用户名: 密码: 验证码:
祁连山排露沟水文动态HBV模型模拟参数检验及敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对流域水文动态及其过程的了解是预测和评价森林植被水源涵养功能的重要基础,而模型模拟是实现对水文动态规律描述的基本手段。然而,水文模型模拟和预测精度与模型参数的取值有很大关系,存在不确定性的问题。因此,如何选取适用于指定研究区域模型参数是确保水文模型预报精度的重要前提。
     本研究将概念性半分布式模型HBV应用于祁连山黑河上游山区排露沟小流域,进行了4年(2000-2003年)逐日径流水分动态模拟。首先通过区域敏感性分析方法RSA(Regional Sensitivity Analysis),分析比较了基于传统统计、流量特征以及组合目标函数时HBV模型的参数敏感性。接着采用普适似然不确定估计GLUE(Generalized Likelihood Uncertainty Estimation)方法,利用覆盖率、中值宽度和流量累积差分析评价了HBV模型基于不同目标函数时模拟径流的不确定性。最后利用动态可识别方法DYNIA(Dynamic Identifiability Analysis)分析了模拟期间观测径流数据在识别各模型参数时信息量的变化、模型参数最优值随模拟时间的关系以及模型结构的完备性。
     RSA结果表明HBV模型参数的敏感性随着选用的目标函数变化;当选取以流量为特征的目标函数以及组合目标函数时,能增加模型参数的敏感性,在一定程度上减少了模型参数的不确定性。GLUE结果表明HBV总体上可以很好地模拟排露沟流域的径流量,但低估了洪峰量。以流量为特征的目标函数以及组合目标函数时,大多数的模型参数显示了较高的识别性和低的不确定性。
     DYNIA结果显示了模型参数有各自关键期,这些关键期参数的识别性较高并对模拟径流形成起着重要作用。在HBV模型中涉及到的21个参数中,共有11个参数(分别为:流域参数PCALT, TCALT;融雪模块参数CFMAX, SFCF;土壤模块参数FCshrub' LPshrub,LPgrass;响应模块参数PERC, UZL, K2;路径汇流模块参数MAXBAS)的最优值不随时间变化,在模拟过程中保持恒定值;5个参数(融雪模块参数TT;土壤模块参数FCforest,BETAshrub,BETAgrass;响应模块参数K1)的最优值变化幅度相对于各自参数的原始范围小于10%,可以认为这5个参数相对稳定其识别不随时间变化;而剩余5个参数(融雪模块参数CFR;土壤模块参数forest,BETAforest,FCgrass;响应模块参数Ko)的最优值在整个模拟过程中随着时间不断波动,难以识别率定。
     综合所述,HBV模型可以很好地模拟排露沟流域出口断面的流量过程。基于水文特征的目标函数以及组合目标函数能有效增加模型参数的敏感性,减少模型参数的不确定性,可以作为模型参数率定评价时优先选取的目标函数。在21个模型参数中,共有16个参数得到了很好的识别,但CFR, LPforest,BETAforest,FCgrass,K05个参数难以有效识别,需要通过对其函数表达式作进一步修正和验证。
Understanding the catchment hydrological daynamics and processes is fundamental to predicting and evaluating the role of forest in water conservation, and model simulation is an important approach for describing the pattern of hydrological daynamics. However, the precision of simulation and prediction by using hydrological models is highly dependent of model parameterization and there exist uncertainties. Therefore, how to select the suitable model parameters for a given area is a prerequisite for assuring the accuracy of hydrological modeling and predictions.
     In this study, the conceptual semi-distributed model HBV is applied in a small catchment, Pailugou, in the upper Heihe River basin in Qilian Mountains to simulate daily runoff daynamics over a period of four years (from2000through2003). Firstly, the Regional Sensitivity Analysis (RSA) is used to analyze the sensitivity of the HBV model parameters with objective functions based on statistical measures, runoff signatures, and combinations of different objective functions. Secondly, the Generalized Likelihood Uncertainty Estimation (GLUE) method with coverage, median width and cumulative runoff differences is used to analyze the uncertainty of modeled runoff. Finally, the Dynamic Identifiability Analysis (DYNIA) is used to analyze the changes in the information content of the observational runoff data when being used for identification of various model parameters, the behavours of parameters optima over the entire course of simulations, and the satisfaction of model structrues.
     Results of RSA show that the parameter sensitivity varies with the objective functions used; most of the model parameters are highly sensitive when runoff signatures or combinations of different objective functions are used, which reduce the model parameter uncertainty to some degree. Results based on GLUE show that the HBV model is generally capable of simulating the runoff in the Pailugou catchment, although it underestimates the peak runoffs. Most parameters show higher parameter identifiability and lower model uncertainty when runoff signatures or the combined objective functions are used.
     Results of DYNIA reveal that model parameters have key periods that show higher identifiability and play a crucial role in representing the predicted runoff. Among the21parameters in the HBV model, the optima for11of them (i.e. catchment parameters PCALT, TCALT; snow routine parameters CFMAX, SFCF; soil routine parameters FCshrub, LPshrub;response routine parameters PERC, UZL, K2; routing routine parameter MAXBAS) do not shift over the time domain and remain constant over the course of simulations; the optima for five parameters (i.e. snow routine parameters TT; soil routine parameters FCforest,BETAshrub, BETAgrass; response routine parameter K1) vary within10%of the original parameter ranges, indicating the possibility of a relatively stable and time-invariant parameter identification; and the optima for other five parameters (snow routine parameter CFR; soil routine parameters LPforest, BETAforest,FCgrass; response routine parameter Kl) shift over the time domain and are very difficult to identify.
     In summary, the HBV model is highly capable of simulating the runoffs at the Pailugou catchment outlet. Objective functions based on runoff signatures or combinations of different objective functions can improve parameter sensitivity and reduce the model parameter uncertainty, which can be used as a priority objective function for model calibration. Sixteen out of the total21parameters are proven to be well identified, but the identifiability for five of them, including CFR, LPforest, BETAforest, FCgrass, and Kl, appears to be very difficult, suggesting that some modifications are needed for improving the model structure in applictions concerning specific catchements or watersheds.
引文
1.陈桂琛,彭敏,黄荣福,卢学峰.祁连山地区植被特征及其分布规律[J].植物学报,1994,36(1):63-72.
    2.陈建,梁川,陈梁.SWAT模型的参数灵敏度分析:以贡嘎山海螺沟不同植被类型流域为例[J].南水北调与水利科技,2011,9(2):41-45.
    3.陈晓敢.祁连山北缘冲断带构造特征研究[D].杭州:浙江大学,2006.
    4.邓少福.祁连山气候变化对植被的影响研究(2000-2011)[D].兰州:兰州大学,2013.
    5.邓义祥,陈吉宁,程声通.稀疏数据下复杂流域的水质模拟:以赣江为例[J].环境科学学报,2003,23(4):422-427.
    6.邓义祥,富国,于涛,等.改进的RSA方法在参数全局灵敏度分析中的应用[J].环境科学研究,2008,21(3):40-43.
    7.高超,翟建清,陶辉,等.巢湖流域土地利用/覆被变化的水文效应研究[J].自然资源学报,2009,24(10):1794-1802.
    8.高红凯,何晓波,叶柏生,等.1955-2008年冬克玛底河流域冰川径流模拟研究[J].冰川冻土,2011,33(1):171-181.
    9.龚伟,杨大文.水文变量高维非线性相关分析与水文模型结构不确定性评估[J].水力发电学报,2013,32(5):13-20.
    10.郭生练,熊立华.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    11.胡和平,田富强.物理性流域水文模型研究新进展[J].水利学报,2007,38(5):511-517.
    12.胡四一,刘国纬,夏军,等.水文学及水资源[M].北京:中国水利水电出版社,2005.
    13.黄金良,林杰,杜鹏飞.城市降雨径流模拟的参数不确定性分析[J].环境学,2012,33(7):2224-2234.
    14.江燕,刘昌明,胡铁松,等.新安江模型参数优选的改进粒子群算法[J].水利学报,2007,38(10):1200-1206.
    15.黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展[J].水文,1997,17(5):5-10.
    16.蒋颖,王学军,罗定贵.流域管理模型的参数灵敏度分析:以WARMF在巢湖地区的应用为例[J].水土保持研究,2006,13(3):165-168.
    17.靳晓莉,张奇,许崇育.一个概念性水文模型的参数区域化研究:以东江流域为例[J].湖泊科学,2008,20(6):723-732.
    18.贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    19.康尔泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化的响应模型[J].中国科学(D辑),1999,29(S1):47-54.
    20.孔凡哲,宋晓猛,占车生,等.水文模型参数敏感性快速定量评估的RSMSobol方法[J].地理学报,2011,66(9):1270-1280.
    21.廖征红,陈洋波,徐会军,等.基于E-FAST的流溪河模型参数敏感性分析[J].热带地理,2012,32(6):606-612.
    22.李丹,张翔,张扬.水文模型参数敏感性的区间分析[J].水利水电科技进展,2011,31(1):29-32.
    23.林杰,黄金良,杜鹏飞,等.城市降雨径流水文模拟的参数局部灵敏度及其稳定性分析[J].环境科学,2010,31(9):2023-2028.
    24.刘丽芳,刘昌明,王中根,等HIMS模型参数的不确定性及其影响因素[J].地理科学进 展,2013,32(4):532-537.
    25.刘绿柳,姜彤,徐金阁等.21世纪珠江流域水文过程对气候变化的响应[J].气候变化研究进展,2012,8(1):28-34.
    26.刘苏峡,夏军,莫兴国.无资料流域水文预报(PUB计划)研究进展[J].水利水电技术,2005,36(2):9-12.
    27.刘苏峡,刘昌明,赵卫民.无测站流域水文预测(PUB)的研究方法[J].地理科学进展,2010,29(11):1333-1339.
    28.牛赟,敬文茂.祁连山北坡主要植被下土壤异质性研究[J].水土保持研究,2008,15(4):258-260.
    29.鹏焕华,赵传燕,沈卫华,等.祁连山北坡青海云杉林冠对降雨截留空间模拟-以排露沟流域为例[J].干旱区地理,2010,33(4):600-606.
    30.秦华鹏,王晟.感潮河流环境需水量预测及敏感性分析——以深圳河为例[J].环境科学学报,2005,25(7):936-941.
    31.石教智,陈晓宏.流域水文模型研究进展[J].水文,2006,26(1):18-23.
    32.束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报,自然科学版,2007,35(5):491-495.
    33.王金叶.祁连山水源涵养林生态系统水分传输过程与机理研究[D].长沙:中南林业科技大学,2006.
    34.王金叶,常学向,葛双兰,等.祁连山(北坡)水热状况与植被垂直分布[J].西北林业大学学报,2001,16(S1):1-3.
    35.王金叶,车克钧,闫文德.祁连山(北坡)生物多样性分析[J].甘肃林业科技,1996,21(2):22-27.
    36.王金叶,王彦辉,李新,等.祁连山排露沟流域水分状况与径流形成[J].冰川冻土,2006,28(1):62-69.
    37.王金叶,王彦辉,王顺利,等.祁连山林区林草复合流域降水规律的研究[J].林业科学研究,2006,19(4):416-422.
    38.王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(2):168-173.
    39.王育礼,王烜,杨志峰,等.水文系统不确定性分析方法及应用研究进展[J].地理科学进展,2011,30(9):1167-1172.
    40.武震,张世强,丁永建.水文系统模拟不确定性研究进展[J]中国沙漠,2007,27(5):890-896.
    41.夏军.水问题的复杂性与不确定性研究与进展[M].北京:中国水利水电出版社,2004:3-17.
    42.夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展,2006,21(3):256-261.
    43.向亮,刘学锋,郝立生,等.未来百年不同排放情景下滦河流域径流特征分析[J].地球科学进展,2011,30(7):861-867.
    44.熊立华.水文模型参数优选中率定与校核目标函数的关系研究[J].石河子大学学报(自然科学版),2006,24(1):1-4.
    45.熊立华,郭生练,田向荣.基于DEM的分布式流域水文模型及应用[J].水科学进展报,2000,4:517-520.
    46.徐一剑,曾思育,张天柱.基于不确定性分析框架的动态环状河网水质模型-以温州市温瑞塘河为例[J].水科学进展,2005,16(4):574-580.
    47.许崇育,陈华,郭生练.变化环境下水文模拟的几个关键问题和挑战[J].水资源研究,2013,2:85-95.
    48.徐宗学,程磊.分布式水文模型研究与应用进展[J].趋势,2010,1(3):5-6.
    49.许仲林.祁迮山青海云杉林地上生物量潜在碳储存估算[D].兰州:兰州大学,2011.
    50.叶守泽,夏军.水文科学研究的世纪回眸与展望[J].水科学进展,2002,13(1):93-104.
    51.尹泽生,徐叔鹰.祁连山区域地貌与制图[M].北京:科学出版社,1992:5-8.
    52.张铭,李承军,张勇传.贝叶斯概率水文预报系统在中长期径流预报中的应用.水科学进展,2009,20(1):40-44.
    53.张建新,赵孟芹,章树安,等.HBV模型在中国东北多冰雪地区的应用研究[J].水文,2007,27(4):31-34.
    54.张巧玲,韩龙喜,李洪晶,等.宽浅河流水质模型参数灵敏度的空间变化规律[J].水资源保护,2013,29(3):1-5.
    55.张耀宗.近五十年来祁连山区的气候变化[D].兰州:西北师范大学,2009.
    56.赵冬泉,王浩正,陈吉宁,等.城市暴雨径流模拟的参数不确定性研究.水科学进展,2009,20(1):45-51.
    57.赵人俊.流域水文模拟[M].北京:水利水电出版社,1984.
    58.赵彦增,张建新,章树安,等.HBV模型在淮河官寨流域的应用研究[J].水文,2007,27(2):57-59.
    59.周丰,刘永,黄凯,等.流域水环境功能区划及其关键问题[J].水科学进展,2007,18(2):216-222.
    60.左其亭.水资源利用与管理[M].郑州:黄河水利出版社,2009.
    61. Ahl R S, Woods S W, Zuuring H R. Hydrologic calibration and validation of SWAT in snow-dominated rocky mountain watershed, Montana, USA [J]. Journal of the American Water Resources Association,2008,44(6):1411-1430.
    62. Ajami N K, Duan Q Y, Gao X G, et al. Multimodel combination techniques for analysis of hydrological simulations:application to distributed model intercomparison project results [J]. Journal of Hydrometeorology,2006,7(4):755-768.
    63. Ajami N K, Duan Q Y, Sorooshian S. An integrated hydrologic Bayesian multimodel combination framework:confronting input, parameter, and model structural uncertainty in hydrologic prediction [J]. Water Resources Research,2007,43(W1403).
    64. Allen R G, Pereira L S, Raes D. Crop evapotranspiration:guidelines for computing crop water requirements [R]. FAO irrigation and drainage papers, Report No.56, FAO, Rome,1998.
    65. Arheimer B, Brandt M. Modelling nitrogen transport and retention in the catchments of southern Sweden [J]. Ambio,1998,27(6):471-480.
    66. Arheimer B, Lindstrom G, Olsson J. A systematic review of sensitivities in the Swedish flood-forecasting system [J]. Atmospheric Research,2011,100(2):275-284.
    67. Arnell N W. A simple water balance model for the simulation of streamflow over a large geographic domain [J]. Journal of Hydrology,1999,217(3):314-335.
    68.Aronica G, Hankin B, Beven K. Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data [J]. Advances in Water Resources,1998, 22(4):349-365.
    69. Arnold J G, Srinivasan G R, Muttiah R S. Large area hydrologic modeling and assessment Part I: model development [J]. Journal of American Water Resources Association,1998,34(1):73-89.
    70.Bathurst J C, Ewen J, Parkin G, et al. Validation of catchment models for predicting land-use and climate change impacts.3. Blind validation for internal and outlet responses [J]. Journal of Hydrology,2004,287(1):74-94.
    71. Beck M B. Water quality modeling:a review of the analysis of uncertainty [J]. Water Resources Research,1987,23(8):1393-1442.
    72. Beck P J, Davis J S, Jung W O. Experimental evidence on taxpayer reporting under uncertainty [J]. Accounting Review,1991,66(3):535-558.
    73. Benke K K, Lowell K E, Hamilton A J. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model [J]. Mathematical and Computer Modelling,2008, 47(11):1134-1149.
    74. Bergstrom S. Development and application of a conceptual runoff model for Scandinavian catchments [R]. Swedish Meteorological and Hydrological Institute, Reports No.7, Norrkoping, 1976.
    75. Bergstrom S. The HBV model-its structure and applications [R]. Swedish Meteorological and Hydrological Institute, Reports No.4, Norrkoping,1992.
    76. Bergstrom B, Carlsson B. River runoff to the Baltic Sea:1950-1990 [J]. Ambio,1994, 23(4):280-287.
    77. Birkel C, Tetzlaff D, Dunn S M, Soulsby C. Towards a simple dynamic process conceptualization in rainfall-runoff models using multi-criteria calibration and tracers in temperate, upland catchments [J]. Hydrological Processes,2010,24(3):260-275.
    78. Beven K J. Rainfall-runoff Modelling [M]. Chichester, wiley,2001.
    79. Beven K J. A manifesto for the equifinality thesis [J]. Journal of Hydrology,2006,320(1):18-36.
    80. Beven K J, Binley A M. The future of distributed hydrological models:model calibration and uncertainty prediction [J]. Hydrological Processes,1992,6(3):279-298.
    81. Beven K J, Binley A. GLUE:20 years on [J]. Hydrological Processes,2013.
    82. Beven K J, Calver A, Morris E M. The Institute of Hydrology distributed model [R]. UK Institute of Hydrology, Report No.98, Wallingford, Oxon, United Kingdom,1987.
    83. Beven K J, Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology [J]. Journal of Hydrology,2001,249(1):11-29.
    84. Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology [J]. Hydorlogical Science Bulltion,1979,24(1):43-69.
    85. Beven K J, Kirkby M J, Schofield N, et al. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments [J]. Journal of Hydrology,1984,69(1):119-143.
    86. Beven K J, Smith P J, Freer J E. Comment on "Hydrological forecasting uncertainty assessment: incoherence of the Glue methodology" by Pietro Mantovan and Ezio Todini [J]. Journal of Hydrology,2007,338(3):315-318.
    87. Beven K J, Smith P J, Freer J E. So just why would a modeller choose to be incoherent? [J]. Journal of hydrology,2008,354(1):15-32.
    88. Blasone R S, Madsen H, Rosbjerg D. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling [J]. Journal of Hydrology,2008, 353(1):18-32.
    89. Blazkova S, Beven K J, Kulasova A. On constraining TOPMODEL hydrograph simulations using partial saturated area information [J]. Hydrological Processes,2002,16(2):441-458.
    90. Bloschl G, Sivapalan M. Scale issues in hydrolocial modeling:a review [J]. Hydrological Processes, 1995,9(3):251-290.
    91. Brazier R E, Beven K J, Freer J, et al. Equifinality and uncertainty in physically based soil erosion models:application of the GLUE methodology to WEPP:the water erosion prediction project for sites in the UK and USA [J]. Earth Surface Processes and Landforms,2000,25(8):825-845.
    92. Bulygina N, Gupta H. Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation [J]. Water Resources Research,2009,45(W00B13).
    93.Bulygina N, Gupta H. Correcting the mathematical structure of a hydrological model via Bayesian data assimilation [J]. Water Resources Research,2011,47(W05514).
    94. Burnash R J C, Ferrai R L, Mcquire R A. A generalized streamflow simulation system conceptual model for digital computers [M]. Sacramento, California, USA,1973.
    95. Butts M B, Payne J T, Kristensen M, et al. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation [J]. Journal of Hydrology,2004, 298(1):242-266.
    96. Cameron D S, Beven K J, Tawn J, et al. Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty) [J]. Journal of Hydrology,1999,219(3):169-187.
    97. Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large models [J]. Environmental Modelling and Software,2007,22(10):1509-1518.
    98.Chaubey I, Haan C T, Grunwald S, et al. Uncertainty in the model parameters due to spatial variability of rainfall [J]. Journal of Hydrology,1999,220(1):48-61.
    99. Chen H, Xu C Y, Guo S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff [J]. Journal of Hydrology, 2012,434:36-45.
    100. Chen L, Shen Z, Yang X, et al. An Interval-Deviation Approach for hydrology and water quality model evaluation within an uncertainty framework [J]. Journal of Hydrology,2014,509:207-214.
    101.Christiaens J, Feyen J. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework [J]. Hydrological Processes,2002,16(2):373-391.
    102. Christensen N, Lettenmaier D P. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin [J]. Hydrological and Earth System Sciences,2007,11(4):1417-1434.
    103. Choi H T, Beven K J. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework [J]. Journal of Hydrology,2007,332(34):316-336.
    104. Clark M P, Kavetski D. Ancient numerical daemons of conceptual hydrological modeling:1. Fidelity and efficiency of time stepping schemes [J]. Water Resources Research,2010, 46(WR10510).
    105. Clark M P, Slater A G, Rupp D E, et al. Framework for Understanding Structural Errors (Fuse):A modular framework to diagnose differences between hydrological models [J]. Water Resources Research,2008,44(W00B02).
    106. Cloke H L, Pappenberger F, Renaud J P. Multi-method global sensitivity analysis (MMGSA) for modelling floodplain [J]. Hydrological Processes,2008,22(11):1660-1674.
    107. Cloke H L, Wetterhall F, He Y, et al. Modelling climate impact on floods with ensemble climate projections [J]. Quarterly Journal of the Royal Meteorological Society,2013,139(671):282-297.
    108. Confalonieri R, Bellocchi G, Tarantola S, et al. Sensitivity analysis of the rice model WARM in Europe:exploring the effects of different locations, climates and methods of analysis on model sensitivity to crop parameters [J]. Environmental Modelling and Software,2010,25(4):479-488.
    109. Crosetto M, Tarantola S. Uncertainty and sensitivity analysis:tools for GIS-based model implementation [J]. International Journal of Geographical Information Science,2001,15 (4):415-437.
    110. Crossman J, Futter M N, Oni S K, et al. Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada [J]. Journal of Great Lakes Research,2013a,39(1):19-32.
    111.Crossman J, Whitehead P G, Futter M N, et al. The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus [J]. Science of the Total Environment,2013b,454:230-244.
    112.Cukier R I, Fortuin C M, Shuler K E. et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I. Theory [J]. Journal of Chemical Physics,1973, 59(8):3873-3878.
    113.Cukier R I, Levine H B, Shuler K E. Nonlinear sensitivity analysis of multiparameter model systems [J]. Journal of Computational Physics,1978,26(1):1-42.
    114.Cullmann J, Wriedt G. Joint application of event-based calibration and dynamic identifiability analysis in rainfall-runoff modelling:implications for model parametrisation [J]. Journal of Hydroinformatics,2008,10(4):301-316.
    115. David G. Hazy reasoning behind clean air:science alone can't determine how regulations are written [J]. Nature,2008,453-519.
    116. Deflandre A, Williams R J, Elorza F J, et al. Analysis of the QUESTOR water quality model using a Fourier amplitude sensitivity test (FAST) for two UK rivers [J]. Science of The Total Environment,2006,360(1):290-304.
    117.Delsman J R, Essink G H P, Beven K J, et al. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment [J]. Water Resources Research,2013,49(8):4792-4806.
    118.Demaria E M, Nijssen B, Wagener T. Monte Carlo sensitivity analysis of land surface parameters using the variable infiltration capacity model [J]. Journal of Geophysical Research,2007, 112(D11).
    119. Dhanya C T, Kumar D N. Nonlinear ensemble prediction of chaotic daily rainfall [J]. Advances in Water Resources,2010,33(3):327-347.
    120. Dobler C, Pappenberger F. Global sensitivity analyses for a complex hydrological model applied in an Alpine watershed [J]. Hydrological Processes,2013,27(26):3922-3940.
    121. Doll P, Kaspar F, Lehner B. A global hydrological model for deriving water availability indicators: model tuning and validation [J]. Journal of Hydrology,2003,270(1):105-134.
    122.Dooge J C. Looking for hydrologic laws [J]. Water Resources Research,1986,22(9):46-58.
    123.Duan Q Y, Ajami N K, Gao X G, et al. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources [J],2007,30(5):1371-1386.
    124.Duan Q, Li G, Milner F A. A first-second order splitting method for a third-order partial differential equation [J]. Numerical Methods for Partial Differential Equations,1998,14(1):89-96.
    125.Feldam A D. HEC models for water resources system simulation:theory and experience [J]. Adnvances in Hydroscience,1981,12:297-423.
    126. Freer J, Beven K J, Anlbroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data:an application of the GLUE approach [J]. Water Resources Research,1996, 32(7):2161-2173.
    127. Freeze R. A, Harlan R L. Blue print for a physically-based, digitally-simulated hydrologic response model [J]. Journal of Hydrology,1969,9(3):237-58.
    128.Gallart F, Latron J, Llorens P, et al. Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions [J]. Advances in Water Resources,2007,30(4):808-823.
    129.Gallart F, Latron J, Llorens P, et al. Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small mediterranean moun-tain basin [J]. Physics and Chemistry of the Earth,2008,33(17):1090-1094.
    130. Gao H K, He X B, Ye B H, et al. Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008 [J]. Hydrological Preocesses, 2012,26(11):1593-1603.
    131. Georgakakos K P, Seo D J, Gupta H, et al. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles [J]. Journal of Hydrology,2004,298(1):222-241.
    132. Gershenfeld N. The nature of mathematical modelling [M]. Cambridge University Press, Cambrigde,1999.
    133.Goodrieh D, Faures C J, Woothiser D A, et al. Measurement and analysis of small-scale convective storm rainfall variability [J]. Journal of Hydrology,1995,173(1):283-308.
    134. Gosling S N, Arnell N W. Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis [J]. Hydrological Processes,2011, 25(7):1129-1145.
    135. Graham P. Modelling runoff to the Baltic basin [J]. Ambio,1999,28:328-334.
    136.Guo H, Hu Q, Jiang T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China [J]. Journal of Hydrology,2008,355(1):106-122.
    137. Gupta H V, Beven K J, Wagener T. Model calibration and uncertainty estimation [M]. Encyclopedia of hydrological sciences, Wiley and Sons, Chichester, UK,2005.
    138. Gupta H, Thiemann M, Trosset M, et al. Reply to comment by K. Beven and P. Young on "Bayesian recursive parameter estimation for hydrologic models" [J]. Water Resources Research, 2003,39(5).
    139.Gurtz J, Zappa M, Jasper K, et al. A comparative study in modelling runoff and its components in two mountainous catchments [J]. Hydrological Processes,2003,17(2):297-311.
    140. He M X, Hogue T S, Franz K J, et al. Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes [J]. Advancs in Water Resources,2011,34(1):114-127.
    141. He Z B, Zhao W Z, Liu H, et al. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range:A case study in northwestern China's Qilian Mountains [J]. Journal of Hydrology,2012,420:183-190.
    142. Herman J D, Kollat J B, Reed P M, et al. Technical note:method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models [J]. Hydrology and Earth System Sciences,2013,10(4):4275-4299.
    143.Hoeting J A, Madigan D, Raftery A E, et al. Bayesian model averaging:A tutorial [J]. Statistical Science,1999,14(4):382-401.
    144. Hornberger G M, Spear R C. An approach to the preliminary analysis of environmental systems [J]. Journal of Environmental Management,1981,12(1):7-18.
    145.Horton R E. The role of infiltration in the hydrologic cycle [J]. Transactions, American Geophysical Union,1933,14:446-460.
    146.Hundecha Y, Bardossy A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model [J]. Journal of Hydrology,2004, 292(1):281-295.
    147.Jia Y, Culver T B. Uncertainty analysis for watershed modeling using generalized likelihood uncertainty estimation with multiple calibration measures [J]. Journal of Water Resources Planning. and Management,2008,134(2):97-106.
    148. Jiang S, Ren L, Yong B, et al. Analyzing the effects of climate variability and human activities on runoff from the Laohahe basin in northern China [J]. Hydrology Research,2012,43(1):3-13.
    149. Jin X L, Xu C Y, Zhang Q, et al. Regionalization study of a conceptual hydrological model in Dongjinag basin, south China [J]. Quaternary International,2009,208(3):129-137.
    150. Jin X L, Xu C Y, Zhang Q, et al. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model [J]. Journal of Hydrology,2010, 208(1):129-137.
    151.Kachro R K. River flow forecasting. Part5. Applications of a conceptual model [J]. Journal of Hydrology,1992,133(1):141-178.
    152. Kavetski D, Kuczera G, Franks S W. Bayesian Analysis of Input Uncertainty in Hydrological Modeling:1. Theory [J]. Water Resources Research,2006,42(W034073).
    153. Kavetski D, Clark M P. Ancient numerical daemons of conceptual hydrological modeling:2. Impact of time stepping schemes on model analysis and prediction [J]. Water Resources Research, 2010,46(W10510).
    154. Kavetski, D, FranksS, Kuczera G. Confronting input uncertainty in environmental modelling, in Calibration of Watershed Models [M]. AGU, Washington,2003.
    155. Kim S, Delleur J W. Sensitivity analysis of extended TOPMODEL for agricultural watersheds equipped with tile drains [J]. Hydrological processes,1997,11(9):1243-1261.
    156. King D M, Perera B J C. Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield-A case study [J]. Journal of Hydrology,2013, 477:17-32.
    157. Kioutsioukis I, Tarantola S, Saltelli A, et al. Uncertainty and global sensitivity analysis of road transportemission estimates [J]. Atmospheric environment,2004,38 (38):6609-6620.
    158.Kizza M, Rodhe A, Xu C Y, et al. Modelling catchment inflows into Lake Victoria:uncertainties in rainfall-runoff modelling for the Nzoia River [J]. Hydrological Sciences Journal,2011, 56(7):1210-1226.
    159. Lamb R, Beven K J, Myrab(?) S. Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model [J]. Advances in Water Resources,1998,22(4):305-317.
    160. Lawrence D, Haddeland I, Langsholt E. Calibration of HBV hydrological models using PEST parameter estimation [R], Oslo, Norway:Norwegian Water Resources and Energy Directorate, 2009.
    161.Lazzarotto P, Stamm C, Prasuhn V, et al. A parsimonious soil-type based rainfall-runoff model simultaneously tested in four small agricultural catchments [J]. Journal of Hydrology,2006, 321(l):21-38.
    162. Lenhart T, Eckhardt K, Fohrer N, et al. Comparison of two different approaches of sensitivity analysis [J]. Physicsand Chemistry of the Earth,2002,27(9):645-654.
    163. Li L, Ngongondo C S, Xu C Y, et al. Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa [J]. Hydrology Research, 2013,44(5):770-788.
    164. Li L, Xia J, Xu C Y, et al. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment of hydrological models [J]. Journal of Hydrology,2010,390(3):210-221.
    165. Liang X, Guo J Z. Intercomparison of land-surface parameterization schemes:sensitivity of surface energy and water fluex to model parameters [J]. Journal o f Hydrology,1997,279(1):183-190.
    166.Lindstr6m G, Harlin J. Spillway design floods in Sweden. Ⅱ:Applications and sensitivity analysis [J]. Hydrological Sciences Journal,1992,37(5):521-539.
    167.Lindstrom G, Rodhe A. Transit times of water in soil lysimeters from modelling of oxygen-18 [J]. Water, Air and Soil Pollution,1992,65(1):83-100.
    168. Kim A, Delleur J W. Sensitivity analysis of extended TOPMODEL for agricultural watersheds equipped with tile drains [J]. Hydrological Process,1997,11(9):1243-1261.
    169.Kobold M, Brilly M. The use of HBV model for flash flood forecasting [J]. Natural Hazards and Earth System Sciences,2006,6(3):407-417.
    170. Lee H, Moon Y. Analysis and development of conceptual rainfall-runoff model structures for regionalization purposes [J]. Journal of Civil Engineering,2007, 11(1):57-64.
    171.Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectivesn [J]. Journal of Hydrology,2000,235(3):276-288.
    172.Manache G, Melching C S. Identification of reliable regression and correlation-based sensitivity measures for importance ranking of water-quality model parameters [J]. Environmental Modelling and Software,2008,23(5):549-562.
    173.Mantovan P, Todini E. Hydrological forecasting uncertainty assessment:Incoherence of the GLUE methodology [J]. Journal of Hydrology,2006,330(1):368-381.
    174. Margulis S A, McLaughlin D, Entekhabi D, et al. Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 field experiment [J]. Water Resources Research,2002,42(W01407).
    175.McCuen R H. Modeling hydrologic change:statistical methods [M]. New York, Lewis Publishers, 2003.
    176. McIntyre N, Ballard B, Bruen M, et al. Modelling the hydrological impacts of rural land use change [J]. Hydrology Research,2013,145.
    177. McIntyre N, Lee H, Wheater H, et al. Ensemble predictions of runoff in ungauged catchments [J]. Water Resources Research,2005,41(W12434).
    178. Miao Z, Lathrop Jr R G, Xu M, et al. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands [J]. Environmental Modelling and Software,2011, 26(9):1112-1122.
    179.Midttomme G H, Tingvold J K. Historic extreme floods as input to dam safety analyses [J]. IAHS Publication,2002(271):155-160.
    180. Milly P C D, Julio B, Malin F, et al. Stationarity is dead [J]. Ground Water News and Views,2007, 4(1):6-8.
    181.Montanari A. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations [J]. Water Resources Research,2005, 41(W08406).
    182. Montanari A. A stochastic approach for assessing the uneertainty of rainfall-runoff simulations [J]. Water Resources Research,2004,40(1).
    183. Montanari A. What do we mean by "uncertainty"? The need for a consistent wording about uncertainty assessment in hydrology [J]. Hydrological Processes,2007,21(6):841-845.
    184. Moradkhani H, Sorooshian S, Gupta H V et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter [J]. Advances in Water Resources,2005,28(2):135-147.
    185. Morris M D. Factorial sampling plans for preliminary computational experiments [J]. Technometrics,1991,33(2):161-174.
    186.Neuman S P. Maximum likelihood Bayesian averaging of uncertain model predictions [J]. Stochastic Environmental Research and Risk Assessment,2003,17(5):291-305.
    187.Norstedt U, Brandesten C O, Bergstrom S, et al. Re-evaluation of hydrological dam safety in Sweden [J]. International Water Power and Dam Construction,1992,44(6):43-49.
    188. Nossent J, Elsen P, Bauwens W. Sobol sensitivity analysis of a complex environmental model [J]. Environmental Modelling and Software,2011,26(12):1515-1525.
    189.Ogden F L, Julien P Y. Runoff model sensitivity to radar resolution [J]. Joural of Hydrology,1994, 158(1):1-18.
    190.Oni S K, Futter M N, Molot L A, et al. Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed [J]. Science of The Total Environment,2014,473:326-337.
    191. Osidele O, Zeng W, Beck M. A random search methodology for examining parametric uncertainty in water quality models [J]. Water Science and Technology,2006,53(1):33-40.
    192.Pappenberger F, Beven K J, Ratto M. et al. Multi-method global sensitivity analysis of flood inundauti on models [J] Advance Water Resources,2008,31 (1):1-14.
    193.Pappenberger F, Cloke H L, Balsamo G, et al. Global runoff routing with the hydrological component of the ECMWF NWP system [J]. International Journal of Climatology,2010, 30(14):2155-2174.
    194. Parkin G, O'donnell G, Ewen J, et al. Validation of catchment models for predicting land-use and climate change impacts.2. Case study for a Mediterranean catchment [J]. Journal of Hydrology, 1996,175(1):595-613.
    195. Peel M C, Bloschl G. Hydrological modelling in a changing world [J]. Progress in Physical Geography,2011,35(2):249-261.
    196. Penman H L. Natural evaporation from open water. Bare soil and grass [R]. Proeeedings of the Royal Meteorologieal Society (series A), London,1948,193:120-145.
    197. Ratto M, Pagano A, Young P. State dependent parameter metamodelling and sensitivity analysis [J]. Computer Physics Communications,2007,177(11):863-876.
    198.Refsgaard J C, Havn(?) K, Ammentorp H C, et al. Application of hydrological models for flood forecasting and flood control in India and Bangladesh [J]. Advances in Water Resources,1988, 11(2):101-105.
    199.Refsgaard J C, Storm B. Chapter 23 MIKE SHE. Singh V P, Computer models of watershed hydrology [M]. Littleton, Colo, Water Resources Publications,1995.
    200.Renard B, Kavetski D, Kuczera, G. et al. Understanding predictive uncertainty in hydrologic modeling:Le challenge of identifying input and structural errors [J]. Water Resources Research, 2010,46(W05521).
    201.Renard B, Kavetski D, Leblois E, et al. Toward a reliable decomposition of predictive uncertainty in hydrological modeling:characterizing rainfall errors using conditional simulation [J]. Water Resources Research,2011,47(W11516).
    202. Rodriguez I, Rinaldo A. Fractal river basins [M]. Cambridge, Cambridge University Press,2000.
    203.Ruano M V, Ribes J, Seco A, et al. An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors [J]. Environmental Modelling and Software,2012,37:103-109.
    204. Ruddell B L, Kumar P. Ecohydrologic process networks:1. Identification [J]. Water Resources Research,2009,45(W3419).
    205. Salazar O, Joel A, Wesstrom I, et al. Modelling discharge from a coastal wastershed in southeast Sweden using an integrated framework [J]. Hydrological Processes,2010,24(26):3837-3851.
    206. Saltelli A, Chan K, Scott E M. Sensitivity Analysis [M]. New York, Wiley,2000.
    207. Saltelli A. Making best use of model evaluations to compute sensitivity indices [J]. Computter Physics Communication,2002,145(2):280-297.
    208. Saltelli A, Tarantola S, Campolongo F, et al. Sensitivity analysis in practice:a guide to assessing scientific models [M]. John Wiley and Sons,2004.
    209. Schulz K, Beven K J. Data-supported robust parameterizations in land surface-atmosphere flux predictions:Towards a top-down approach [J]. Hydrological Processes,2003,17(11):2259-2277.
    210. Seibert J. HBV light version 2, user's manual [R]. Department of Earth Sciences, Uppsala University, Uppsala,2005.
    211.Seo D J, Koren V, Cajina N. Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting [J]. Journal of Hydrometeorology, 2003,4(3):627-641.
    212. Servat E, Dezetter A. Rainfall-runoff modelling and water resources assessment in northwestern Ivory Coast. Tentative extension to ungauged catchments [J]. Journal of Hydrology,1993, 148(1):231-248.
    213. Shen Z Y, Chen L, Chen T, et al. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method:a case study of SWAT model applied to Three Gorges Reservoir Region, China [J]. Hydrology and Earth System Sciences,2012,16(1):121-132.
    214.Sieber A, Uhlenbrook S. Sensitivity analyses of a distributed catchment to verify the model structure [J]. Journal of Hydrology,2005,310(l):216-235.
    215. Singh V P, Woolhiser D A. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering,2002,7(4):270-292.
    216.Sincock A M, Wheater H S, Whitehead P G. Calibration and sensitivity analysis of a river water quality model under unsteady flow conditions [J]. Journal of Hydrology,2003,277(3):214-229.
    217.Sivapalan M. Pattern, process, and function:elements of a unified theory of hydrology at the catchment scale [M]. Wiley, Chichester,2005.
    218.Sivapalan M. Takeuchi K, Franks S W, et al. IAHS decade on predictions in ungauged basins (PUB),2003-2012:Shaping an exciting future for the hydrological sciences [J]. Hydrological Sciences Journal,2003,48(6):857-880.
    219. Slater A G, Clark M P. Snow data assimilation via an ensemble Kalman filter [J]. Journal of Hydrometeorology,2006,7(3):478-493.
    220. Smerdon B D, Allen D M, Grasby S E, et al. An approach for predicting groundwater recharge in mountainous watershed s [J]. Journal of Hydrology,2009,365(24):156-172.
    221.Soboly I M. Sensitivity estimates for nonlinear mathematical models [J]. Mathematical Modeling Computational Experiment,1993,1:407-414.
    222. Song X M, Kong F Z, Zhan C S, et al. Sensitivity analysis of hydrological model parameters using a statistical theory approach [J]. Advances in Water Science,2012,23(5):642-649.
    223.Stokstad E. Agriculture:dueling visions for a hungry world [J]. Science,2008,319(5869): 1474-1476.
    224. Sugawara M. The flood forecasting by a series storage type model [M]. International Symposium Floods and their Computation, Leningrad, USSR,1967.
    225. Sun N, Hong B, Hall M. Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed [J]. Hydrological Processes,2014,28(6):3018-3034.
    226. Tang Y, Reed P, Wagener T, et al. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation [J]. Hydrology and Earth System Sciences,2007, 11(2):793-817.
    227.Thiemann M, Trosset M, Gupta H, et al. Bayesian recursive parameter estimation for hydrologic models [J]. Water Resources Research,2001,37(10):2521-2535.
    228. Thorndahl S, Beven K J, Jensen J B, et al. Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology [J]. Joural of Hydrology,2008,357(3):421-437.
    229.Todini. Hydrological catchment modelling:past, present and future [J]. Hydrology and Earth System Sciences,2007,11(1):468-482.
    230. Uhlenbrook S, Seibert J, Leibundgut C, et al. Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure [J]. Hydrological Sciences Journal,1999,44(5):779-97.
    231. Van der Sluijs J P. A way out of the credibility crisis of models used in integrated environmental assessment [J]. Futures,2002,34(2):133-146.
    232. Van Griensven A, Meixner T, Grunwald S, et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models [J]. Journal of Hydrology,2006,324(1):10-23.
    233. Van Hoey S, Seuntjiens P, van der Kwast, et al. Incorporation of rating curve uncertainty in dynamic identifiability analysis and model structure evaluation [J]. Hydrology and Earth System Sciences,2012,9(10):11437-11485.
    234. Vorosmarty C J, Fekete B M, Meybeck M, et al. Global system of rivers:Its role in organizing continental land mass and defining land-to-ocean linkages [J]. Global Biogeochemical Cycles, 2000,14(2):599-621.
    235. Vrugt J A, Bouten W, Gupta H V, et al. Toward improved identifiability of hydrologic model parameters:The information content of experimental data [J]. Water Resources Research,2002, 38(1312).
    236. Vrugt J A, ter Braak C J F, Clar k M P J. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation [J]. Water Resources Research,2008,44(W00B09).
    237. Vrugt J A, ter Braak C J F, Gupta H V, et al. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling [J]? Stochastic Environmental Research and Risk Assessment,2009,23(7):1011-1026.
    238. Wagener T, Camacho L, Wheater H. Dynamic identifiability analysis of the transient storage model for solute transport in rivers [J]. Journal of Hydroinformatics,2002,4(3):199-211.
    239. Wagener T, Kollat J. Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox [J]. Environmental Modelling and Software,2007, 22(7):1021-1033.
    240. Wagener T, Sivapalan M, McDonnell J J, et al. Predictions in Ungauged Basins (PUB)-A catalyst for multi-disciplinary hydrology [J]. EOS, Newsletter of American Geophysical Union,2004, 85(44):451-457.
    241. Westervelt J D. Simulation modeling for watershed management [M]. Springer-Verlag, New York, 2001.
    242. White K L, Chaubey I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model [J]. Journal of the American Water Resources Association,2005, 41(5):1077-1089.
    243. Widen-Nilsson E, Gong L, Halldin S, et al. Model performance and parameter behavior for varying time aggregations and evaluation criteria in the WASMOD-M global water balance model [J]. Water Resources Research,2009,45(W05418).
    244. Widen-Nilsson E, Halldin S, Xu C. Global water-balance modelling with WASMOD-M:parameter estimation and regionalization [J]. Journal of Hydrology,2007,340(1):105-118.
    245.Wilby R L. Uncertainty in water resource model parameters used for climate change impact assessment [J]. Hydrological Processes,2005,19(16):3201-3219.
    246. Wohling T, Lennartz F, Zappa M. Technical note:updating procedure for flood forecasting with conceptual HBV-type models [J]. Hydrology and Earth System Sciences,2006,10(6):783-788.
    247. Wriedt G, Rode M. Investigation of parameter uncertainty and identifi ability of the hydrological model WaSiM-ETH [J]. Advances in Geosciences,2006,9:145-150.
    248.Xiong L, O'Connor K M. An empirical method to improve the prediction limits of the GLUE methodology in rainfall-runoff modeling [J]. Journal of Hydrology,2008,349(1):115-24.
    249. Xu C Y. Application of water balance models to different climatic regions in China for water resources assessment [J]. Water Resources Management,1997,11(1):51-67.
    250. Xu C Y. From GCMs to river flow:a review of downscaling methods and hydrologic modelling approaches [J]. Progress in Physical Geography,1999,23(2):229-249.
    251.Xu C Y, Mynett A. Application of uncertainty and sensitivity analysis in river basin management [J]. Water Science and Technology,2006,53(1):41-49.
    252. Xu C Y, Seibert J, Halldin S. Regional water balance modelling in the NOPEX area:development and application of monthly water balance models [J]. Journal of Hydrology,1996,180(1):211-236.
    253. Xu C Y, Widen E, Halldin S. Modelling hydrological consequences of climate change-progress and challenges [J]. Advances in Atmospheric Sciences,2005,22(6):789-797.
    254. Yang D W, Herath S, Musiake K. Developement of a geomorphology-based hydrological model for large catchments [J]. Annual Journal of Hydraulic Engineering,1998,42:169-174.
    255. Yang D W, Herath S, Musiake K. Hillslope-based hydrological model using catchment area and width functions [J]. Hydrological Sciences Journal,2002,47(l):49-65.
    256. Yang J, Reichert P, Abbaspour K C, et al. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China [J]. Journal of Hydrology,2008,358(1):1-23.
    257. Yang X, Ren L, Singh V P, et al. Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China [J]. Hydrology Research,2012,43(1):23-37.
    258. Yao C, Li Z, Bao H, et al. Application of a developed Grid-Xinanjiang model to Chinese watersheds for flood forecasting purpose [J]. Journal of Hydrologic Engineering,2009, 14(9):923-934.
    259. Zhan C, Song X, Xia J, et al. An efficient integrated approach for global sensitivity analysis of hydrological model parameters [J]. Environmental Modelling and Software,2013,41:39-52.
    260. Zhang A, Zhang C, Fu G, et al. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China [J]. Water Resources Management, 2012,26(8):2199-2217.
    261. Zhang D, Zhang L, Guan Y, et al. Sensitivity analysis of Xinanjiang rainfall-runoff model parameters:a case study in Lianghui, Zhejiang province, China [J]. Hydrology Research,2012, 43(1):123-234.
    262. Zhang Z, Chen X, Xu C Y, et al. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years [J]. Journal of Hydrology, 2011,409(1):81-93.
    263. Zhao R J, Zuang Y L, Fang L R, et al. Xinanjiang model [J]. Hydrological Forecasting Proceedings Oxford Symposium,1980,129:351-356.
    264. Zheng Y, Keller A A. Understanding parameter sensitivity and its management implications in watershed-scale water quality modeling [J]. Water Resources Research,2006,42(W05402).
    265. Zheng Y, Keller A A. Uncertainty assessment in watershed-scale water quality modeling and management:1. Framework and application of generalized likelihood uncertainty estimation (GLUE) approach [J]. Water Resources Research,2007,43(W08407).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700