用户名: 密码: 验证码:
锚固岩质边坡地震动力响应及锚固机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡失稳往往会导致巨大的人员伤亡和财产损失,尤其在地震中,这一灾害将更加严重,故而提高边坡抗震性能的加固技术研究在工程实践中具有重要意义。边坡加固工程中,锚固技术因施工方便、经济,扰动小,效果好等特点,得到了成功而广泛的应用,但对边坡锚杆的加强机理仍缺乏深入的认识,锚杆对边坡动力性能的影响研究尤为匮乏。现有的研究还不能很好的解释地震作用下锚固岩质边坡的破坏机理,还没有公认合理的方法来判断边坡的动力稳定性,地震作用下边坡锚杆的锚固机理研究还不深入。因此研究锚固边坡的抗震性能,进而实现边坡锚固的优化设计已成为工程实践中急需解决的问题。
     影响岩质边坡的稳定性的因素有很多,地震是最重要的外部影响因素之一,同一边坡在不同地震波的作用下其动力响应特征是不同的。岩质边坡的稳定性主要由岩体的结构控制,由于岩质边坡的结构形式多种多样,因此其破坏机理并不唯一。对于具有不同结构的岩质边坡,地震作用及锚杆的锚固作用也应该是不同的。锚杆的锚固作用主要应该是通过改善边坡岩体的结构特征,并体现在边坡的动力响应特征上。
     分析边坡的动力响应是研究边坡的破坏机理、动力稳定性以及锚固机理的重要研究手段。本文采用FLAC3D对一锚固顺层岩质边坡进行了数值模拟研究,通过对地震作用下锚固岩质边坡的位移、加速度、锚杆轴力等动力响应分析,发现锚杆轴力与其附近围岩的应变直接相关,并利用响应加速度傅立叶谱研究了锚固作用对边坡岩体宏观性能的影响。结果显示,边坡的相对位移时程曲线不能直接作为边坡是否破坏的判据,应进一步进行应变分析判断边坡是否破坏;锚杆能显著减小边坡的应变值,提高边坡岩体间的变形协调能力,增强边坡的抗震性能,岩体的应变越大,锚杆的锚固效果越好;边坡的永久位移是由较大地震加速度激发的,且在地震作用过程中存在累积效应;锚固作用能改善岩体的材料属性,但效果不明显。由于动荷载作用对边坡的名义剪应变和等效拉应变具有放大作用,故可根据“荷载激励法”来确定边坡破坏面的位置。
     通过输入不同的地震波,研究了波型以及振幅、频率及持时等地震动参数对同一顺层岩质边坡的地震动力响应的影响,得到了不同地震动参数对边坡动力响应的影响规律。虽然不同地震作用下,同一边坡的动力响应不同,但岩层交界面是动力响应特征的分界面,边坡的结构特征是边坡动力响应特性的主导因素,锚杆对岩质边坡的锚固作用主要是改变或改善了边坡的结构特征。因此,复杂的边坡地震动力稳定性问题可回归到边坡的结构特征上。
     为进一步探讨边坡锚杆在动载下的锚固作用与锚固机理,采用几种岩质边坡中常见的岩体结构元件破坏模型,探讨了地震力和锚固作用对不同岩体模型稳定性的影响。分析边坡锚杆系统在地震作用下力的传递过程,提出了一种单锚杆锚固体系的动力简化分析模型,并对模型的合理性进行了验证。利用提出的动力简化模型,基于锚杆荷载分布解析解对含有单结构面和二结构面的岩体模型进行了锚杆荷载分布的求解,讨论了岩体、锚杆的材料参数以及不同地震作用状态对锚杆荷载分布的影响,从受力分析的角度探讨了锚杆的锚固机理,并提出由多组结构面控制的岩质边坡的优化锚固方式。
     最后以石窟崖体作为工程案例进行分析。对于石窟崖体这种特殊的岩质边坡进行动力响应计算时,不可忽略其复杂的几何特征。为建立较为精细的石窟崖体3维模型,使用全站仪,利用激光测距的原理可获取石窟崖体表面的点云坐标,然后通过CAE软件进行辅助建模。基于边坡动力响应数值分析方法,对石窟崖体进行地震动力响应分析,得到了具有复杂几何特征的石窟崖体的动力响应特征,讨论了石窟的开凿对崖体动力响应的影响,并分析了地震作用下石窟的破坏模式及其原因。使用曾在石窟加固中使用过的小锚杆对模型上部岩体进行加固,并对锚固石窟模型进行动力计算,分析了锚固崖体的动力响应特征,探讨了小锚杆锚固的抗震性能并给出了工程建议。
     本文的研究有助于进一步认识锚固岩质边坡的地震动力响应规律,地震稳定性以及动力作用下边坡锚杆的锚固作用和锚固机理,为岩质边坡的锚固设计提供了一定的理论依据。
Slope failure wherefrom heavy casualties and property loss can occur will be a greater calamity in the earthquakes, so that it is of great significance in engineering practice to study how to improve the seismic performance of the slope reinforcement technology. As we know, the anchorage technique has been successfully and widely used due to its convenience, economy, less disturbance, and efficiency. However, the current understanding of the slope anchor's strengthening influence on the slope dynamic performance is still not thorough but deficient in research. The currently existing research still cannot abundantly account for the failure mechanism of rock slopes, and there is no method acknowledged to be a reasonable calculation of the seismic stability of rock slopes. Moreover, the anchoring mechanism researches of the bolts in the rock slope under earthquakes are lack of in-depth. Therefore, in engineering practice, it is urgent to study on the seismic performance of anchored rock slope, whereby the slope anchorage can be optimized.
     There are many factors affecting the stability of rock slope, and earthquake is one of the important external factors. Since the stability of rock slope is mainly controlled by rock mass structure, failure mechanism of rock slope varies with the structures. For the slopes of same structures but under different seismic waves, the seismic responses characteristics are different; And for rock slope of different structures, the effects of earthquake and the anchor effects of anchored rock slope also should be different. So the anchor effects should be improved by optimizing the structure characteristics of slope rock mass and the effects will be reflected on the dynamic responses characteristics of the slopes.
     Analysis of the slope seismic responses is an important means to research the slope failure mechanism, seismic stability and anchoring mechanism. In this paper, we established an anchored rock slope model and computed it using the finite difference software FLAC3D. The seismic responses, such as displacements, accelerations, axial forces of rock bolt, are analyzed so that the interaction between rock bolts and the surrounding rocks and the influences of the anchor on rock mass material properties are presented and discussed. The results show that the permanent displacement is excited by larger accelerations, and the increase of displacement is a cumulative process. Anchor can also improve the material properties of rock mass, but the effect is not obvious. We also give a failure criterion of rock slopes under the earthquakes based on the average tension strain and nominal shear strain suggested in this paper. Especially, the criterion only needs the data of displacements on the surface of slope which are easily obtained in engineering monitoring. Additional, a method to determine the failure surface is put forward base on the seismic simulation.
     In order to study the influences of different ground motion parameters, including amplitude, frequency and duration of earthquake, on the seismic responses of rock slopes, we applied different waves to the model, and then got the law of influences. The results showed that the structure characteristics are the dominating factor of the dynamic responses, and the main function of anchor is to improve the structure of slope in the aspect of anti-seismic. Hence, a complex analysis of the seismic stability of slope can be reduced to an analysis of the slope structure.
     To further explore the anchor role and mechanism of slope bolts under earthquakes, we adopted different damage models of rock mass structure components and discussed the influences of seismic force and anchor force on the rock mass stability. Then the transfer process of the force in the slope bolt system is analyzed, and a simplified dynamic model of single anchored rock system was presented. Based on the simplified model and the analytical solutions of the bolt axial force distribution, the distributions of bolt in the anchored rock model including single and double interfaces were calculated. Then the influences of different stress status in the process of earthquake, the rock mass and bolt material parameters on distribution of axial force were discussed. In addition, we also presented an anchoring mechanism of slope bolts from a perspective of force analysis, and put forward with an optimal anchoring design of rock slope which is controlled by multiple structural surfaces.
     The final part of this paper unfolds based on the analysis of Grottoes cliff. For such a special rock slope of the complex geometric features, the geometric characters cannot be ignored to simulate its seismic responses. We obtained the coordinates of points cloud on cliff surface using total station, and then built a relatively fine3D model with the CAE software. Based on the method of seismic responses of slope analysis, we simulated the seismic responses of grottoes cliff, obtained the dynamic responses characters of grottoes cliff, discussed the influences of digging grottoes on dynamic responses of cliff, and analyzed the possible failure modes and the causes, In addition, we simulated the seismic responses of anchored cliff by reinforcing the upper rock mass of the model with small bolts which was used in the grottoes reinforcement. Then the seismic performance of small bolts was discussed, and the suggestion of anchoring engineering was given.
     The results of this paper contribute to further understanding the seismic responses, seismic stability of anchored rock slope, and the anchor role and anchoring mechanism under the earthquakes. These also provide some theoretical basis for anchor design of rock slope.
引文
[1]刘红帅.岩质边坡地震稳定性分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [2]祁生文.边坡动力响应分析及应用研究[D].北京:中国科学院研究生院,2006.
    [3]郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理(第二版)[M].北京:人民交通出版社,2010.
    [4]时振梁,王健.中国地震活动性分区特征[J].地震学报,1995,17(1):20-24.
    [5]薄万举.GPS展示的中国大陆主要相对变形特征及强震活动研究[J].地球物理学进展,2013,28(2):0599-0606.
    [6]王恭先.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [7]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444.
    [8]许强,黄润秋.5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16(6):721-729.
    [9]刘爱文,夏珊,徐超.汶川地震交通系统震害及震后抢修[J].震灾防御技术,2008,3(3):243-250.
    [10]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [11]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [12]洪海春,徐卫亚.地震作用下岩质边坡稳定性分析综述[J].岩石力学与工程学报,2005,24(supp.1):4827-4836.
    [13]李宁,程国栋,谢定义,等.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.
    [14]黄理兴,陈奕柏.我国岩石动力学研究状况与发展[J]I岩石力学与工程学报,2003,22(11):1881-1886.
    [15]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [16]Hanna T H锚固技术在岩土工程中的应用[M].胡定等,译.北京:中国建筑工业出版社,1987.
    [17]Winsor C R. Rock reinforcement system[J]. International Journal of Rock Mechanics & Mining Sciences,1997,34(6):919-951.
    [18]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    [19]洪海春.边坡岩体锚固性能研究及其工程应用[D].南京:河海大学,2007.
    [20]程良奎,范景伦,韩军.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [21]叶海林,郑颖人,黄润秋,等.岩质边坡锚杆支护参数地震敏感性分析[J].岩土工程学报,2011,28(9):1374-1379.
    [22]郑颖人,叶海林,黄润秋.地震边坡失稳机理与稳定性分析探讨[R].兰州:百年兰大·名家讲坛,2010.
    [23]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12.
    [24]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631.
    [25]张乐文,李术才.岩土锚固的现状与发展[J].岩石力学与工程学报,2003,22(2):2214-2221.
    [26]程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报,2005,24(21):3803-3811.
    [27]程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价[J].岩石力学与工程学报,2008,27(5):865-872.
    [28]郭学彬,肖正学,张志呈.爆破振动作用的坡面效应[J].岩石力学与工程学报,2001,20(1):83-87.
    [29]许名标,彭德红.小湾水电站边坡开挖爆破震动监测成果分析[J].人民长江,2007,38(2):135-138.
    [30]刘亚群.动荷载作用下层状结构岩体边坡变形破坏机理与安全研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [31]CloughR W, Chopra A K. Earthquake stress analysis in earth dams[M]. California: Department of Civil Engineering, University of California,1965.
    [32]松井保,辛嘉靖Finite element slope stability analysis by shear strength reduction technique[J]土质工学会论文报告集,1992,32(1):59-70.
    [33]Ugai K, Leshchinsky D. Three-dimensional limit equilibrium and finite element analyses:a comparison of results[J]. Soils and Foundations,1995,35(4):1-7.
    [34]Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique,1999, 49(3):387-403.
    [35]Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique,1999,49(6):835-840.
    [36]Gudehus G有限元法在岩土力学中的应用[M].北京:中国铁道出版社,1983.
    [37]Babuska I. The finite element method with Lagrangian multipliers[J]. Numerische Mathematik,1973,20(3):179-192.
    [38]Ashford S A, Sitar N, Lysmer J, et al. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America,1997,87(3):701-709.
    [39]Zhang C H, Pekau O A, Jin F, et al. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures[J]. Soil Dynamics and Earthquake Engineering,1997,16(6):385-394.
    [40]许瑾,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,17(4):72-75.
    [41]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.
    [42]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68.
    [43]Parish Y, Abadi F N. Dynamic Behaviour of Earth Dams for Variation of Earth Material Stiffness[J]. World Academy of science Engineering and Technology,2009,50:2009.
    [44]王存玉,王思敬.边坡模型振动实验研究[M]//中国科学院地质研究所.岩体工程地质力学问题(七).北京:科学出版社,1987:65-74.
    [45]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学:E辑,2003,33(1):28-40.
    [46]祁生文.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [47]刘亚群,李海波,李俊如,等.爆破荷载作用下黄麦岭磷矿岩质边坡动态响应的UDEC模拟研究[J].岩石力学与工程学报,2004,23(21):3.
    [48]Liu Y Q, Li H B, Zhao J, et al. UDEC simulation for dynamic response of a rock slope subjectto explosions[J]. International Journal of Rock Mechanics& Mining Sciences,2004, 41:599-604.
    [49]肖克强,李海波,刘亚群,等.地震荷载作用下顺层岩体边坡变形特征分析[J].岩土力学,2007,28(8):1557-1564.
    [50]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,22(12):1943-1952.
    [51]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [52]言志信,张森,张学东,等.顺层岩质边坡地震动力响应及地震动参数影响研究[J].岩石力学与工程学报,2011,30(supp.2):3522-3528.
    [53]蔡德所.地震输入波形对三峡工程左岸坝段的动力影响研究[J].岩石力学与工程学报,1998,17(2):183-187.
    [54]彭定,陈玲玲.三峡船闸高边坡在地震作用下的稳定性分析[J].长江科学院院报,2001,18(6):47-49.
    [55]张平.岩石节理的动力剪切特性研究[D].重庆:重庆建筑大学,1994.
    [56]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80-86.
    [57]Kumsar H, Aydan O, Ulusay R. Dynamic and static stability assessment of rock slopes against wedge failures[J]. Rock Mechanics & Rock Engineering,2000,33(1):31-51.
    [58]陈建君.复杂山区斜坡的地震动力响应分析[D].成都:成都理工大学,2009.
    [59]李果.强震条件下层状岩体斜坡动力失稳机理研究[D].成都:成都理工大学,2008.
    [60]杨国香,伍法权,董金玉,等.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报,2012,31(4):696-702.
    [61]杨国香,叶海林,伍法权,等.反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J].岩石力学与工程学报,2012,31(11):2214-2221.
    [62]董金玉,杨国香,伍法权,等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学,2011,32(10):2977-2983.
    [63]董金玉,杨继红,杨国香,等.基于正交设计的模型试验相似材料的配比试验研究[J].煤炭学报,2012,37(1):44-49.
    [64]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程振动,2005,25(1):164-171.
    [65]郑颖人,叶海林,黄润秋,等.边坡地震稳定性分析探讨[J].地震工程与工程振动,2010(002):173-180.
    [66]Hammah R E, Curran J H, Yacoub T, et al. Stability analysis of rock slopes using the finite element method[C]//Schubert. EUROCK 2004 & 53rd Geomechanics Colloquium,2004.
    [67]中华人民共和国水利部.水工建筑物抗震设计规范[S].SL203-97.北京:中国水利水电出版社,1997.
    [68]中华人民共和国水利部.碾压式土石坝设计规范[S].SL274-2001.北京:中国水利水电出版社,2002.
    [69]Seed H B. Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Geotechnique,1979,29(3):215-263.
    [70]林宗元.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996.
    [71]Baker R, Garber M. Theoretical analysis of the stability of slopes[J]. Geotechnique,1978, 28(4):395-411.
    [72]Duncan J M. State of the art:limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering,1996,122(7):577-596.
    [73]Baker R. Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis[J]. International Journal of Solids and Structures,2003, 40(13):3717-3735.
    [74]Baker R, Shukha R, Operstein V, et al. Stability charts for pseudo-static slope stability analysis[J], Soil Dynamics and Earthquake Engineering,2006,26(9):813-823.
    [75]Li A J, Lyamin A V, Merifield R S. Seismic rock slope stability charts based on limit analysis methods[J]. Computers and Geotechnics,2009,36(1):135-148.
    [76]Hack R, Alkema D, Kruse G A M, et al. Influence of earthquakes on the stability of slopes[J]. Engineering Geology,2007,91(1):4-15.
    [77]李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析[J].山地学报,2007,25(2):184-189.
    [78]吕擎峰,殷宗泽,王叔华,等.拟静力法边坡稳定分析的改进[J].岩土力学,2005,26(supp.l):35-38.
    [79]陈洪凯,唐红梅,胡明,等.危岩锚固计算方法研究[J].岩石力学与工程学报,2005,24(8):1321-1327.
    [80]陈洪凯,唐红梅.三峡水库区危岩防治技术[J].中国地质灾害与防治学报,2005,16(2):105-110.
    [81]重庆市建设委员会.地质灾害防治工程勘察规范[S].DB 50/143-2003.2003.
    [82]Seed H B, Martin G R. The seismic coefficient in earth dam design[J]. Journal of Soil Mechanics and Foundations Division,1966,92(3):25-58.
    [83]Makdisi F I, Seed H B. Simplified procedure for evaluating embankment response[J]. Journal of the Geotechnical Engineering Division,1979,105(12):1427-1434.
    [84]Newmark N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965, 15(2):139-160.
    [85]Wilson R C, Keefer D K. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983,73(3):863-877.
    [86]肖克强.地震荷载作用下顺层岩体边坡变形特征及稳定性研究[D].武汉:中国科学院研究生院岩土力学研究所,2006.
    [87]Al-Homoud A, Tahtamoni W. Comparison between predictions using different simplified Newmarks'block-on-plane models and field values of earthquake induced displacements[J]. Soil Dynamics and Earthquake Engineering,2000,19(2):73-90.
    [88]Makdisi F I, Seed H B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division, 1978,104(7):849-867.
    [89]Kramer S L, Smith M W. Modified Newmark model for seismic displacements of compliant slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(7):635-644.
    [90]Kramer S L, Lindwall N W. Dimensionality and directionality effects in Newmark sliding block analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004, 130(3):303-315.
    [91]Sarma S K. Seismic stability of earth dams and embankments[J]. Geotechnique,1975,25(4): 743-761.
    [92]王思敬,张菊明.岩体结构稳定性的块体力学分析[J].地质科学,1980,1:19-33.
    [93]王思敬,薛守义.岩体边坡楔形体动力学分析[J].地质科学,1992,2:177-182.
    [94]Wang S J, Xue S Y, Maugeri M, et al. Dynamic stability of the left abutment in the Xiaolangdi project on the Yellow River[C]. Proceedings International Symposium on Assessment and Prevention of Failure Phenomena in Rock Engineering, Ankara,1993:5-7.
    [95]Madabhushi S P G, Haigh S K, Subedi B R. Seismic behaviour of steep slopes[C]. Proceedings of the International Conference on Physical Modelling in Geotechnics, A A Balkema,2002:489-494.
    [96]Ng G W W, Li X S, Van Laak P A, et al. Centrifuge modeling of loose fill embankmen' tsubjected to uni-axial and bi-axial earthquakes[J]. Soil Dynamics and Earthquake Engineering,2004,24(4):305-318.
    [97]朱宏伟,项琴.锚杆支护边坡动力响应规律及锚固参数影响[J].公路交通科技,2011,28(7):30-34.
    [98]Wang B L, Garga V K. A numerical method for modelling large displacements of jointed rocks. I. Fundamentals[J]. Canadian Geotechnical Journal,1993,30(1):96-108.
    [99]杨果林,文畅平.格构锚固边坡地震响应的振动台试验研究[J].中南大学学报(自然科学版),2012,43(4):1482-1493.
    [100]叶海林,郑颖人,陆新,等.边坡锚杆地震动特性的振动台试验研究[J].土木工程学报,2011,44(supp.):152-158.
    [101]叶海林,郑颖人,李安洪,等.地震作用下边坡预应力锚索振动台试验研究[J].岩石力学与工程学报,2012,31(supp.1):2847-2854.
    [102]叶海林,郑颖人,黄润秋,等.锚杆支护岩质边坡地震动力响应分析[J].后勤工程学院学报,2010,26(4):1-7.
    [103]Phillips S. Factors affecting the design of anchorages in rock[J]. Cementation Research Report,1970,48:70.
    [104]尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报,2005,24(6):925-928.
    [105]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001,23(6):696-699.
    [106]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [107]Xiao S J, Chen C F. Mechanical mechanism analysis of tension type anchor based on shear displacement method[J]. Journal of Central South University of Technology,2008,15:106-111.
    [108]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [109]曹国金,姜弘道,熊红梅.一种确定拉力型锚杆支护长度的方法[J].岩石力学与工程学报,2003,22(7):1141-1145.
    [110]郭永建,孙阳.全长粘结锚杆在岩质边坡中的受力形式分析[J].力学与实践,2012,34(003):18-22.
    [111]Ferrero A M. The shear strength of reinforced rock joints[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1995,32(6):595-605.
    [112]Wullschlager D, Natau O. The bolted rockmass as an anisotropic continuum - Material behaviour and design suggestion for rock cavities[C]. Proceedings of the 6th ISRM Congress, Montreal,1987:245-248.
    [113]朱维申,张玉军.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,17(2):1-6.
    [114]Chen H K, Tang H M, Wang R, et al. Research on equivalent processes of rock mass parameters with anchor piles[J]. Applied Mathematics and Mechanics,2001,22(8):965-971.
    [115]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(10):279-282.
    [116]Farmer I W. Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1975,12(11):347-351.
    [117]Li C, Stillborg B. Analytical models for rock bolts[J]. International Journal of Rock Mechanics & Mining Sciences,1999,36(8):1013-1029.
    [118]Cai Y, Esaki T, Jiang Y J. A rock bolt and rock mass interaction model[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(7):1055-1067.
    [119]Malmgren L, Nordlund E. Interaction of shotcrete with rock and rock bolts-A numerical study[J]. International Journal of Rock Mechanics & Mining Sciences,2008,45(4):538-553.
    [120]战玉宝,毕宣可,尤春安,等.预应力锚索锚固段应力分布影响因素分析[J].土木工程学报,2007,40(6):49-53.
    [121]Tannant D D, Brummer R K, Yi X. Rockbolt behaviour under dynamic loading:field tests and modelling[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1995,32(6):537-550.
    [122]Ivanovic A, Neilson R D, Rodger A A. Influence of prestress on the dynamic response of ground anchorages[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002, 128(3):237-249.
    [123]Ivanovic A, Starkey A, Neilson R D, et al. The influence of load on the frequency response of rock bolt anchorage[J]. Advances in Engineering Software,2003,34(11):697-705.
    [124]董建华,朱彦鹏.土钉土体系统动力模型的建立及地震响应分析[J].力学学报,2009,41(2):236-242.
    [125]刘波,韩彦辉FLAC原理,实例与应用指南[M].北京:人民交通出版社,2005.
    [126]王抒扬.深层搅拌桩复合地基抗液化分析[D].成都:西南交通大学,2009.
    [127]吴圣林.崩塌一推覆滑移地质体成因机理及其稳定性研究[D].徐州:中国矿业大学,2008.
    [128]Itasca Consulting Group Inc. FLAC Version 6.0 (Fast Lagrangian Analysis of Continua) User's Manual[M]. USA:Itasca Consulting Group Inc.,2008.
    [129]Itasca Consulting Group Inc. FLAC3D Version 4.0 (Fast Lagrangian Analysis of Continua in 3 Dimensions) User's Manual[M]. USA:Itasca Consulting Group Inc.,2009.
    [130]王省哲.计算力学[M].兰州:兰州大学出版社,2006.
    [131]毕忠伟,张明,金峰,等.地震作用下边坡的动态响应规律研究[J].岩土力学,2009,30(supp.l):180-183.
    [132]刘晓.汶川地震区斜坡动力反应研究[D].武汉:中国地质大学,2010.
    [133]Kolsky H. Stress waves in solids[M]. New York:Courier Dover Publications,1963.
    [134]张刘平.地震作用下锚固浅层土边坡动力分析[D].兰州:兰州大学,2012.
    [135]Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Journal of Soil Mechanics and Foundations Division,1973,99(5):421-427.
    [136]陈育民,徐鼎平FLACIFLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [137]张森.顺层岩质边坡地震动力响应和稳定性研究[D].兰州:兰州大学,2011.
    [138]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,4(10):57-61.
    [139]张鲁渝,郑颖人,赵尚毅,等.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,1(1):21-27.
    [140]林杭,曹平,宫凤强.位移突变判据中监测点的位置和位移方式分析[J].岩土工程学报,2007,29(9):1433-1438.
    [141]薛守义.岩体边坡动力性研究[D].北京:中国科学院地质与地球物理研究所,1989.
    [142]祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报,2006,49(2):518-523.
    [143]徐光兴,姚令侃,李朝红,等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报,2008,30(6):918-923.
    [144]黄继忠.云冈石窟地质特征研究[J].东南文化,2003,5:91-93.
    [145]谭科艳.“十里河工程”对周边环境及云冈石窟文物保护影响的研究[D].北京:中国地质科学院,2006.
    [146]晏鄂川,方云.云岗石窟立柱岩体安全性定量评价[J].岩石力学与工程学报,2004,23(supp.2):5046-5049.
    [147]杨晓杰,彭涛,李桂刚,等.云冈石窟立柱岩体长期强度研究[J].岩石力学与工程学报,2009,28(supp.2):3402-3408.
    [148]孙博,彭宁波,王逢睿.云冈石窟第19窟西耳窟地震动力响应.西南交通大学学报,2012,47(4):573-579.
    [149]刘积魁.云冈石窟9、10窟三维稳定性分析与地震动力响应模拟[D].武汉:中国地质大学,2011.
    [150]彭宁波,言志信,刘子振,等.地震作用下锚固边坡稳定性数值分析[J].工程地质学报,2012,20(1):44-50.
    [151]彭振斌.锚固工程设计计算与施工[M].武汉:中国地质大学出版社,1997.
    [152]杨为民.锚杆对断续节理岩体的加固作用机理及应用研究[D].济南:山东大学,2009.
    [153]Huang Z. Stabilizing of rock cavern roofs by rock bolts[D]. Trondheim:Norwegian University of Science and Technology,2001.
    [154]Fairhurst C, Singh B. Roof bolting in horizontally laminated rock[J]. Engineering Mining Journal,1974(Feb.):80-90.
    [155]Snyder V W. Analysis of beam building using fully grouted roof bolts[C] Stephanson. In Paper in Rock Bolting, Theory and Application in Mining and Underground Construction, A A Balkema, Rotterdam, Netherlands,1984:187-194.
    [156]Roko R O, Daemen J K. A laboratory study of bolt reinforcement influence on beam building,beam failure and arching in bedded mine roof[C]. Proceedings of International Symposiumon Rock Bolting, Abisko Sweden,1983:205-217.
    [157]孙广忠,孙毅.岩体力学原理[M].北京:科学出版社,2011.
    [158]蔡汉成.边坡地震动力响应及其破坏机制研究[D].兰州:兰州大学,2011.
    [159]Sun J Z, Tian X F. Numerieal analysis of the influence of structure Planes on earthquake motion in rock slopes[C]. Geological Engineering Problems in Major Construction Projects, Chengdu,2009:451-462.
    [160]Ren F F, Yang Z J, Chen J F, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials,2010,24(3):361-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700