, Energy transfer mechanisms in Yb3+ doped YVO4 near-infrared downconversion phosphor[J]. Journal of Applied Physics,2010,107:103107(1-5)
    [148]L. C. Xie, Y. H. Wang, H. J. Zhang, Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer[J]. Applied Physics Letters,2009,94(6):061905(1-3)
    [149]J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple[J]. Physical Review B, 2010,81:155112
    [150]J. Y. Sun, Y. N. Sun, C. Cao, Z. G. Xia, H. Y. Du, Near-infrared luminescence and quantum cutting mechanism in CaWO4:Nd3+, Yb3+[J]. Applied Physics B,2013,111(3):367-371
    [151]S. Xu, W. Xu, B. Dong, X. Bai and H. W. Song, Downconversion from visible to near infrared through multi-wavelength excitation in Er3+/Yb+ co-doped NaYF4 nanocrystals[J]. Journal of Applied Physics,20111,10:113113
    [152]D. C. Yu, X. Y. Huang, S. Ye, Q. Y. Zhang, Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+[J]. Journal of Alloys and Compounds,2011, 509(41):9919-9923
    [1]J. Lin, Q. Su, H. J. Zhang, S. B. Wang, Crystal structure dependence of the luminescence of rare earth ions (Ce3+,Tb3+,Sm3+) in Y2SiO5[J]. Materials Research Bulletin,1996,31(2): 189-196
    [2]J. Lin, Q. Su, S. B. Wang and H. J. Zhang, Influence of crystal structure on the luminescence properties of bismuth(Ⅲ), europium(Ⅲ) and dysprosium(Ⅲ) in Y2SiO5[J]. Journal of Materials Chemistry,1996,6:265-269
    [3]J. F. Li, C. L. Sun, X. L. Wang, Y. N. Yu, H. G. Yang, C. H. Hu, Z. K. Jiang, IR-to-blue and red wavelength upconversion in Pr3+:Y2SiO5 crystals[J]. Physica B:Condensed Matter,2007, 398(1):144-147
    [4]郑会龙,曹望和,Er3+单掺与Er3+/Yb3+共掺Y2SiO5的上转换发光[J].2008,39(6):883-888
    [5]李磊,Er3+及Er3+/Yb3掺杂钽铌酸钾锂晶体生长和光谱性能[博士学位论文],哈尔滨:哈尔滨工业大学,2011
    [6]L. N. Guo, Y. H. Wang, J. Zhang, P. Y. Dong, Bright White Up-Conversion Emission from Ho3+/Yb3+/Tm3+Tri-Doped Y2SiO5 Phosphors[J]. Journal of The Electrochemical Society, 2011,158 (7):J225-J229
    [7]F. Vetrone, V. Mahalingam and J. A. Capobianco, Near-Infrared-to-Blue Upconversion in Colloidal BaYF5:Tm3+,Yb3+ Nanocrystals[J]. Chemistry of Materials,2009,21 (9):1847-1851
    [8]R. Naccache, F. Vetrone, V. Mahalingam, L. A. Cuccia and J. A. Capobianco, Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles[J]. Chemistry of Materials,2009,21 (4):717-723
    [9]M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Physical Review B,2000,61(5):3337-3346
    [10]Jun Yang and Jun Lin, Sol-Gel Synthesis of Nanocrystalline Yb3+/Ho3+-Doped Lu2O3 as an Efficient Green Phosphor[J]. Journal of The Electrochemical Society,2010 157(12): K273-K278
    [11]Ivan Moreno and Ulises Contreras, Color distribution from multicolor LED arrays[J]. Optics Express,2007,15(6):3607-3618
    [1]F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews,2009,38:976-989
    [2]S. W. Li, Z. Y. Hou, Z. Y. Cheng, H. Z. Lian, P. A. Ma, C. X. Li and J. Lin, Enhanced near-infrared quantum cutting luminescence in 1,2,4,5-benzenetetracarboxylic acid/NaYF4:Tb3+, Yb3+ hybrid nanoparticles[J]. RSC Advance,2013,3:5491-5497
    [3]X. P. Chen, X. Y. Huang, Q. Y. Zhang, Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+, Yb3+ phosphor[J]. Journal of Applied Physics,2009,106(6):063518(1-4)
    [4]K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, and M. Yin, Efficient near-infrared quantum cutting in NaYF4:Ho3+,Yb3+ for solar photovoltaics[J]. Optics Express,2011,19(3): 1749-1754
    [5]L. Aarts, B. M. van der Ende and A. Meijerink, Downconversion for solar cells in NaYF4:Er,Yb[J]. Journal of Applied Physics,2009,106:023522 (1-6)
    [6]L. W. Yang, Y. Y. Zhang, J. J. Li, Y. Li, J. X. Zhong and P. K. Chu, Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals[J]. Nanoscale,2010,2:2805-2810
    [7]R. N. Hua, J. H. Niu, B. J. Chen, M. T. Li, T. Z. Yu and W. L. Li, Visible quantum cutting in GdF3:Eu3+ nanocrystals via downconversion [J]. Nanotechnoloy,2006,17(6):1642-1645
    [8]W. Y. Yin, L. N. Zhao, L. J. Zhou, Z. J. Gu, X. X. Liu, G. Tian, S. Jin, L. Yan, W. L. Ren, G. M. Xing and Y. L. Zhao, Enhanced Red Emission from GdF3:Yb3+,Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging[J]. Chemistry-A European Journal,2012,18(30):9239-9245
    [9]X. T. Zhang, T. Hayakawa, M. Nogami, Y. Ishikawa, Selective synthesis and luminescence properties of nanocrystalline GdF3:Eu3+ with hexagonal and orthorhombic structures[J]. Journal of Nanomaterials,2010,2010:1-7
    [10]H. Q. Wang, T. Nann, Monodisperse upconversion GdF3:Yb,Er rhombi by microwave-assisted synthesis[J]. Nanoscale Research Letters,2011,6:267(1-5)
    [11]Y. Tian, J. Tian, X. Li, B. B. Yu and T. Shi, Facile synthesis of ultrasmall GdF3 nanowiresvia an oriented attachment growth and their luminescence properties[J]. Chemical Communications,2011,47:2847-2849
    [12]B. Fan, C. Chlique, O. M. Conanec, X. H. Zhang, and X. P. Fan, Near-Infrared Quantum Cutting Material Er3+/Yb3+Doped La2O2S with an External Quantum Yield Higher than 100%[J]. The Journal of Physical Chemistry C,2012,116 (21):11652-11657
    [13]D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan, and Y. S.Wang, Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple[J]. Optics Letters,2010,35(2):220-222
    [14]H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic[J]. Optics Letters,2011,36(6):876-878
    [15]D.C. Yu, X.Y. Huang, S. Ye, Q.Y. Zhang, Efficient first-order resonant near-infrared quantum cutting in β-NaYF4:Ho3+,Yb3+[J]. Journal of Alloys and Compounds,2011,509(41):9919-9923
    [16]Q. Y. Zhang, G. F. Yang, Z. H. Jiang, Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm)[J]. Applied Physics Letters,2007,91(5): 051903(1-3)
    [17]P. Z. Yang, P. Z. Deng, Z. W. Yin, Concentration quenching in Yb:YAG[J]. Journal of Luminescence,2002,97(1):51-54
    [18]M. P. Zheng, M. Y. Gu, Y. P. Jin, G. L. Jin, Preparation, structure and properties of TiO2-PVP hybrid films[J]. Materials Science and Engineering:B,2000 77(1):55-59
    [19]Y. W. Wang, B. H. Hong, and K. S. Kim, Size Control of Semimetal Bismuth Nanoparticles and the UV-Visible and IR Absorption Spectra[J]. The Journal of Physical Chemistry B, 2005,109 (15):7067-7072
    [20]L. N. Guo, Y. H. Wang, W. Zeng, L. Zhao and L. L. Han, Band structure and near infrared quantum cutting investigation of GdF3:Yb3+, Ln3+(Ln=Ho, Tm, Er, Pr, Tb) nanoparticles[J]. Physical Chemistry Chemical Physics,2013,15:14295-14302
    [21]F. Vetrone, V. Mahalingam and J. A. Capobianco, Near-lnfrared-to-Blue Upconversion in Colloidal BaYF5:Tm3+, Yb3+ Nanocrystals[J]. Chemistry of Materials,2009,21 (9):1847-1851
    [22]C. M. Zhang, P. A. Ma, C. X. Li, G. G. Li, S. S. Huang, D. M. Yang, M. M. Shang, X. J. Kang and J. Lin, Controllable and white upconversion luminescence in BaYF5:Ln3+(Ln= Yb, Er, Tm) nanocrystals[J]. Journal of Materials Chemistry,2011,21:717-723
    [23]J. Y. Sun, J. B. Xian, H. Y. Du, Hydrothermal synthesis of BaYF5:Yb3+/Er3+ upconversion luminescence submicrospheres by a surfactant-free aqueous solution route[J]. Journal of Physics and Chemistry of Solids 2011,72(3):207-213
    [24]G. F. Wang, Q. Peng and Y. D. Li, Synthesis and upconversion luminescence of BaY2F8:Yb3+/Er3+ nanobelts[J]. Chemical Communications,2010,46:7528-7529
    [25]L. N. Guo, Y. Z. Wang, Y. H. Wang, J. Zhang and P. Y. Dong, Crystal structure and up-and down-conversion properties of Yb3+, Ho3+ codoped BaGdF5 solid-solution with different morphologies[J], CrystEngComm,2012,14:3131-3141
    [26]M. Q. Tan, Z. Q. Ye, G. L. Wang, and J. L. Yuan, Preparation and Time-Resolved Fluorometric Application of Luminescent Europium Nanoparticles[J]. Chemistry of Materials, 2004,16 (12):2494-2498
    [27]D. Li, C. R. Ding, G. Song, S. Z. Lu, Z. Zhang, Y. N. Shi, H. Shen, Y. L. Zhang, H. Q. Ouyang and H. Wang, Controlling the Morphology of Erbium-Doped Yttrium Fluoride Using Acids as Surface Modifiers:Employing Adsorbed Chlorine Ions to Inhibit the Quenching of Upconversion Fluorescence[J] The Journal of Physical Chemistry C,2010,114(49): 21378-21384
    [28]L. Xu, Y. Su, Y. Q. Chen, H. H. Xiao, L. A. Zhu, Q. T. Zhou and S. Li, Synthesis and Characterization of Indium-Doped ZnO Nanowires with Periodical Single-Twin Structures[J]. The Journal of Physical Chemistry B,2006,110(13):6637-6642
    [29]Z. H. Xu, X. J. Kang, C. X. Li, Z. Y. Hou, C. M. Zhang, D. M. Yang, G. G. Li and J. Lin, Ln3+ (Ln= Eu, Dy, Sm, and Er) Ion-Doped YVO4 Nano/Microcrystals with Multiform Morphologies:Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties[J]. Inorganic Chemistry,2010,49(14):6706-6715
    [30]D. Rautaray, A. Ahmad and M. Sastry, Biosynthesis of CaCO3 Crystals of Complex Morphology Using a Fungus and an Actinomycete[J]. Journal of the American Chemical Society,2003,125(48):14656-14657
    [31]C. X. Li, J. Yang, P. P. Yang, H. Z. Lian and J. Lin, Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln=La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies[J]. Chemistry of Materials,2008,20(13):4317-4326
    [32]C. X. Li, J. Yang, Z. W. Quan, P. P. Yang, D. Y. Kong and J. Lin, Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process:Effects of pH Values and Fluoride Sources[J] Chemistry of Materials,2007,19(20):4933-4942
    [33]L. T. Kang, H. B. Fu, X. Q. Cao, Q. Shi and J. N. Yao, Controlled Morphogenesis of Organic Polyhedral Nanocrystals from Cubes, Cubooctahedrons, to Octahedrons by Manipulating the Growth Kinetics[J]. Journal of the American Chemical Society,2011,133(6):1895-1901
    [34]J. H. Zhang, H. Y. Liu, Z. L. Wang and N. B. Ming, Synthesis of gold regular octahedra with controlled size and plasmon resonance[J] Applied Physics Letters,2007,90:163122(1-3)
    [35]D. B. Wang, Y. H. Zhou, C. X. Song and M. Q. Shao, Phase and morphology controllable synthesis of Sb2O3 microcrystals[J] Journal of Crystal Growth,2009,311(15):3948-3953
    [36]Z. X. Chen, W. B. Bu, N. Zhang and J. L. Shi, Controlled Construction of Monodisperse La2(Mo04)3:Yb,Tm Microarchitectures with Upconversion Luminescent Property [J] The Journal of Physical Chemistry C,2008,112(11):4378-4383
    [37]E. Nakazawa. In Phosphor Handbook; Shionoya, S., Yen, W. M., ed.; CRC Press:Boca Raton, FL,1999; p 102
    [38]D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira and L. A. O. Nunes, Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses[J]. Journal of Applied Physics,2001,90(7): 3308-3313
    [39]X. M. Liu, C. K. Lin and J. Lin, White light emission from Eu3+ in Caln2O4 host lattices [J]. Applied Physics Letters,2007,90:081904(1-3)
    [40]S. A. Miller, H. E. Rast and H. H. Caspers, Lattice Vibrations of LiYF4[J]. The Journal of Chemical Physics,1970,52(8):4172-4175
    [41]J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Kramer and H. U. Gudel, Upconversion spectroscopy and properties of NaYF4 doped with, and/or Yb3+[J]. Journal of Luminescence,2006,117(1):1-12.
    [42]A. Balandin, K. L. Wang, N. Kouklin and S. Bandyopadhyay, Raman spectroscopy of electrochemically self-assembled CdS quantum dots[J]. Applied Physics Letters,2000,76(2): 137-139
    [43]H. M. Cheng, K. F. Lin, H. C. Hsu and W. F. Hsieh, Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots[J]. Applied Physics Letters,2006, 88:261909
    [44]N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. Scott Prosser, and Frank C. J. M. van Veggel, Size-Tunable, Ultrasmall NaGdF4 Nanoparticles:Insights into Their T1 MRI Contrast Enhancement[J]. Chemistry of Materials,2011,23 (16):3714-3722
    [45]Z. L. Wang, J. H. Hao and H. L. W. Chan, Down-and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb3+,Er3+ submicron disks assembled from primary nanocrystals[J]. Journal of Materials Chemistry,2010,20: 3178-3185
    [46]Y. S. Liu, D. T. Tu, H. M. Zhu, R. F. Li, W. Q. Luo and X. Y. Chen, A Strategy to Achieve Efficient Dual-Mode Luminescence of Eu3+ in Lanthanides Doped Multifunctional NaGdF4 Nanocrystals[J]. Advanced Materials,2010,22(30):3266-3271
    [47]G. Z. Ren, S. J. Zeng, and J. H. Hao, Tunable Multicolor Upconversion Emissions and Paramagnetic Property of Monodispersed Bifunctional Lanthanide-Doped NaGdF4 Nanorods[J]. The Journal of Physical Chemistry C,2011,115 (41):20141-20147
    [48]H. T. Wong, H. L.W. Chan, J. H. Hao, Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles[J]. Applied Physics Letters,2009,95(2): 022512(1-3)
    [49]C. C. Huang, T. Y. Liu, C. H. Su, Y. W. Lo, J. H. Chen and C. S. Yeh, Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles[J]. Chemistry of Materials,2008,20 (12): 3840-3848
    [50]P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+[J]. Physical Review B,2005,71:014119-11
    [51]H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu, Optical transitions and frequency upconversion of Er3+ ions in Na2O-Ca3Al2Ge3O12 glasses[J]. JOSA B,2001,18(5):602-609
    [52]F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan, and J. A. Capobianco, The Active-Core/Active-Shell Approach:A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles[J]. Advanced Functional Materials,2009, 19:2924-2929
    [53]F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini,980 nm excited upconversion in an Er-doped ZnO-TeO2 glass[J]. Applied Physics Letters,2002,80(10):1752-1754
    [54]G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li and Y. L. Zhao, Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery[J]. Advanced Materials,2012,24(9): 1226-1231
    [55]J. C. Boyer, M. P. Manseau, J. I. Murray and F. C. J. M. van Veggel, Surface Modification of Upconverting NaYF4 Nanoparticles with PEG-Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window[J]. Langmuir,2010,26 (2):1157-1164
    [56]B. J Jin, S Im, S.Y Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition [J]. Thin Solid Films,2000,366(1-2):107-110
    [57]F. Tao, Z. J. Wang, L. Z. Yao, W. L. Cai and X. G. Li, Shape-Controlled Synthesis and Characterization of YF3 Truncated Octahedral Nanocrystals[J]. Crystal Growth & Design, 2007,7(5):854-858
    [58]G. C. Xi, K. Xiong, Q. B. Zhao, R. Zhang, H. B. Zhang and Y. T. Qian, Nucleation-Dissolution-Recrystallization:A New Growth Mechanism for t-Selenium Nanotubes[J]. Crystal Growth & Design,2006,6(2):577-582
    [59]Z. J. Luo, H. M. Li, H. M. Shu, K. Wang, J. X. Xia and Y. S. Yan, Synthesis of BaMoO4 Nestlike Nanostructures Under a New Growth Mechanism[J]. Crystal Growth & Design, 2008,8(7):2275-2281
    [60]F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong and X. G. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature,2010,463:1061-1065
    [61]F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini and M. Bettinelli, Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+[J]. Chemistry of Materials,2003,15(14):2737-2743
    [1]Z. L. Wang, J. H. Hao and H, L. W. Chan, Down-and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4:Yb3+,Er3+ submicron disks assembled from primary nanocrystals[J]. Journal of Materials Chemistry,2010,20:3178-3185
    [2]Z. Q. Li and Y. Zhang, Facile synthesis of lanthanide nanoparticles with paramagnetic, down-and up-conversion properties[J]. Nanoscale,2010,2:1240-1243
    [3]E. W. Barrera, M. C. Pujol, F. Diaz, S. B.Choi, F. Rotermund, K. H. Park, M.S.Jeong and C. Cascales, Emission properties of hydrothermal Yb3+,Er3+ and Yb3+,Tm3+-codoped Lu2O3 nanorods:upconversion, cathodoluminescence and assessment of waveguide behavior[J]. Nanotechnology,2011,22(7):075205
    [4]W. Y. Yin, L. N. Zhao, L. J. Zhou, Z. J. Gu, X. X. Liu, G. Tian, S. Jin, L. Yan, W. L. Ren, G. M. Xing and Y. L. Zhao, Enhanced Red Emission from GdF3:Yb+,Er3+ Upconversion Nanocrystals by Li+ Doping and Their Application for Bioimaging[J]. Chemistry-A European Journal,2012,18:9239-9245.
    [5]J. H. Chung, S. Y. Lee, K. B. Shim, S. Y. Kweon, S. C. Ur and J. H. Ryu, Blue upconversion luminescence of CaMo04:Li+/Yb3+/Tm3+ phosphors prepared by complex citrate method [J]. Applied Physics A,2012,108:369-373.
    [6]Y. F. Bai, Y. X. Wang, K. Yang, X. R. Zhang, Y. L. Song and C. H. Wang, Enhanced upconverted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions[J]. Optics Communications,2008,281(21):5448-5452
    [7]X. X. Luo and W. H. Cao, Upconversion luminescence properties of Li+-doped ZnWO4:Yb,Er[J] Journal of Materials Research,2008,23(8):2078-2083
    [8]Y. Bai, Y. Wang, G. Peng, W. Zhang, Y. Wang, K. Yang, X. Zhang and Y. Song, Enhanced white light emission in Er/Tm/Yb/Li codoped Y2O3 nanocrystals [J]. Optics Communications, 2009,282(9):1922-1924
    [9]J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim and K. S. Suh, Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages[J]. Applied Physics Letters,2000,77(14):2162-2164
    [10]L. Tian and S. Ⅰ. Mho, Enhanced luminescence of SrTiO3:Pr3+ by incorporation of Li+ ion[J] Solid State Communications,2003,125(11-12):647-651
    [11]C. Zhang, H. Lian, D. Kong, S. Huang and J. Lin. Structural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material[J] The Journal of Physical Chemistry C,2009,113(4):1580-1588
    [12]W. Li and J. Lee, Microwave-Assisted Sol-Gel Synthesis and Photoluminescence Characterization of LaPO4:Eu3+, Li+ Nanophosphors[J]. The Journal of Physical Chemistry C,2008,112(31):11679-11684
    [13]F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu and D. R. Yuan, Structure Evaluation and Highly Enhanced Luminescence of Dy3+-Doped ZnO Nanocrystals by Li+ Doping via Combustion Method[J]. Langmuir,2004,20(9):3528-3531
    [14]J. Wang, H. S. Wang, L. S. Fu, F. Y. Liu, H. J. Zhang, Study on highly ordered luminescent Langmuir-Blodgett films of heteropolytungstate complexes containing lanthanide[J]. Thin Solid Films,2002,415(1-2):242-247
    [15]J. L. Zhuang, L. F. Liang, H. H. Y.Sung, X. F. Yang, M. M. Wu, I. D. Williams, S. H. Feng and Q. Su, Controlled Hydrothermal Growth and Up-Conversion Emission of NaLnF4 (Ln= Y, Dy-Yb)[J]. Inorganic Chemistry,2007,46(13):5404-5410
    [16]J. A. Capobianco, F. Vetrone, T. D'Alesio, G. Tessari, A. Speghini and M. Bettinelli, Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis[J]. Physical Chemistry Chemical Physics,2000,2:3203-3207
    [17]D. M. Yang, C. X. Li, G. G. Li, M. M. Shang, X. J. Kang and J. Lin, Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification[J]. Journal of Materials Chemistry,2011,21: 5923-5927
    [18]C. H. Liang, Y. C. Chang and Y. S. Chang, Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors[J]. Applied Physics Letters,2008,93: 211902(1-3).
    [19]C. Renero-Lecuna, R. Martin-Rodriguez, R. Valiente, J. Gonz'alez, F. Rodriguez, K. W. Kramer and H. U. G udel, Origin of the High Upconversion Green Luminescence Efficiency in p-NaYF4:2%Er3+,20%Yb3+[J] Chemistry of Materials,2011,23(15):3442-3448
    [20]K. H. Yang, T. Y. Chen, N. J. Ho and H. Y. Lu, In-Gap States in Wide-Band-Gap SrTiO3 Analyzed by Cathodoluminescence[J]. Journal of the American Ceramic Society,2011, 94(6):1811-1816
    [21]R. Khan and T. J. Kim, Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts[J]. Journal of Hazardous Materials,2009, 163(2-3):1179-1184
    [22]G. Li, C. Li, C. Zhang, Z. Cheng, Z. Quan, C. Peng and J. Lin, Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays[J]. Journal of Materials Chemistry,2009,19:8936-8943
    [23]E. Beurer, J. Grimm, P. Gerner and H.U.G udel, Absorption, Light Emission, and Upconversion Properties of Tm2+-Doped CsCal3 and RbCal3[J]. Inorganic Chemistry,2006, 45(24):9901-9906
    [24]D. S. Kim, R. Ji, H. J. Fan, F. Bertram, R. Scholz, A. Dadgar, K. Nielsch, A. Krost, J. Christen, U. Gosele and M. Zacharias, Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays[J]. Small,2007,3(1):76-80
    [25]T. Y. Zhai, X. S. Fang, Y. B ando, B. Dierre, B. D. Liu, H. B. Zeng, X. J. Xu, Y.Huang, X. L. Yuan, T. Sekiguchi and D. Golberg, Characterization, Cathodoluminescence, and Field Emission Properties of Morphology-Tunable CdS Micro/Nanostructures[J]. Advanced Functional Materials,2009,19:2423-2430
    [26]Z. M. Park, D. Y. Jeon, Y. W. Jin, S. N. Cha and J. M. Kim, Degradation behavior of low-voltage cathodoluminescence of a ZnS:Ag,CI phosphor screen under a panel sealing environment [J]. Journal of Vacuum Science & Technology B,2003,21:527
    [27]S. Wang, S. Q. Su, S. Y. Song, R. P. Deng and H. J. Zhang, Raisin-like rare earth doped gadolinium fluoride nanocrystals:microwave synthesis and magnetic and upconversion luminescent properties[J]. CrystEngComm,2012,14:4266-4269
    [28]Y. P. Li, J. H. Zhang, Y. S. Luo, X. Zhang, Z. D. Hao and X. J. Wang, Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals[J]. Journal of Materials Chemistry,2011,21:2895-2900
    [29]S. V. Eliseeva and J.-C. G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences [J]. Chemical Society Reviews,2010,39:189-227
    [30]T. Grzyb, A. Gruszeczka, R. J. Wiglusz and S. Lis, The effects of down-and up-conversion on dual-mode green luminescence from Yb3+-and Tb3+-doped LaPO4 nanocrystals[J]. Journal of Materials Chemistry C,2013,1:5410-5418
    [31]K. Woo, J. Hong, J. P. Ahn, J. K. Park and K. J. Kim, Coordinatively Induced Length Control and Photoluminescence of W18O49 Nanorods [J]. Inorganic Chemistry,2005,44(20): 7171-7174
    [32]G. F. Wang, Q. Peng and Y. D. Li, Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+ Nanocrystals [J]. Journal of the American Chemical Society,2009,131(40): 14200-14201
    [33]C. X. Li, Z. Y. Hou, C. M. Zhang, P. P. Yang,G. G. Li, Z. H. Xu, Y. Fan and J. Lin, Controlled Synthesis of Ln3+(Ln= Tb, Eu, Dy) and V5+ Ion-Doped YPO4 Nano/Microstructures with Tunable Luminescent Colors[J]. Chemistry of Materials,2009,21(19):4598-4607
    [34]L. Xu, X. Y. Yang, Z. Zhai, X. Chao, Z. H. Zhang and W. H. Hou, EDTA-mediated hydrothermal synthesis of NaEu(MoO4)2 microrugbies with tunable size and enhanced luminescence properties[J] CrystEngComm,2011,13:4921-4929
    [35]C. X. Li, Z. W. Quan, P. P. Yang, S. S. Huang, H. Z.Lian and J. Lin, Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process[J]. The Journal of Physical Chemistry C,2008, 112(35):13395-13404
    [36]Q. Zhang, S. J. Liu and S. H. Yu, Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future[J]. Journal of Materials Chemistry,2009,19:191-207
    [37]Z. M. Chen, Q. Zhao, G. J. Feng, Z. R. Geng and Z. L. Wang, Self-assembled hollow rare earth fluoride alloyed architectures with controlled crystal phase and morphology[J. CrystEngComm,2012,14:7764-7770
    [38]A. Huignard, T. Gacoin and J. P. Boilot, Synthesis and Luminescence Properties of Colloidal YVO4:Eu Phosphors[J]. Chemistry of Materials,2000,12(4):1090-1094
    [39]P. Dai, X. Zhang, L. Bian, S. Lu and Y. Liu, Color tuning of (K1-x,Nax)SrPO4:0.005Eu2+ yTb3+ blue-emitting phosphors via crystal field modulation and energy transfer[J]. Journal of Materials Chemistry C,2013,1:4570-4576
    [40]E. Pavitra, G. Seeta, R. Raju, Y. H. Ko and J. S. Yu, A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors[J]. Physical Chemistry Chemical Physics,2012,14:11296-11307
    [41]A. N. Yerpude and S. J. Dhoble, Synthesis and photoluminescence properties of Dy3+, Sm3+ activated Sr5Si04Cl6 phosphor[J]. Journal of Luminescence,2012,132(11):2975-2978
    [42]Y. C. Charg, C. H. Liang, S. A. Yan and Y. S. Chang, Synthesis and Photoluminescence Characteristics of High Color Purity and Brightness Li3Ba2Gd3(MoO4)s:Eu3+ Red Phosphors[J]. The Journal of Physical Chemistry C,2010,114(8):3645-3652
    [43]G. Blasse and B. C. Grabmaier, Luminescence Materials, Springer-Verlag, Berlin and Heidelberg,1994, ch.4-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700