用户名: 密码: 验证码:
还原CO_2制甲酸甲酯的光催化作用及反应机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,大量使用化石燃料,大气中CO2浓度持续增加,CO2导致的环境问题引起人们的高度重视。如何减少大气中CO2含量、缓解“温室效应”已成为世界关注的热点。光催化还原CO2具有反应条件温和、对环境友好和利用太阳能等优点,利用CO2合成高附加值的化学品或燃料,可以实现CO2—化学品、燃料—CO2良性循环。本文研究在甲醇中光催化还原CO2制备甲酸甲酯,并利用在线衰减全反射傅里叶变换红外光谱(ATR-FTIR)法对其反应过程机理进行了研究,主要内容如下:
     第一,采用油酸作为表面活性剂,利用溶剂热合成法制备SrTiO3纳米颗粒,通过光催化还原的方法在SrTiO3表面负载Ag纳米颗粒,用于CO2在甲醇中光催化还原制备甲酸甲酯。研究了SrTiO3不同制备方式对光催化活性的影响,油酸作为表面活性剂溶剂热合成法制备的SrTiO3活性较高,油酸可以抑制SrTiO3纳米颗粒团聚,促进其分散。Ag颗粒负载可以扩展复合光催化剂的光谱响应范围,增加光能吸收和利用;可以作为电子阱促进电子-空穴分离,从而提高光催化活性。Ag负载量过高时Ag纳米颗粒长大并发生团聚,且催化剂裸露表面减少,影响光催化活性。
     第二,采用AgX(X=Cl,Br,I)作为光催化剂在甲醇中光催化还原CO2制备甲酸甲酯,并利用在线ATR-FTIR光谱法研究其反应过程。采用沉淀法制备AgCl、AgBr和AgI光催化剂,经重复利用实验和对反应前后催化剂进行XRD表征,催化剂活性比较稳定。跟踪反应过程溶液中CO2浓度变化,峰强度减少2.2%,CO2参与光催化反应;反应的中间产物有甲酸、甲醛,CO2被还原成甲酸,甲醇被氧化成甲醛,甲酸与甲醇发生酯化反应生成甲酸甲酯,甲醛二聚生成甲酸甲酯,甲酸甲酯主要通过酯化反应生成。
     第三,研究ZrO2纳米片制备及其在甲醇中光催化还原CO2制备甲酸甲酯。利用二乙烯三胺(DETA)作为溶剂制备的ZrO2(DETA)是纳米片组成的层状结构,焙烧后除去DETA并提高ZrO2结晶度,层状结构形貌保持不变,层间隙扩大。利用超声法,在异丙醇溶剂中进行层状ZrO2剥离,得到ZrO2纳米片。结晶度提高,有利于增加光催化活性;纳米片形貌结构有利于增大接受光照的面积,有利于晶体内部产生的电子和空穴向表面转移和促进电荷分离,从而提高光催化活性。
     第四,研究AgCl-ZrO2纳米片复合光催化剂的制备及其在甲醇中光催化还原CO2制备甲酸甲酯。制备层状ZrO2,利用超声法进行层状ZrO2剥离,得到ZrO2纳米片。在ZrO2纳米片上负载AgCl纳米颗粒,制备AgCl-ZrO2纳米片复合光催化剂。AgCl纳米颗粒负载在ZrO2纳米片表面且分散比较均匀,当AgCl负载量为40wt%时活性最高。AgCl纳米颗粒与ZrO2纳米片复合形成复合光催化剂,可以促进电子-空穴分离,提高光催化活性;AgCl负载量过高时纳米颗粒发生团聚影响光催化活性。
With the development of the world economy the rapid increase in the level ofcarbon dioxide is a matter of great concern. The atmospheric carbon dioxideconcentration will continue to increase due to the fossil fuel consumption. How toreduce CO2in the atmosphere to ease the “greenhouse effect” has become the focus ofthe world attention. A possible avenue for the sustainable development is to use thephotocatalysts for conversing CO2into hydrocarbons with the help of solar energy.Photocatalytic reduction of CO2is under mild reaction conditions, environmentalfriendly and can use solar energy. The use of CO2to synthesis high-value-addedchemicals or fuel can achieve the CO2-chemicals, fuel-CO2circle. In this paper,photocatalytic reduction of CO2in methanol to prepare methyl formate and theirmechanistic studies by on-line ATR-FTIR spectroscopy was investigated. The maincontents were as follows:
     Firstly, SrTiO3were synthesized by solvothermal method using oleic acid assurfactant, and Ag nanoparticles were loaded on the SrTiO3surface through thephotoreduction method. SrTiO3prepared by using oleic acid as surfactant showed thehigher activity owing to the smaller size and well dispersion. The Ag nanoparticlescan extend the spectral response from UV to visible area and increase light absorption.Ag nanoparticles can be used as electron traps for electron-hole separation, therebyenhancing the photocatalytic activity; however too much Ag loading could cause theformation of large nanoparticles and agglomeration, which was detrimental to thephotocatalysis.
     Secondly, silver halides were used for the CO2photoreduction, and on lineATR-FTIR spectroscopy was used to study the reaction process. The photocatalysts ofsliver halides were stable under repeated application since no siginificant decrease inthe photocatalytic reaction rate. The XRD patterns of the as-prepared silver halidesand silver halides used after5consecutive photocatalytic reactions showed thecatalysts were relatively stable. After6h of the reaction the CO2peak intensity wasreduced by2.2%, which indicated that CO2was consumed in the photoreaction. Theintermediates such as formic acid and formaldehyde were monitored in the solution.Formic acid was the2-electron reduction product of CO2, and formaldhyde was theprimary oxidation product of methanol. The methyl formate could be producedthrough the esterification of formic acid and methanol, dimerization of formaldehydevia Tishchenko reaction, but mainly through the esterification reaction.
     Thirdly, ZrO2nanosheets were synthesized by a two-step method and used forthe CO2photoreduction. Layered ZrO2was prepared by the solvothermal method indiethylenetriamine. After calcination DETA was removed and the crystallinity of ZrO2 was improved. The morphology of layered structure was remained and the gapbetween the layers was enlarged. Layered ZrO2was exfoliated to ZrO2nanosheets inisopropanol under ultrasonic treatment. The high degree of crystallinity helped toincrease the photocatalytic activity; ZrO2nanosheets favored for transfering electronsand holes to the surface, which enhanced the photocatalytic activity.
     Fourthly, the composite photocatalysts of AgCl-ZrO2nanosheets weresynthesized by anchoring AgCl nanocrystals on the surface of ZrO2nanosheets andused for the CO2photoreduction. The heterogeneous precipitation process ofAg+-ZrO2nanosheets suspension with chloride added dropwise was used tosynthesize AgCl-ZrO2nanosheets composites. The optimal composite with40wt%AgCl showed the higher photocatalytic activity. The enhanced photocatalytic activityinduced by the AgCl loading was attributed to the interfacial transfer ofphotogenerated electrons and holes between AgCl and ZrO2nanosheets, which leadsto effective charge separation. High AgCl loading amounts caused agglomeration,which decreased the photocatalytic activity.
引文
[1] Halmann, M.; Steinberg, M., Greenhouse gas carbon dioxide mitigation: scienceand technology. CRC:1999.
    [2] The State of Greenhouse Gases in the Atmosphere Based on Global Observationsthrough2011. WMO Greenhouse Gas Bulletin,2012,(8):19.
    [3] Haszeldine, R., Carbon Capture and Storage: How Green Can Black Be? Science2009,325(5948),1647.
    [4] Linsebigler, A.; Lu, G.; Yates, J., Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results. Chemical Reviews1995,95(3),735-758.
    [5] Graetzel, M., Photoelectrochemical solar cells. Nature2001,414,338.
    [6] Xu, Y.; Schoonen, M. A. A., The absolute energy positions of conduction andvalence bands of selected semiconducting minerals. American Mineralogist2000,85(3-4),543-556.
    [7] Bamwenda, G.; Tsubota, S.; Nakamura, T.; Haruta, M., Photoassisted hydrogenproduction from a water-ethanol solution: a comparison of activities of Au-TiO2and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry1995,89(2),177-189.
    [8] Gurunathan, K.; Maruthamuthu, P.; Sastri, M., Photocatalytic hydrogenproduction by dye-sensitized Pt/SnO2and Pt/SnO2/RuO2in aqueous methylviologen solution. International Journal of Hydrogen Energy1997,22(1),57-62.
    [9] Lee, S.; Lee, S.; Lee, H., Photocatalytic production of hydrogen from aqueoussolution containing CN-as a hole scavenger. Applied Catalysis A: General2001,207(1-2),173-181.
    [10] Wu, N.; Lee, M., Enhanced TiO2photocatalysis by Cu in hydrogen productionfrom aqueous methanol solution. International Journal of Hydrogen Energy2004,29(15),1601-1605.
    [11] Li, Y.; Lu, G.; Li, S., Photocatalytic production of hydrogen in single componentand mixture systems of electron donors and monitoring adsorption of donors by insitu infrared spectroscopy. Chemosphere2003,52(5),843-850.
    [12] Koca, A., Photocatalytic hydrogen production by direct sun light fromsulfide/sulfite solution. International Journal of Hydrogen Energy2002,27(4),363-367.
    [13] Bamwenda, G.; Arakawa, H., The photoinduced evolution of O2and H2from aWO3aqueous suspension in the presence of Ce4+/Ce3+. Solar Energy Materials andSolar Cells2001,70(1),1-14.
    [14] Abe, R.; Sayama, K.; Domen, K.; Arakawa, H., A new type of water splittingsystem composed of two different TiO2photocatalysts (anatase, rutile) and aIO3-/I-shuttle redox mediator. Chemical Physics Letters2001,344(3-4),339-344.
    [15] Koci, K.; Obalova, L.; Matejova, L.; Placha, D.; Lacny, Z.; Jirkovsky, J.; Solcova,O., Effect of TiO2particle size on the photocatalytic reduction of CO2. AppliedCatalysis B-Environmental2009,89(3-4),494-502.
    [16] Yang, H. C.; Lin, H. Y.; Chien, Y. S.; Wu, J. C. S.; Wu, H. H., MesoporousTiO2/SBA-15, and Cu/TiO2/SBA-15Composite Photocatalysts for Photoreductionof CO2to Methanol. Catalysis Letters2009,131(3-4),381-387.
    [17] Tseng, I. H.; Wu, J. C. S.; Chou, H. Y., Effects of sol-gel procedures on thephotocatalysis of Cu/TiO2in CO2photoreduction. Journal of Catalysis2004,221(2),432-440.
    [18] Tseng, I., Photoreduction of CO2using sol-gel derived titania andtitania-supported copper catalysts. Applied Catalysis B: Environmental2002,37(1),37-48.
    [19] Li, F.; Li, X., The enhancement of photodegradation efficiency using Pt-TiO2catalyst. Chemosphere2002,48(10),1103-1111.
    [20] Jin, S.; Shiraishi, F., Photocatalytic activities enhanced for decompositions oforganic compounds over metal-photodepositing titanium dioxide. ChemicalEngineering Journal2004,97(2-3),203-211.
    [21] Subramanian, V.; Wolf, E.; Kamat, P., Catalysis with TiO2/gold nanocomposites.Effect of metal particle size on the Fermi level equilibration. Journal of theAmerican Chemical Society2004,126(15),4943-4950.
    [22] Subramanian, V.; Wolf, E.; Kamat, P., Semiconductor-Metal CompositeNanostructures. To What Extent Do Metal Nanoparticles Improve thePhotocatalytic Activity of TiO2Films? J. Phys. Chem. B2001,105(46),11439-11446.
    [23] Subramanian, V.; Wolf, E.; Kamat, P., Green Emission to Probe PhotoinducedCharging Events in ZnO-Au Nanoparticles. Charge Distribution and Fermi-LevelEquilibration. J. Phys. Chem. B2003,107(30),7479-7485.
    [24] Jakob, M.; Levanon, H.; Kamat, P., Charge distribution between UV-irradiatedTiO2and gold nanoparticles: determination of shift in the Fermi level. NanoLetters2003,3(3),353-358.
    [25] Kang, M.; Han, H.; Kim, K., Enhanced photodecomposition of4-chlorophenol inaqueous solution by deposition of CdS on TiO2. Journal of Photochemistry andPhotobiology A: Chemistry1999,125(1-3),119-125.
    [26] So, W.; Kim, K.; Moon, S., Photo-production of hydrogen over the CdS-TiO2nano-composite particulate films treated with TiCl4. International Journal ofHydrogen Energy2004,29(3),229-234.
    [27] Keller, V.; Garin, F., Photocatalytic behavior of a new composite ternary system:WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides inphotocatalytic oxidation of methylethylketone in the gas phase. CatalysisCommunications2003,4(8),377-383.
    [28] Choi, W.; Termin, A.; Hoffmann, M., The role of metal ion dopants inquantum-sized TiO2: correlation between photoreactivity and charge carrierrecombination dynamics. The Journal of Physical Chemistry1994,98(51),13669-13679.
    [29] Litter, M., Heterogeneous photocatalysis: Transition metal ions in photocatalyticsystems. Applied Catalysis B: Environmental1999,23(2-3),89-114.
    [30] Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M., Investigations ofmetal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental2002,37(2),91-105.
    [31] Kamat, P. V., Meeting the clean energy demand: Nanostructure architectures forsolar energy conversion. Journal of Physical Chemistry C2007,111(7),2834-2860.
    [32] Jitputti, J.; Suzuki, Y.; Yoshikawa, S., Synthesis of TiO2nanowires and theirphotocatalytic activity for hydrogen evolution. Catalysis Communications2008,9(6),1265-1271.
    [33] Jiang, Z.; Yang, F.; Luo, N.; Chu, B. T.; Sun, D.; Shi, H.; Xiao, T.; Edwards, P. P.,Solvothermal synthesis of N-doped TiO2nanotubes for visible-light-responsivephotocatalysis. Chemical Communications2008,(47),6372-6374.
    [34] Wang, Y.; Zhang, L.; Deng, K.; Chen, X.; Zou, Z., Low temperature synthesis andphotocatalytic activity of rutile TiO2nanorod superstructures. The Journal ofPhysical Chemistry C2007,111(6),2709-2714.
    [35] Xu, T.-G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y.-F., Monomolecular-LayerBa5Ta4O15Nanosheets: Synthesis and Investigation of Photocatalytic Properties.Advanced Functional Materials2006,16(12),1599-1607.
    [36] Ida, S.; Ogata, C.; Unal, U.; Izawa, K.; Inoue, T.; Altuntasoglu, O.; Matsumoto, Y.,Preparation of a blue luminescent nanosheet derived from layered perovskiteBi2SrTa2O9. Journal of the American Chemical Society2007,129(29),8956-8957.
    [37] Carroll, E. C.; Compton, O. C.; Madsen, D.; Osterloh, F. E.; Larsen, D. S.,Ultrafast carrier dynamics in exfoliated and functionalized calcium niobatenanosheets in water and methanol. The Journal of Physical Chemistry C2008,112(7),2394-2403.
    [38] Xiang, G.; Li, T.; Zhuang, J.; Wang, X., Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties.Chemical Communications2010,46(36),6801-6803.
    [39] Ye, C.; Bando, Y.; Shen, G.; Golberg, D., Thickness-dependent photocatalyticperformance of ZnO nanoplatelets. The Journal of Physical Chemistry B2006,110(31),15146-15151.
    [40] Zhang, C.; Zhu, Y., Synthesis of square Bi2WO6nanoplates as high-activityvisible-light-driven photocatalysts. Chemistry of Materials2005,17(13),3537-3545.
    [41] Jitputti, J.; Rattanavoravipa, T.; Chuangchote, S.; Pavasupree, S.; Suzuki, Y.;Yoshikawa, S., Low temperature hydrothermal synthesis of monodispersedflower-like titanate nanosheets. Catalysis Communications2009,10(4),378-382.
    [42] Song, X.; Gao, L., Facile synthesis and hierarchical assembly of hollow nickeloxide architectures bearing enhanced photocatalytic properties. The Journal ofPhysical Chemistry C2008,112(39),15299-15305.
    [43] Lu, F.; Cai, W.; Zhang, Y., ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance.Advanced Functional Materials2008,18(7),1047-1056.
    [44] Kale, B. B.; Baeg, J.; Lee, S. M.; Chang, H.; Moon, S.-J.; Lee, C. W., CdIn2S4Nanotubes and "Marigold" Nanostructures: A Visible-Light Photocatalyst.Advanced Functional Materials2006,16(10),1349-1354.
    [45] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reductionof carbon dioxide in aqueous suspensions of semiconductor powders. Nature1979,277,637-638.
    [46] Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide onp-type gallium phosphide in liquid junction solar cells.1978.
    [47] Subrahmanyam, M.; Kaneco, S.; Alonso-Vante, N., A screening for the photoreduction of carbon dioxide supported on metal oxide catalysts for C1-C3selectivity. Applied Catalysis B: Environmental1999,23(2-3),169-174.
    [48] Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T., Photocatalytic Reduction ofCO2with H2O on Ti-β Zeolite Photocatalysts: Effect of the Hydrophobic andHydrophilic Properties. J. Phys. Chem. B2001,105(35),8350-8355.
    [49] Liu, B.; Torimoto, T.; Yoneyama, H., Photocatalytic reduction of CO2usingsurface-modified CdS photocatalysts in organic solvents. Journal ofPhotochemistry and Photobiology A: Chemistry1998,113(1),93-97.
    [50] Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T., Visible-Light-InducedSelective CO2Reduction Utilizing a Ruthenium Complex Electrocatalyst Linkedto a p-Type Nitrogen-Doped Ta2O5Semiconductor. AngewandteChemie-International Edition2010,49(30),5101-5105.
    [51] Yoneyama, H., Photoreduction of carbon dioxide on quantized semiconductornanoparticles in solution. Catalysis Today1997,39(3),169-175.
    [52] Kaneco, S.; Shimizu, Y.; Ohta, K.; Mizuno, T., Photocatalytic reduction of highpressure carbon dioxide using TiO2powders with a positive hole scavenger.Journal of Photochemistry and Photobiology A: Chemistry1998,115(3),223-226.
    [53] Aliwi, S.; Al-Jubori, K., Photoreduction of CO2by metal sulphide semiconductorsin presence of H2S. Solar Energy Materials1989,18(3-4),223-229.
    [54] Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Photoreduction of carbondioxide with hydrogen over ZrO2. Chemical Communications1997,1997(9),841-842.
    [55] Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Photoreduction of CO2with H2over ZrO2. A study on interaction of hydrogen with photoexcited CO2. PhysicalChemistry Chemical Physics2000,2(11),2635-2639.
    [56] Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Reaction mechanism in thephotoreduction of CO2with CH4over ZrO2. Physical Chemistry Chemical Physics2000,2(22),5302-5307.
    [57] Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.;Gray, K. A., Synthesizing mixed-phase TiO2nanocomposites using ahydrothermal method for photo-oxidation and photoreduction applications.Journal of Catalysis2008,253(1),105-110.
    [58] Xia, X. H.; Jia, Z. H.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L., Preparation ofmulti-walled carbon nanotube supported TiO2and its photocatalytic activity in thereduction of CO2with H2O. Carbon2007,45(4),717-721.
    [59] Tan, S. S.; Zou, L.; Hu, E., Photosynthesis of hydrogen and methane as keycomponents for clean energy system. Science and Technology of AdvancedMaterials2007,8(1-2),89-92.
    [60] Chen, L.; Graham, M. E.; Li, G. H.; Gentner, D. R.; Dimitrijevic, N. M.; Gray, K.A., Photoreduction of CO2by TiO2nanocomposites synthesized through reactivedirect current magnetron sputter deposition. Thin Solid Films2009,517(19),5641-5645.
    [61] Slamet, H.; Purnama, E.; Riyani, K.; Gunlazuardi, J., Effect of Copper Species ina Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-dopedTitania Catalysts. World Applied Sciences Journal2009,6(1),112-122.
    [62] Wang, C.; Thompson, R.; Baltrus, J.; Matranga, C., Visible Light Photoreductionof CO2Using CdSe/Pt/TiO2Heterostructured Catalysts. The Journal of PhysicalChemistry Letters2010,1,48-53.
    [63] Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A., High-Rate SolarPhotocatalytic Conversion of CO2and Water Vapor to Hydrocarbon Fuels. NanoLetters2009,9(2),731-737.
    [64] Feng, X.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N.;Grimes, C. A., Synthesis and deposition of ultrafine Pt nanoparticles within highaspect ratio TiO2nanotube arrays: application to the photocatalytic reduction ofcarbon dioxide. J. Mater. Chem.2011,21(35),13429-13433.
    [65] Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L.,Visible light responsive iodine-doped TiO2for photocatalytic reduction of CO2tofuels. Applied Catalysis A-General2011,400(1-2),195-202.
    [66] Xi, G. C.; Ouyang, S. X.; Ye, J. H., General Synthesis of Hybrid TiO2Mesoporous “French Fries” Toward Improved Photocatalytic Conversion of CO2into Hydrocarbon Fuel: A Case of TiO2/ZnO. Chemistry-a European Journal2011,17(33),9057-9061.
    [67] Lo, C. C.; Hung, C. H.; Yuan, C. S.; Wu, J. F., Photoreduction of carbon dioxidewith H2and H2O over TiO2and ZrO2in a circulated photocatalytic reactor. SolarEnergy Materials and Solar Cells2007,91(19),1765-1774.
    [68] Yahaya, A. H.; Gondal, M. A.; Hameed, A., Selective laser enhancedphotocatalytic conversion Of CO2into methanol. Chemical Physics Letters2004,400(1-3),206-212.
    [69] Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T., Effect of H2gas as areductant on photoreduction of CO2over a Ga2O3photocatalyst. Chemical PhysicsLetters2008,467(1-3),191-194.
    [70] Johne, P.; Kisch, H., Photoreduction of carbon dioxide catalysed by free andsupported zinc and cadmium sulphide powders. Journal of Photochemistry andPhotobiology A-Chemistry1997,111(1-3),223-228.
    [71] Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z.,High-Yield Synthesis of Ultralong and Ultrathin Zn2GeO4Nanoribbons towardImproved Photocatalytic Reduction of CO2into Renewable Hydrocarbon Fuel.Journal of the American Chemical Society2010,132(41),14385.
    [72] Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan, X. X.; Wan, L. J.;Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G., A Room-TemperatureReactive-Template Route to Mesoporous ZnGa2O4with Improved PhotocatalyticActivity in Reduction of CO2. Angewandte Chemie-International Edition2010,49(36),6400-6404.
    [73] Tsai, C. W.; Chen, H. M.; Liu, R. S.; Asakura, K.; Chan, T. S., Ni@NiOCore-Shell Structure-Modified Nitrogen-Doped InTaO4for Solar-Driven HighlyEfficient CO2Reduction to Methanol. Journal of Physical Chemistry C2011,115(20),10180-10186.
    [74] Shi, H. F.; Wang, T. Z.; Chen, J.; Zhu, C.; Ye, J. H.; Zou, Z. G., Photoreduction ofCarbon Dioxide Over NaNbO3Nanostructured Photocatalysts. Catalysis Letters2011,141(4),525-530.
    [75] Zhou, Y.; Tian, Z.; Zhao, Z.; Liu, Q.; Kou, J.; Chen, X.; Gao, J.; Yan, S.; Zou, Z.,High-Yield Synthesis of Ultrathin and Uniform Bi2WO6Square NanoplatesBenefitting from Photocatalytic Reduction of CO2into Renewable HydrocarbonFuel under Visible Light. ACS Applied Materials&Interfaces2011,3(9),3594-3601.
    [76] Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalyticreduction of CO2with H2O on titanium oxides anchored within micropores ofzeolites: effects of the structure of the active sites and the addition of Pt. Journal ofPhysical Chemistry B1997,101(14),2632-2636.
    [77] Lin, W. Y.; Frei, H., Photochemical CO2splitting by metal-to-metalcharge-transfer excitation in mesoporous ZrCu(I)-MCM-41silicate sieve. Journalof the American Chemical Society2005,127(6),1610-1611.
    [78] Kozak, O.; Praus, P.; Koci, K.; Klementova, M., Preparation and characterizationof ZnS nanoparticles deposited on montmorillonite. Journal of Colloid andInterface Science2011,352(2),244-251.
    [79] Li, Y.; Wang, W. N.; Zhan, Z. L.; Woo, M. H.; Wu, C. Y.; Biswas, P.,Photocatalytic reduction of CO2with H2O on mesoporous silica supportedCu/TiO2catalysts. Applied Catalysis B-Environmental2010,100(1-2),386-392.
    [80] Koci, K.; Matejka, V.; Kovar, P.; Lacny, Z.; Obalova, L., Comparison of the pureTiO2and kaolinite/TiO2composite as catalyst for CO2photocatalytic reduction.Catalysis Today2011,161(1),105-109.
    [81] Zhao, J.; Yang, X. D., Photocatalytic oxidation for indoor air purification: aliterature review. Building and Environment2003,38(5),645-654.
    [82] Nguyen, T. V.; Wu, J. C. S., Photoreduction of CO2to fuels under sunlight usingoptical-fiber reactor. Solar Energy Materials and Solar Cells2008,92(8),864-872.
    [83] Hossain, M.; Raupp, G.; Hay, S.; Obee, T., Three-dimensional developing flowmodel for photocatalytic monolith reactors. AIChE Journal2004,45(6),1309-1321.
    [84] Larson, S.; Widegren, J.; Falconer, J., Transient studies of2-propanolphotocatalytic oxidation on titania. Journal of Catalysis1995,157(2),611-625.
    [85] Pozzo, R.; Baltanas, M.; Cassano, A., Supported titanium oxide as photocatalyst inwater decontamination: state of the art. Catalysis Today1997,39(3),219-231.
    [86] Alexiadis, A.; Mazzarino, I., Design guidelines for fixed-bed photocatalyticreactors. Chemical Engineering and Processing2005,44(4),453-459.
    [87] Ichikawa, S.; Doi, R., Hydrogen production from water and conversion of carbondioxide to useful chemicals by room temperature photoelectrocatalysis. CatalysisToday1996,27(1-2),271-277.
    [88] Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S., Synthesis of solar fuels bya novel photoelectrocatalytic approach. Energy&Environmental Science2010,3(3),292-301.
    [89] Centi, G.; Perathoner, S., Opportunities and prospects in the chemical recycling ofcarbon dioxide to fuels. Catalysis Today2009.
    [90] Xiaoding, X.; Moulijn, J., Mitigation of CO2by chemical conversion: plausiblechemical reactions and promising products. Energy&Fuels1996,10(2),305-325.
    [91] Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Comprehensive organometallicchemistry: the synthesis, reactions and structures of organometallic compounds.Pergamon Press Oxford, NY:1982; Vol.3.
    [92] Bhanage, B. M.; Fujita, S.-i.; Ikushima, Y.; Arai, M., Synthesis of dimethylcarbonate and glycols from carbon dioxide, epoxides, and methanol usingheterogeneous basic metal oxide catalysts with high activity and selectivity.Applied Catalysis A: General2001,219(1),259-266.
    [93] Denise, B.; Cherifi, O.; Bettahar, M.; Sneeden, R., Supported copper catalystsprepared from copper (II) formate: hydrogenation of carbon dioxide containingfeedstocks. Applied Catalysis1989,48(2),365-372.
    [94]徐克勋, D.,精细有机化工原料及中间体手册.化学工业出版社:1998.
    [95]宁平;陈梁;陈云华;章江洪;马新宾,甲醇羰基化合成甲酸甲酯研究.精细石油化工2001,4,35-38.
    [96]李工;谢关根,甲醇催化脱氢制甲酸甲酯反应中Cu-ZnO-ZrO2/SiO2催化剂的特性.复旦学报:自然科学版1996,35(003),253-260.
    [97] Matsuda, T.; Yogo, K.; Pantawong, C.; Kikuchi, E., Catalytic properties ofcopper-exchanged clays for the dehydrogenation of methanol to methyl formate.Applied Catalysis A: General1995,126(1),177-186.
    [98] Tonner, S.; Trimm, D.; Wainwright, M.; Cant, N., Dehydrogenation of methanolto methyl formate over copper catalysts. Industrial&Engineering ChemistryProduct Research and Development1984,23(3),384-388.
    [99] Huang, X.; Cant, N. W.; Wainwright, M. S.; Ma, L., The dehydrogenation ofmethanol to methyl formate-Part I: Kinetic studies using copper-based catalysts.Chemical Engineering and Processing2005,44(3),393-402.
    [100] Huang, X.; Cant, N. W.; Wainwright, M. S.; Ma, L., The dehydrogenation ofmethanol to methyl formate-Part II. The effect of chromia on deactivation kineticsfor copper-based catalysts. Chemical Engineering and Processing2005,44(3),403-411.
    [101] Liu, H.; Iglesia, E., Selective Oxidation of Methanol and Ethanol on SupportedRuthenium Oxide Clusters at Low Temperatures. J. Phys. Chem. B2005,109(6),2155-2163.
    [102] Valente, N.; Arrúa, L.; Cadús, L., Structure and activity of Sn-Mo-O catalysts:partial oxidation of methanol. Applied Catalysis A: General2001,205(1-2),201-214.
    [103] Valente, N.; Cadus, L.; Gorriz, O.; Arrúa, L.; Rivarola, J., Synergy in theSn-Mo-O catalysts: The selective oxidation of methanol. Applied Catalysis A:General1997,153(1-2),119-132.
    [104] Ardissone, D.; Valente, N.; Cadus, L.; Arrua, L., Partial Oxidation of Methanolon a Sn-Mo-O Catalyst. A Kinetic Study. Ind. Eng. Chem. Res2000,39(8),2902-2909.
    [105] Lichtenberger, J.; Lee, D.; Iglesia, E., Catalytic oxidation of methanol on Pdmetal and oxide clusters at near-ambient temperatures. Physical ChemistryChemical Physics2007,9(35),4902-4906.
    [106] Chung, M.; Moon, D.; Park, K.; Ihm, S., Mechanism of methyl formate formationon Cu/ZnO catalysts. Journal of Catalysis136(2),609-612.
    [107] Ai, M., Dimerization of formaldehyde to methyl formate on SnO2-WO3catalysts.Applied Catalysis1984,9(3),371-377.
    [108] Keim, W.; Berger, M.; Schlupp, J., High-pressure homogeneous hydrogenation ofcarbon monoxide in polar and nonpolar solvents. Journal of Catalysis1980,61(2),359-365.
    [109] Bradley, J., Homogeneous carbon monoxide hydrogenation to methanol catalyzedby soluble ruthenium complexes. Journal of the American Chemical Society1979,101(24),7419-7421.
    [110] Yu, K. M. K.; Yeung, C. M. Y.; Tsang, S. C., Carbon dioxide fixation intochemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnOnanocatalyst. Journal of the American Chemical Society2007,129(20),6360-6361.
    [111] Ulagappan, N.; Frei, H., Mechanistic study of CO2photoreduction in Ti silicalitemolecular sieve by FT-IR spectroscopy. Journal of Physical Chemistry A2000,104(33),7834-7839.
    [112] Li, H. X.; Bian, Z. F.; Zhu, J.; Huo, Y. N.; Li, H.; Lu, Y. F., Mesoporous Au/TiO2nanocomposites with enhanced photocatalytic activity. Journal of the AmericanChemical Society2007,129(15),4538-4539.
    [113] Saeki, T.; Hashimoto, K.; Kimura, N.; Omata, K.; Fujishima, A., ElectrochemicalReduction of CO2to Hydrocarbons with High-Current Density in a CO2-MethanolMedium. Chemistry Letters1995,(5),361-362.
    [114] Saeki, T.; Hashimoto, K.; Kimura, N.; Omata, K.; Fujishima, A., Electrochemicalreduction of CO2with high current density in a CO2+methanol medium II. COformation promoted by tetrabutylammonium cation. Journal of ElectroanalyticalChemistry1995,390(1-2),77-82.
    [115] Kominami, H.; Sugahara, H.; Hashimoto, K., Photocatalytic selective oxidationof methanol to methyl formate in gas phase over titanium(IV) oxide in a flow-typereactor. Catalysis Communications2010,11(5),426-429.
    [116] Yeom, Y. H.; Frei, H., Photoactivation of CO in Ti silicalite molecular sieve.Journal of Physical Chemistry A2001,105(22),5334-5339.
    [117] Ulagappan, N.; Frei, H., Redox chemistry of gaseous reactants insidephotoexcited FeAlPO4molecular sieve. Journal of Physical Chemistry A2000,104(3),490-496.
    [118] Wu, X. N.; Weare, W. W.; Frei, H., Binuclear Ti-O-Mn charge-transferchromophore in mesoporous silica. Dalton Transactions2009,(45),10114-10121.
    [119] Qin, S. Y.; Xin, F.; Liu, Y. D.; Yin, X. H.; Ma, W., Photocatalytic reduction ofCO2in methanol to methyl formate over CuO-TiO2composite catalysts. Journal ofColloid and Interface Science2011,356(1),257-261.
    [120] Sui, D.; Yin, X.; Dong, H.; Qin, S.; Chen, J.; Jiang, W., PhotocatalyticallyReducing CO2to Methyl Formate in Methanol Over Ag Loaded SrTiO3Nanocrystal Catalysts. Catalysis Letters2012,142,1202-1210.
    [121] Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H., Direct splitting of water under visiblelight irradiation with an oxide semiconductor photocatalyst. Nature2001,414(6864),625-627.
    [122] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmentalapplications of semiconductor photocatalysis. Chemical Reviews1995,95(1),69-96.
    [123] Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO2on Ti-based heterogeneous catalysts: Current state, chemical physics-basedinsights and outlook. Energy&Environmental Science2009,2(7),745-758.
    [124] Wagner, F.; Somorjai, G., Photocatalytic hydrogen production from water onPt-free SrTiO3in alkali hydroxide solutions. Nature1980,285,559-560.
    [125] Konta, R.; Ishii, T.; Kato, H.; Kudo, A., Photocatalytic activities of noble metalion doped SrTiO3under visible light irradiation. J. Phys. Chem. B2004,108(26),8992-8995.
    [126] Zhang, H.; Chen, G., Potent Antibacterial Activities of Ag/TiO2NanocompositePowders Synthesized by a One-Pot Sol-Gel Method. Environmental Science&Technology2009,43(8),2905-2910.
    [127] Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J.,Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlationbetween structure and property. The Journal of Physical Chemistry C2008,112(29),10773-10777.
    [128] Saeki, T.; Hashimoto, K.; Kimura, N.; Omata, K.; Fujishima, A., Electrochemicalreduction of CO2with high current density in a CO2+methanol medium at variousmetal electrodes. Journal of Electroanalytical Chemistry1996,404(2),299-302.
    [129] Yoon, T. P.; Ischay, M. A.; Du, J., Visible light photocatalysis as a greenerapproach to photochemical synthesis. Nature Chemistry2011,2(7),527-532.
    [130] Chauvin, J.; Lafolet, F.; Chardon-Noblat, S.; Deronzier, A.; Jakonen, M.; Haukka,M., Towards New Molecular Photocatalysts for CO2Reduction: Photo-InducedElectron Transfer versus CO Dissociation within [Os(NN)(CO)2Cl2] Complexes.Chemistry-A European Journal2011,17(15),4313-4322.
    [131] Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M. H.,Ag@AgCl: A highly efficient and stable photocatalyst active under visible light.Angewandte Chemie International Edition2008,47(41),7931-7933.
    [132] Kakuta, N.; Goto, N.; Ohkita, H.; Mizushima, T., Silver Bromide as aPhotocatalyst for Hydrogen Generation from CH3OH/H2O Solution. The Journalof Physical Chemistry B1999,103(29),5917-5919.
    [133] Elahifard, M. R.; Rahimnejad, S.; Haghighi, S.; Gholami, M. R., Apatite-coatedAg/AgBr/TiO2visible-light photocatalyst for destruction of bacteria. Journal ofthe American Chemical Society2007,129(31),9552-9553.
    [134] Abou Asi, M.; He, C.; Su, M.; Xia, D.; Lin, L.; Deng, H.; Xiong, Y.; Qiu, R.; Li,X., Photocatalytic reduction of CO2to hydrocarbons using AgBr/TiO2nanocomposites under visible light. Catalysis Today2011,175(1),256-263.
    [135] Zhang, X. J.; Li, J. L.; Lu, X.; Tang, C. Q.; Lu, G. X., Visible light induced CO2reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite.Journal of Colloid and Interface Science2012,377,277-283.
    [136] An, C.; Wang, J.; Jiang, W.; Zhang, M.; Ming, X.; Wang, S.; Zhang, Q., Stronglyvisible-light responsive plasmonic shaped AgX:Ag (X=Cl, Br) nanoparticles forreduction of CO2to methanol. Nanoscale2012,4,5646-5650.
    [137] Almeida, A. R.; Moulijn, J. A.; Mul, G., In Situ ATR-FTIR Study on theSelective Photo-oxidation of Cyclohexane over Anatase TiO2. The Journal ofPhysical Chemistry C2008,112(5),1552-1561.
    [138] Gong, D.; Subramaniam, V. P.; Highfield, J. G.; Tang, Y.; Lai, Y.; Chen, Z., InSitu Mechanistic Investigation at the Liquid/Solid Interface by Attenuated TotalReflectance FTIR: Ethanol Photo-Oxidation over Pristine and Platinized TiO2(P25). ACS Catal.2011,1(8),864-871.
    [139] Liu, L.; Zhao, H.; Andino, J.; Li, Y., Photocatalytic CO2Reduction with H2O onTiO2Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs andExploration of Surface Chemistry. ACS Catal.2012,2,1817-1828.
    [140] Yang, C.-C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G., Mechanistic studyof hydrocarbon formation in photocatalytic CO2reduction over Ti-SBA-15.Journal of Catalysis2011,284(1),1-8.
    [141] Wu, J. C. S., Photocatalytic reduction of greenhouse gas CO2to fuel. CatalysisSurveys from Asia2009,13(1),30-40.
    [142] Berry, C., Changes of Silver Halide Energy Levels with Temperature and HalideComposition. Phot. Sci. Eng1975,19,93-95.
    [143] Van Vechten, J., Handbook on Semiconductors. North-Holand, Amsterdam1987,3,1-112.
    [144] Pradhan, S.; Ghosh, D.; Chen, S. W., Janus Nanostructures Based on Au-TiO2Heterodimers and Their Photocatalytic Activity in the Oxidation of Methanol.ACS Applied Materials&Interfaces2009,1(9),2060-2065.
    [145] Choi, W.; Hoffmann, M. R., Photoreductive mechanism of CCl4degradation onTiO2particles and effects of electron donors. Environmental Science&Technology1995,29(6),1646-1654.
    [146] Saeki, T.; Hashimoto, K.; Fujishima, A.; Kimura, N.; Omata, K., ElectrochemicalReduction of CO2with High Current Density in a CO2-Methanol Medium. TheJournal of Physical Chemistry1995,99(20),8440-8446.
    [147] Chiarello, G. L.; Aguirre, M. H.; Selli, E., Hydrogen production by photocatalyticsteam reforming of methanol on noble metal-modified TiO2. Journal of Catalysis2010,273(2),182-190.
    [148] Shu, Z.; Jiao, X.; Chen, D., Synthesis and photocatalytic properties of flower-likezirconia nanostructures. Crystengcomm2012,14(3),1122-1127.
    [149] Li, X. K.; Pan, H. Q.; Li, W.; Zhuang, Z. J., Photocatalytic reduction of CO2tomethane over HNb3O8nanobelts. Applied Catalysis A-General2012,413,103-108.
    [150] Tu, W. G.; Zhou, Y.; Liu, Q.; Tian, Z. P.; Gao, J.; Chen, X. Y.; Zhang, H. T.; Liu,J. G.; Zou, Z. G., Robust Hollow Spheres Consisting of Alternating TitaniaNanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO2Conversion into Renewable Fuels. Advanced Functional Materials2012,22(6),1215-1221.
    [151] Qi, X.; Guo, H.; Li, L., Efficient Conversion of Fructose to5-Hydroxymethylfurfural Catalyzed by Sulfated Zirconia in Ionic Liquids.Industrial&Engineering Chemistry Research2011,50(13),7985-7989.
    [152] Sanchez-Dominguez, M.; Liotta, L. F.; Di Carlo, G.; Pantaleo, G.; Venezia, A.M.; Solans, C.; Boutonnet, M., Synthesis of CeO2, ZrO2, Ce0.5Zr0.5O2, and TiO2nanoparticles by a novel oil-in-water microemulsion reaction method and their useas catalyst support for CO oxidation. Catalysis Today2010,158,35-43.
    [153] Deshpande, P. A.; Polisetti, S.; Madras, G., Rapid Synthesis of UltrahighAdsorption Capacity Zirconia by a Solution Combustion Technique. Langmuir2011,27(7),3578-3587.
    [154] Hornebecq, V.; Knofel, C.; Boulet, P.; Kuchta, B.; Llewellyn, P. L., Adsorptionof Carbon Dioxide on Mesoporous Zirconia: Microcalorimetric Measurements,Adsorption Isotherm Modeling, and Density Functional Theory Calculations. TheJournal of Physical Chemistry C2011,115(20),10097-10103.
    [155] Zheng, H.; Liu, K.; Cao, H.; Zhang, X., L-Lysine-Assisted Synthesis of ZrO2Nanocrystals and Their Application in Photocatalysis. The Journal of PhysicalChemistry C2009,113(42),18259-18263.
    [156] Dwivedi, R.; Maurya, A.; Verma, A.; Prasad, R.; Bartwal, K., Microwaveassisted sol-gel synthesis of tetragonal zirconia nanoparticles. Journal of Alloysand Compounds2011,509(24),6848-6851.
    [157] Sato, K.; Abe, H.; Ohara, S., Selective growth of monoclinic and tetragonalzirconia nanocrystals. Journal of the American Chemical Society2010,132(8),2538-2539.
    [158] Espinoza-Gonzalez, R.; Diaz-Droguett, D.; Avila, J.; Gonzalez-Fuentes, C.;Fuenzalida, V., Hydrothermal growth of zirconia nanobars on zirconium oxide.Materials Letters2011,65(14),2121-2123.
    [159] Jiang, C.; Wang, F.; Wu, N.; Liu, X., Up-and Down-conversion Cubic Zirconiaand Hafnia Nanobelts. Advanced Materials2008,20(24),4826-4829.
    [160] Gao, Q.-X.; Wang, X.-F.; Wu, X.-C.; Tao, Y.-R.; Zhu, J.-J., Mesoporous zirconiananobelts: Preparation, characterization and applications in catalytical methanecombustion. Microporous and Mesoporous Materials2011,143(2),333-340.
    [161] Dong, W.-S.; Lin, F.-Q.; Liu, C.-L.; Li, M.-Y., Synthesis of ZrO2nanowires byionic-liquid route. Journal of Colloid and Interface Science2009,333(2),734-740.
    [162] Zhao, J.; Wang, X.; Zhang, L.; Hou, X.; Li, Y.; Tang, C., Degradation of methylorange through synergistic effect of zirconia nanotubes and ultrasonic wave.Journal of Hazardous Materials2011,188(1),231-234.
    [163] Nayak, B. B.; Mohanty, S. K.; Takmeel, M. Q. B.; Pradhan, D.; Mondal, A.,Borohydride synthesis and stabilization of flake-like tetragonal zirconiananocrystallites. Materials Letters2010,64(17),1909-1911.
    [164] Xu, L.; Lee, H. K., Zirconia hollow fiber: preparation, characterization, andmicroextraction application. Analytical Chemistry2007,79(14),5241-5248.
    [165] Li, J.; Qi, H.-Y.; Shi, Y.-P., Applications of titania and zirconia hollow fibers insorptive microextraction of N, N-dimethylacetamide from water sample. AnalyticaChimica Acta2009,651(2),182-187.
    [166] Yang, X.; Song, X.; Wei, Y.; Wei, W.; Hou, L.; Fan, X., Synthesis of spinousZrO2core-shell microspheres with good hydrogen storage properties by the pollenbio-template route. Scripta Materialia2011,64(12),1075-1078.
    [167] Tang, S.; Huang, X.; Chen, X.; Zheng, N., Hollow mesoporous zirconiananocapsules for drug delivery. Advanced Functional Materials2010,20(15),2442-2447.
    [168] Gao, Y.; Zhao, F.; Liu, Y.; Luo, H., Synthesis and characterization of ZrO2capsules and crystalline ZrO2thin layers on Fe2O3powders. Crystengcomm2011,13(10),3511-3514.
    [169] Kato, E.; Hirano, M.; Nagai, A., Growth of Monoclinic ZrO2Thin, Flaky Crystalsby Hydrothermal Decomposition of Zirconium Oxide Sulfate Crystals. Journal ofthe American Ceramic Society1995,78(8),2259-2262.
    [170] Yao, W.; Yu, S., Synthesis of Semiconducting Functional Materials in Solution:From II-VI Semiconductor to Inorganic-organic Hybrid SemiconductorNanomaterials. Advanced Functional Materials2008,18(21),3357-3366.
    [171] Yao, H.-B.; Gao, M.-R.; Yu, S.-H., Small organic molecule templating synthesisof organic-inorganic hybrid materials: their nanostructures and properties.Nanoscale2010,2(3),322-334.
    [172] Hagrman, P. J.; Hagrman, D.; Zubieta, J., Organic-Inorganic Hybrid Materials:From "simple" Coordination Polymers to Organodiamine-TemplatedMolybdenum Oxides. Angewandte Chemie International Edition1999,38(18),2638-2684.
    [173] Gao, Q.; Chen, P.; Zhang, Y.; Tang, Y., Synthesis and Characterization ofOrganic-Inorganic Hybrid GeOx/Ethylenediamine Nanowires. Advanced Materials2008,20(10),1837-1842.
    [174] Li, Y.; Liao, H.; Ding, Y.; Fan, Y.; Zhang, Y.; Qian, Y., Solvothermal elementaldirect reaction to CdE (E=S, Se, Te) semiconductor nanorod. Inorganic Chemistry1999,38(7),1382-1387.
    [175] Lu, Q.; Gao, F.; Zhao, D., One-step synthesis and assembly of copper sulfidenanoparticles to nanowires, nanotubes, and nanovesicles by a simple organicamine-assisted hydrothermal process. Nano Letters2002,2(7),725-728.
    [176] Yang, J.; Xue, C.; Yu, S.; Zeng, J.; Qian, Y., General Synthesis of SemiconductorChalcogenide Nanorods by Using the Monodentate Ligand n-butylamine as aShape Controller. Angewandte Chemie2002,114(24),4891-4894.
    [177] Coleman, J. N.; Lotya, M.; Oneill, A.; Bergin, S. D.; King, P. J.; Khan, U.;Young, K.; Gaucher, A.; De, S.; Smith, R. J., Two-dimensional nanosheetsproduced by liquid exfoliation of layered materials. Science2011,331(6017),568-571.
    [178] Bang, J. H.; Suslick, K. S., Applications of ultrasound to the synthesis ofnanostructured materials. Advanced Materials2010,22(10),1039-1059.
    [179] Xu, H.; Zeiger, B. W.; Suslick, K. S., Sonochemical synthesis of nanomaterials.Chemical Society Reviews2013,(42),2555-2567.
    [180] Xu, H.; Suslick, K. S., Sonochemical preparation of functionalized graphenes.Journal of the American Chemical Society2011,133(24),9148-9151.
    [181] Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.;McGovern, I.; Holland, B.; Byrne, M.; Gun Ko, Y. K., High-yield production ofgraphene by liquid-phase exfoliation of graphite. Nature Nanotechnology2008,3(9),563-568.
    [182] Sayama, K.; Arakawa, H., Photocatalytic decomposition of water andphotocatalytic reduction of carbon dioxide over zirconia catalyst. The Journal ofPhysical Chemistry1993,97(3),531-533.
    [183] Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Photoreduction of carbondioxide with methane over ZrO2. Chemistry Letters1997,(10),993-994.
    [184] Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S., Identification and reactivity ofa surface intermediate in the photoreduction of CO2with H2over ZrO2. Journal ofthe Chemical Society-Faraday Transactions1998,94(13),1875-1880.
    [185] Tom, R.; Nair, A.; Singh, N.; Aslam, M.; Nagendra, C.; Philip, R.;Vijayamohanan, K.; Pradeep, T., Freely Dispersible Au@TiO2, Au@ZrO2,Ag@TiO2, and Ag@ZrO2Core-Shell Nanoparticles: One-Step Synthesis,Characterization, Spectroscopy, and Optical Limiting Properties. Langmuir2003,19(8),3439-3445.
    [186] Chen, X.; Mao, S. S., Titanium dioxide nanomaterials: synthesis, properties,modifications, and applications. Chemical Reviews2007,107(7),2891-2959.
    [187] Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting.Chemical Society Reviews2009,38(1),253-278.
    [188] Kubacka, A.; Fernandez-Garcia, M.; Colon, G., Advanced nanoarchitectures forsolar photocatalytic applications. Chemical Reviews2012,112(3),1555-1614.
    [189] Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-basedPhotocatalytic Hydrogen Generation. Chemical Reviews2010,110(11),6503-6570.
    [190] Hou, J.; Wang, Z.; Jiao, S.; Zhu, H., Bi2O3quantum-dot decoratednitrogen-doped Bi3NbO7nanosheets: in situ synthesis and enhanced visible-lightphotocatalytic activity. Crystengcomm2012,14(18),5923-5928.
    [191] Zhang, L.; Chen, D.; Jiao, X., Monoclinic structured BiVO4nanosheets:hydrothermal preparation, formation mechanism, and coloristic and photocatalyticproperties. The Journal of Physical Chemistry B2006,110(6),2668-2673.
    [192] Sun, T.; Qiu, J.; Liang, C., Controllable fabrication and photocatalytic activity ofZnO nanobelt arrays. The Journal of Physical Chemistry C2008,112(3),715-721.
    [193] Compton, O. C.; Mullet, C. H.; Chiang, S.; Osterloh, F. E., A building blockapproach to photochemical water-splitting catalysts based on layered niobatenanosheets. The Journal of Physical Chemistry C2008,112(15),6202-6208.
    [194] Kim, J. Y.; Osterloh, F. E.; Hiramatsu, H.; Dumas, R.; Liu, K., Synthesis andreal-time magnetic manipulation of a biaxial superparamagnetic colloid. TheJournal of Physical Chemistry B2005,109(22),11151-11157.
    [195] Kim, J. Y.; Hiramatsu, H.; Osterloh, F. E., Planar polarized light emission fromCdSe nanoparticle clusters. Journal of the American Chemical Society2005,127(44),15556-15561.
    [196] Kim, J. Y.; Osterloh, F. E., Planar gold nanoparticle clusters as microscalemirrors. Journal of the American Chemical Society2006,128(12),3868-3869.
    [197] Guo, J.-F.; Ma, B.; Yin, A.; Fan, K.; Dai, W.-L., Highly stable and efficientAg/AgCl@TiO2photocatalyst: Preparation, characterization, and application inthe treatment of aqueous hazardous pollutants. Journal of Hazardous Materials2012,211,77-82.
    [198] Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L., Two Different Roles ofMetallic Ag on Ag/AgX/BiOX (X=Cl, Br) Visible Light Photocatalysts: SurfacePlasmon Resonance and Z-Scheme Bridge. ACS Catal.2012,2(8),1677-1683.
    [199] Xu, Y. G.; Xu, H.; Li, H. M.; Xia, J. X.; Liu, C. T.; Liu, L., Enhancedphotocatalytic activity of new photocatalyst Ag/AgCl/ZnO. Journal of Alloys andCompounds2011,509(7),3286-3292.
    [200] Xiong, W.; Zhao, Q.; Li, X.; Zhang, D., One-step synthesis of flower-likeAg/AgCl/BiOCl composite with enhanced visible-light photocatalytic activity.Catalysis Communications2011,16(1),229-233.
    [201] Tang, Y.; Subramaniam, V. P.; Lau, T. H.; Lai, Y.; Gong, D.; Kanhere, P. D.;Cheng, Y. H.; Chen, Z.; Dong, Z., In situ formation of large-scale Ag/AgClnanoparticles on layered titanate honeycomb by gas phase reaction for visible lightdegradation of phenol solution. Applied Catalysis B: Environmental2011,106(3),577-585.
    [202] Tian, G.; Chen, Y.; Bao, H.-L.; Meng, X.; Pan, K.; Zhou, W.; Tian, C.; Wang,J.-Q.; Fu, H., Controlled synthesis of thorny anatase TiO2tubes for construction ofAg-AgBr/TiO2composites as highly efficient simulated solar-light photocatalyst.Journal of Materials Chemistry2012,22(5),2081-2088.
    [203] Zhu, M.; Chen, P.; Liu, M. H., Graphene Oxide Enwrapped Ag/AgX (X=Br, Cl)Nanocomposite as a Highly Efficient Visible Light Plasmonic Photocatalyst. ACSNano2011,(5),4529-4536.
    [204] Bi, Y.; Ouyang, S.; Cao, J.; Ye, J., Facile synthesis of rhombic dodecahedralAgX/Ag3PO4(X=Cl, Br, I) heterocrystals with enhanced photocatalytic propertiesand stabilities. Physical Chemistry Chemical Physics2011,13(21),10071-10075.
    [205] Chen, D.; Li, T.; Chen, Q.; Gao, J.; Fan, B.; Li, J.; Zhang, R.; Li, X.; Sun, J.; Gao,L., Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled withsingle-crystalline WO3nanoplates. Nanoscale2012,4,5431-5439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700