用户名: 密码: 验证码:
极地冰下基岩取心钻具反扭装置与钻头钻压平衡关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻取甘布尔采夫冰下山脉下的冰心与冰层下的基岩岩心,无论是对南极地球科学、微生物学、岩石构造研究,还是对极地冰川的形成、运动和发展等相关领域研究,甚至对研究全球的气候变化均具有重要的科学意义和社会价值。首先详细介绍了目前极地冰层钻探和冰下基岩钻探应用的铠装电缆电动机械钻具研究现状,归纳总结国内外各类反扭装置类型,重点对铠装电缆电动机械冰下基岩取心钻具的两大关键技术——大扭矩反扭装置和小钻压钻头工作机理进行深入的理论和实验研究,并对大扭矩反扭装置和小钻压钻头的相互影响规律进行研究。论文主要取得了以下研究成果:
     1、通过理论计算,确定了铠装电缆电动机械钻具钻进冰层和岩石所需要的扭矩,并将其作为反扭装置的设计依据。建立了反扭装置与孔壁相互作用力学模型,对板簧式和滑刀式反扭装置进行了理论计算,得出两种反扭装置可提供的反扭矩范围。根据理论分析与计算的结果,对板簧式、滑刀式、U形板簧式反扭装置进行优化设计和加工。在铠装电缆电动机械取心钻具反扭装置的参数选择、力学分析和结构设计等方面提出了完整的设计理论,为反扭装置的设计奠定了重要的理论基础。
     2、建立了反扭装置测试平台,对三种不同反扭装置在不同温度冰孔中的性能进行了测试。实验结果表明:同一反扭装置随着冰孔温度降低,可提供的最大反扭矩和下滑阻力均增大;同一温度冰孔,滑刀式反扭装置可提供的最大反扭矩最大,在67~267N m之间,U形板簧次之,为6.5~138N m,板簧式最小,为2.5~35.2N m;滑刀式反扭装置在振动工况下下滑阻力在209~454N范围内,静态工况时下滑阻力可达到1000N;板簧式反扭装置下滑阻力为19.3~243N;U形板簧式反扭装置下滑阻力为12.1~551.9N。滑刀式反扭装置提供的反扭矩较大,但同时产生的下滑阻力也大,可用于自重较大,且需要抵抗的反扭矩也大的基岩钻具中;板簧式反扭装置提供的反扭矩小,产生的下滑阻力也小,适合用于自重不大,且钻进扭矩也不大的冰层钻具中;U形板簧式反扭装置在抵抗与板簧式反扭装置相同扭矩时,所产生的下滑阻力,远远大于板簧式,而当其产生的下滑阻力与滑刀式相当时,所能抵抗的反扭矩又远远小于滑刀式,因此U形板簧式反扭装置不适宜用在铠装电缆电动机械钻具中。
     3、建立了极地钻探钻进参数测试平台,对共四类十一种钻头类型进行了实验测试。实验结果表明:在实验所确定的钻压范围内,常规钻头比压低,难以钻取可钻性等级为Ⅷ级的花岗岩。齿形钻头底唇面积小,比压大、钻速高。当钻压为3kN时其平均机械钻速可达2.24m/h,远高于其它类型的钻头。仿生金刚石钻头的机械钻速比齿形金刚石钻头略低,但远远高于常规底唇面钻头。齿形金刚石钻头在获得较高的机械钻速的同时,钻进产生扭矩也较大,为28.77~51.57N·m。仿生金刚石钻头E1~E3的扭矩比齿形金刚石钻头略低。齿形金刚石钻头寿命低,预计使用寿命小于等于4m,仿生金刚石钻头预计使用寿命大于等于10m。
     4、通过将钻头实验测试得出的扭矩参数与不同反扭装置实验数据进行对比,得出了滑刀式反扭装置为最佳的反扭装置类型。结合小钻压钻头实验和反扭装置实验结果对二者相互影响规律进行分析:在钻具自重一定时,钻具可提供的有效钻压、机械钻速和相应的钻进扭矩随着滑刀式反扭装置滑刀外径的增大而减小,且钻具自重越大,这种影响越小;当反扭装置在-10℃冰层中工作时,钻具可提供的有效钻压和机械钻速比在-5℃冰层中均有所下降,钻具自重为3.5kN和5kN时,-10℃冰层中的有效钻压平均比-5℃冰层分别减小3.3%和2.2%。反扭装置在-10℃冰层中工作时,钻具的机械钻速比-5℃冰层减小0.1m/h左右。在同一钻具自重时,齿形孕镶金刚石钻头机械钻速随着滑刀外径的增大的减小幅度比仿生金刚石钻头小,在钻具自重为3.5kN时,减小幅度为3.7%,仿生孕镶金刚石钻头E1、E2分别为9.9%和12.9%。通过列表数据可看出滑刀式反扭装置在对机械钻速影响不大的情况下,可抵抗的反扭矩远远高于钻进所需扭矩。
     设计的滑刀式反扭装置和齿形钻头在钻具自重为3.5kN时,即可获得大于3m/h的机械钻速,且反扭装置可提供的反扭矩大于钻进扭矩,扭矩安全系数达到3.61,可以满足铠装电缆电动机械冰下基岩取心钻进的需要。
Bedrock cores obtained from Gamburtsev subglacial mountain provide critical scientificsignificance and social value not only on Antarctic earth science, microbiology and rock structurebut also on the relative research field of formation, movement and development of polar glaciersor even global climate. This thesis presents thorough introduction on current cable-suspendedelectro-mechanical drill for polar ice and subglacial bedrock exploration and classifications ofvarious types of antitorque system used by different countries. Particularly theoretical andexperimental research on two key technologies for design of armed cable-suspendedelectro-mechanical subglacial coring drill–large anti-torque device and low drill load (WOB)were discussed, which is on the behalf of preferred type selection for subgalcial bedrock drillingand research on mutual influence law between large antitorque system and low drill load. Themain achievements in this thesis are as following:
     1. According to theoretical calculations, the requested torque of armed cable-suspendedelectro-mechanical subglacial coring drill for ice and rock was determined and based on whichantitorque system was designed. On the basis of summarizing the types of antitorque system, thepaper proposes the antitorque system design principles and builds up the mathematical model forcalculation of its main parameters. Through theoretical calculation for leaf spring and skateantitorque system, the dependence of radial force vs torque was investigated, and the torqueworking rang of leaf spring and skate antitorque system were obtained. Leaf spring type, slideknife type and U shaped leaf spring were optimally designed and manufactured on the basis oftheoretical calculations. This paper presents a complete theoretical analysis on design parameterschoosing, mathematic calculation, mechanical designing for design of antitorque system of armedcable-suspended electro-mechanical coring drill, and lays an important theoretical basis for designof antitorque system.
     2. Antitorque system test stand was built to make performance tests on three differentantitorque system in ice holes with different temperatures. The experimental results show that boththe maximum anti-torque and sliding resistance of the same antitorque system decreased withdecreasing temperature of ice hole. At the same temperature of ice holes, skate antitorque systemcan provide maximum antitorque (67~267N·m), compared with U-shaped blade (6.5~138N·m)and leaf spring type (2.5~40N·m). Sliding resistance of skate antitorque system is within209~454N in vibration condition, and could achieve to1000N in static condition; slidingresistance of leaf spring type antitorque system is19.3~243N; sliding resistance of U-shaped bladeis12.1~551.9N, and when its thickness of blade is0.1and0.2mm sliding resistance is similar withthat of leaf spring antitorque system, while when the its thickness is0.5and0.8mm, slidingresistance is similar with that of skate antitorque system. Comprehensive considering the workingconditions of armed cable drill, skate antitorque system can provide both large anti-torque andsliding resistance, which can be used in bedrock drilling that needs high dead weight and largeantitorque; Leaf spring type antitorque system provide smaller antitorque and sliding resistance,and it capable to use in ice drilling that requests low dead weight and drilling torque; U-shaped blade antitorque system can produce larger sliding resistance than that of leaf spring type whenresists the same torque as leaf spring type, while it produce much smaller antitorque than skatetype with same sliding resistance as skate type. Thus U-shaped blade antitorque system does notsuit for armed cable-suspended electro-mechanical coring drill.
     3. Drill bit test stand was built to make performance tests on eleven different kinds of drillbits. The experimental results show: In the experimental WOB range, the specific pressure ofnormal bit is too low to drill granite with VIII drillability. Teeth drill bit owns small bottom liparea, high specific pressure and rate of penetration (ROP). The average ROP can achieve2.24m/hwith3kN drill load, which is rather higher than other types drill head. ROP of bionic diamond bitis a little bit lower than that of teeth bit but rather higher than that of normal diamond bit. Teeth bitcan obtain high ROP and simultaneously large torque (28.77~51.57N·m). Torque of bionic bit(E1~E3) is a little bit lower than that of teeth bit. Life time of teeth bit is shorter than that of otherbits. Predicted life time of teeth bit is less than4m, while for bionic bit is more than10m.
     4. It was concluded the skate type antitorque system is the best by contrasting the torqueparameters obtained from the drill bit experiments and anti-torque provided by different kinds ofantitorque system; Also interaction effect of results from both low WOB bit test and antitorquesystem experiment was analyzed. Effective WOB, ROP and accordingly drilling torque providedby drill at given gravity of drill decreases with increasing outer diameter of the skate styleantitorque system, which phenomenon declines with increasing weight of drill. Effective WOBand ROP provided by antitorque system of drill decreases at-10℃compared with-5℃. Withgiven drill weight3.5kN and5kN, the effective WOB at-10℃reduced3.3%and2.2%comparedwith that at-5℃. ROP at-10℃reduced about0.1m/h compared with that at-5℃. ROP oftoothed type diamond-impregnated bit at the same dead weight decreases with increasing outerdiameter of skate decreased which is less affected compared with that of bionic diamond bit,which at3.5kN of drill weight decreased3.7%while bionic diamond-impregnated bit E1and E2decrease9.9%and12.9%, respectively. Skate antitorque system affects least on ROP and canresist torque more than requirement during drill.
     Designed skate antitorque system and toothed drill bit with drill weight3.5kN can achieveROP more than3m/h, provide antitorque more than drilling demand and guarantee safety factor3.61, which satisfy drilling requirements of armed cable subglacial bedrock coring drill.
引文
[1]胡建民,刘晓春,赵越等.南极普利兹造山带性质及构造变形过程[J].地球学报,2008,29(3):343-354.
    [2]刘小汉,赵越,刘晓春,俞良军.东南极格罗夫山地质特征—冈瓦纳最终缝合带的新证据[J].中国科学(D辑),32(6):457-468.
    [3]刘晓春.东南极普里兹带多期变质作用及其对罗迪尼亚和冈瓦纳大陆重建的启示[J].岩石学报,2009,25(8):1809-1818.
    [4]钱维宏.试论冈瓦纳古陆的形成和裂解[J].地质力学学报,1997,3(1):21-29.
    [5]刘小汉,郑祥身等,南极洲大陆构造区划和冈瓦纳运动[J].南极研究(中文版),1991,3(2):1-9.
    [6]陈延愚,赵越,任留东,沈炎彬.南极地质演化及其冈瓦纳古陆裂解的有关问题[J].华北地质矿产杂志,1994,9(1):3-20.
    [7] Lewis R.J. Sax’s dangerous properties of industrial materials/9th Ed. VanNo-strand Reinhold,1996, I–III.
    [8]陈百炼,张人禾,效存德,卞林根,张延军.东南极Dome A近地面气温及雪层温度的观测研究[J].科学通报,2010,55(11):1048-1054.
    [9] Antarctica Agreements: Antarctic Treaty System, Protocol on EnvironmentalProtection to the Antarctic Treaty, Antarctic Conservation Act. Books LLC,2010.–32p.
    [10]韩俊杰,韩丽丽,徐会文,于达慧,曹品鲁,Pavel Talalay.极地冰层取心钻进超低温钻井液理论与实验研究[J].探矿工程(岩土钻掘工程),2013,40(6):23-26.
    [11] Chester C. L.. The History of Early Polar Ice Cores [J]. Cold regions research andEngineering Laboratory, CRREL TR-08-1,2008:1-39.
    [12] Johannes W..1986. Recommendations for a U.S. Ice Coring Program.
    [13] Hansen B. L.. Deep Core Drilling in Ice [J]. Mem. Natl Inst. Polar Res.,1994,49(Spec. Issue):5-8.
    [14] Herbert T. Ueda, P. G. Talalay. Fifty Years of Soviet and Russian Drilling Activityin Polar and Non-Polar Ice [J]. Cold Regions Research and Engineering Laboratory,CRREL TR-07-20,2007:1-39.
    [15] Wumkes M. A.. Development of the U.S. deep coring ice drill [J]. Mem. ofNational Inst. of Polar Research.1994,49:41-51.
    [16] Truffer M., Motyka R.J., Harrison W.D., Echelmeyer K.A., Fisk B., Tulaczyk S.Subglacial drill-ing at Black Rapids Glacier, Alaska, U.S.A.: drilling method andsample descriptions [J]. J. of Glaciol.,1999,45(151):495-505.
    [17] Treshnikov A.F., ed. Vtoraya kontinental’naya ekspeditsiya1956-1958gg.Obshchee opisanye (Second Continental Expedition of1956-1958. GeneralDescription)[J]. Trudy Sovetskoy antarkti-cheskoy ekspeditsii (Transactions of SovietAntarctic Expedition),1960,8:1-207.(Text in Russian).
    [18] Susuki Y., Shimbori K.. The drill system used by the21st Japanese AntarcticResearch Expedition and its later improvement [J]. Mem. of National Inst. of PolarResearch.1982,24:259-273.
    [19] King J.C. Turner J. Antarctic meteorology and climatology [J]. Cambridge Univ.Press.1997.
    [20] Johnson J.A., Mason W.P., Shturmakov A.J., Haman S.T., Sendelbach P.J.,Mortensen N.B., Augustin L.J., Dahnert K.R.. A new122mm electromechanical drillfor deep ice-sheet coring (DISC):5. Experience during Greenland field testing [J].Ann. of Glaciology,2007,47:54-60.
    [21] Hansen B.L. Deep core drilling in the East Antarctic Ice sheet: a prospectus [J].Ice-Core Drilling: Proc. of the Symp., Univ. of Nebraska, Lincoln, USA,28-30Aug.1974. Lincoln, Univ. of Nebraska Press.1976:29-36.
    [22] Gundestrup N.S., Johnsen S.J., Reeh N.. ISTUK: a deep ice core drill system [J].USA CRREL Spec. Rep.84-34. Hanover, USA CRREL,1984:7-19.
    [23] Gosink T.A., J.J.Kelley, M.A.Tumeo et al. Fluids for use in deep ice-core drilling[J]. Memoirs of National Institute of Polar Research (Japan).1994,49:335-346.
    [24] B.B. Kudryashov, N.I. Vasiliev, P.G. Talalay, V.M. Zubkov,etc. Deep ice coring atVostok Station (East Antarctica) by an electromechanical drill [J].Mem. Natl Inst.Polar Res., Spec. Issue,2002,56,91-102.
    [25] Herbert T. Ueda. Some thoughts on deep core drilling systems design [J]. Mem.Natl Inst. Polar Res., Spec. Issue,2002,56,126-135.
    [26] Yoshiyuki Fujii, Nobuhiko Azuma, Yoichi Tanaka, et al. Deep ice core drilling to2503m depth at Dome Fuji, Antarctica [J]. Mem. Natl Inst. Polar Res., Spec. Issue,2002,56:103-116.
    [27] P. G. Talalay, Fan Xiaopeng, Xu Huiwen, et al. Drilling Fluid Technology In IceSheets: Hydrostatic Pressure And Borehole Closure Considerations [J]. Cold RegionsScience and Technology,2014,98:47-54.
    [28] Ueda H.T., Garfield D.E. Core drilling through the Antarctic ice sheet [J]. USACRREL Tech. Rep.231. Hanover, USA CRREL,1969:1-17.
    [29] Vasiliev N.I. and P.G. Talalay Twenty Years of Drilling the Deepest Hole in Ice[J]. Scientific Drilling.2011,11:41-45.
    [30] Vasiliev N.I., Talalay P.G. Burenie podlednikovikh gornyh porod na archipelageSevernaya Zemlya [Subglacial drilling on Severnaya Zemlya archipelago][J].Transactions of the8th International Research-to-Practice Conference “Mineralresources development of Polar Regions: Problems and Solving”,7-9Apr.,2010,Vorkuta, Russia.2010:27-31.(Text in Russian)
    [31] Vasiliev N.I., Talalay P.G., Dmitriev A.N. et al. Directional drilling in ice sheets[J]. Transactions of Mining Institute,2010,187:31-35.[Text in Russian]
    [32] Kelley J.J., Stanford K., Koci B., et al. Ice coring and drilling technolo-giesdeveloped by the Polar Ice Coring Office [J]. Ice Drilling Technology, Proc. of theFourth Int. Workshop on Ice Drilling Technology, Tokyo, April20-23,1993. Mem. ofNational Inst. of Polar Research,1994,49:24-40.
    [33] Stanford K. An engineering, environmental and logistical analysis of the PolarIce Coring Office13.2-cm ice coring system [J]. PICO, University Fairbanks, Alaska.1992: CP-92-2,1-17.
    [34] Mason W.P., Alexander. J, Shturmakov A.J., Johnson J.A. A new122mmelectromechanical drill for deep ice-sheet coring (DISC):2. Mechanical design [J].Ann. of Glaciology,2007,47:35-40.
    [35] Thompson L.G., Tao T., Davis M.E., et al. Tropical climate instability: the lastglacial cycle from a Qinghai-Tibetan ice core [J]. www.sciencemag.org Science,1997,20(276):1821-1825.
    [36] Davis M.E., Thompson L.G., Yao T.D., et al. Forcing of the Asian monsoon onthe Tibetan Plateau: Evidence from high-resolution ice core and tropical coral records[J]. Journal of Geophysical research,2005,110:1-13.
    [37] Zagorodnov V., Thompson L. G., Ginot P., et al. Intermediate-depth ice coring ofhigh-altitude and polar glaciers with a lightweight drilling system [J]. Journal ofGlaciology,2005,51(174):491-501.
    [38]王士猛,效存德,谢爱红等. NEEM计划2537.36m透底深冰心的钻取与成果概述[J].冰川冻土,2011,22(3):589-594.
    [39]中国第29次南极科学考察.
    [40] Ueda H T and Garfield D E. Drilling through the Greenland ice sheet [J]. ColdRegions Research and Engineering Laboratory, Special Report126,1968:1-15.
    [41] Ueda H.T.(2007): Byrd Station drilling1966–69. Ann. of Glaciol.,47,24-27.
    [42] Dahl-Jensen D., Gundestrup N.S.(1987): Constitutive properties of ice at Dye3,Greenland. The Physi-cal Basis of Ice Sheet Modelling (Proceedings of the VancouverSymposium, August1987). IAHS Publ.,170,31-43.
    [43] Talalay P G. Review on Subglacial Till and Bedrock Drilling [R]. TechnicalReport PRC01-2011.2011:1-50.
    [44] Kudryashov B B, Vasiliev N I, Talalay P G. KEMS-112Electromechanical IceCore Drill [J]. Ice Drilling Technology. Proceedings of the Fourth InternationalWorkshop on Ice Drilling Technology, Tokyo,1993:138-152.
    [45] Ueda H T and Talalay P G. Fifty Years of Soviet and Russian Drilling Activity inPolar and Non-Polar Ice [M].2006.
    [46].Gow, A.J., Meese, D.A.. Nature of basal debris in the GISP2and Byrd ice coresand its relevance to bed processes [J]. Annals of Glaciology,1996,22:134-140.
    [47] Steig E J, Morse D L, Waddington E D, et al. Wisconsinan and holocene climatehistory from an ice core at taylor dome, western ross embayment, antarctica [J].Geografiska Annaler,2000,82A(2-3):213-235.
    [48] Walter H. H. Instrumentation for the PICO deep ice coring drill[J]. Ice DrillingTechnology [J]. Proceedings of the Fourth International Workshop on Ice DrillingTechnology, Tokyo,1993:69-77.
    [49] Mulvaney R, Alemany O and Possenti P. The Berkner Island (Antarctica)ice-core drilling project [J]. Annals of Glaciology,2007,47:115-124.
    [50] http://www.neem.ku.dk
    [51] E. Wehrle. A Shallow Core-Collecting Mechanical Ice Drill [J]. Australianglaciological research,1982-1983:196-201.
    [52] John H.Rand. The USA CRREL Shallow Drill [J]. Ice Core Drilling, America,1976:133-137.
    [53] Johnsen S.J., Dansgaard W., Gundestrup N., et al. A fast light-weight core drill[J]. J. Glaciol.,1980,25(91),169-174.
    [54] Gundestrup N.S., Jonsen S.J., Reeh N.. ISTUK: a deep ice core drill system. Icecore quality in electromechanical drilling [J]. Proc. of the Second Int.Workshop/Symposium on Ice Drilling Technology. US Army Cold Regions Researchand Engineering Laboratory, Hanover, USA. USA CRREL1984, Spec. Rep.84-34,7-19.
    [55] Gillet F., Donnou D., Girard C., Manouvrier A., Rado C., Ricou G.. Ice corequality in electromechanical drilling [J]. Proc. of the Second Int.Workshop/Symposium on Ice Drilling Technology. US Army Cold Regions Researchand Engineering Laboratory, Hanover, USA. USA CRREL,1984, Spec. Rep.84-34,73-80.
    [56] Holdsworth G.. The Canadian Rufli-Rand electro-mechanical core drill andreaming devices [J]. Ice core quality in electromechanical drilling. Proc. of the SecondInt. Workshop/Symposium on Ice Drilling Technology. US Army Cold RegionsResearch and Engineering Laboratory, Hanover, USA. USA CRREL,1984, Spec. Rep.84-34,21-32.
    [57] Litwak J., Kersten L., Kuivinen K.. The PICO intermediate drill system. Ice corequality in electromechanical drilling [J]. Proc. of the Second Int.Workshop/Symposium on Ice Drilling Technology. US Army Cold Regions Researchand Engineering Laboratory, Hanover, USA. USA CRREL,1984, Spec. Rep.84-34,41-44.
    [58] Wumkes M.A.(1994). Development of the U.S. deep coring ice drill [J]. Mem.of National Inst. of Polar Research49,41-51.
    [59] Fujii Y. and25others.(2002). Deep ice core drilling to2503m depth at DomeFuji, Antarctica [J]. Mem. of National Inst. of Polar Research56,103-116.
    [60] Blake E.W., Wake C.P., Gerasimoff M.D.(1998). The ECLIPSE drill: afield-portable intermediate-depth ice-coring drill [J]. J. Glaciol.,44(146),175-178.
    [61] Yosio Suzuki. Lighe Weight Electro-Mechanical Drills [J]. Ice DrillingTechnology. Proceedings of the Second International Workshop on Ice DrillingTechnology, Canada,1984:33-40.
    [62]中国第28次南极考察见闻
    [63] J. Schwander, H. Rufli. Electro-Mechanical Drilling in Dry Holes to MediumDepths [J]. Ice Drilling Technology. Proceedings of the Third International Workshopon Ice Drilling Technology, France,1988:32-35.
    [64] J. Schwander, H. Rufli. Electro-Mechanical Drilling of A300m Core in A DryHole at Summit, Greenland [J]. Ice Drilling Technology. Proceedings of the fourthInternational Workshop on Ice Drilling Technology, Tokyo,1988:93-98.
    [65] árnason B., Bj rnson H., Theodórsson P. Mechanical drill for deep coring intemperate ice [J]. J. Glaciol.,1974,13(67):133-139.
    [66] Wehrle A. A shallow core-collecting mechanical ice drill [J]. ANARE ResearchNotes,1985,28:196-201.
    [67] Mulvaney R., Bremner S., Tait A., Audley N. A medium-depth ice core drill [J].Mem. of National Inst. of Polar Research,2002,56:82-90.
    [68] Ginot, P., Stampfli, F., Stampfli, D., Schwikowski, M., Gaggeler H.W. FELICS, anew ice core drilling system for high-altitude glaciers [J]. Mem. of National Inst. ofPolar Research2002,56:38-48.
    [69] Kohshima S., Shiraiwa T., Godoi M.A., et al. Ice core drilling on SouthernPatagonia Icefield-Development of a new portable drill and the field expedition in1999-[J]. Mem. of National Inst. of Polar Research,2002,56:49-58.
    [70] Zagorodnov, V., Thompson, L.G., Mosley-Thompson E. Portable system forintermediate-depth ice-core drilling [J]. Ann. Glaciol.2000,46:167-172.
    [71] Heinrich Rufli, Bernhard Stauffer, et al. Lightweight50-Meter Core Drill ForFirn And Ice [J]. Ice Core Drilling, America,1976:139-153.
    [72] G. Holdsworth. The Canadian Rufli-Rand Electro-Mechanical Core Drill andReaming Devices [J]. Ice Drilling Technology. Proceedings of the Third InternationalWorkshop on Ice Drilling Technology, France,1984:21-32.
    [73] Talalay P.G.. Power consumption of deep ice electromechanical drills. ColdRegions Science and Technology,2003,37,69-79.
    [74] Ueda H.T., Kalafut J.. Experiments on the cutting process in ice. USA CRRELSpec.1989, Rep.89-5.
    [75] Shamshev F.A., Tarakanov S.N., Kudryashov B.B., et al. Tekhnologiya i tekhnikarazvedochnogo bureniya [Technology and technique of prospecting drilling][J].Moscow, Nedra,1985,565p.(Text in Russian)
    [76] Altshul A.D., Kiselev P.G.. Gidravlika i aerodynamika.(Hydraulics andaerodynamics). Moscow: Stroyizdat,1975,323pp.(Text in Russian)
    [77] Onishin V.P., Blinov G.A., Vartikayan V.G., Plavskiy D.N. Metody, tekhnologiya iorgani-zatsiya burovikh rabot s ispol’zovaniem s’emnogo instrumenta [Methods,technology and logistic of the drilling operation using wireline drilling system][J].Leningrad, Nedra,1990,268p.(Text in Russian)
    [78] Bogorodsky V.V., Gavrilo V.P.. Lyed: Fizicheskie svoistva. Sovremennyiemetody glyatsiologii [Ice: Physical properties. Modern methods of glaciology][J].Leningrad, Gydrometeoizdat,1980,384p.(Text in Russian)
    [79] Augustin L., Motoyama H., Wilhelms F., et al. drilling comparison in “warm ice”and drill design comparison. Annals of Glaciology,2007,47:73-78.
    [80] Albracht F., Reichel S., Winkler V., and Kern H. Untersuchung voneinflussfaktoren aufdas tribologische verhalten von werkstoffen gegen eis [On theinfluences of friction on ice][J]. Materialwiss. Werkstofftech.2004,35(10/11),620-625.
    [81] Wumkes M.A. Development of the U.S. deep coring ice drill [J]. Mem. ofNational Inst. of Polar Research,1994,49,41-51.
    [82] N. Reeh. Antitorque Leaf Spring—A Design Fuide for Ice-Drill Antitorque LeafSprings [J]. Ice Drilling Technology. Proceedings of the Third International Workshopon Ice Drilling Technology, France,1984:69~72.
    [83] Den Hartog J. P. Strength Of Materials. Dover Publications, Inc,1949:34
    [84]范晓鹏, Pavel Talalay,郑治川等.电动机械取心钻具反扭装置实验台设计及实验[J].探矿工程(岩土钻掘工程),2013,40(12):18-20,24.
    [85] Heeszel. D.S, Wiens. D.A, et al. Rayleigh wave constraints on the structure andtectonic history of the Gamburtsev Subglacial Mountains, East Antarctica [J]. Journalof Geophysical Research-Solid Earth,2013,118(5):2138-2153.
    [86]何龙飞.可再生沟槽式仿生金刚石钻头的试验研究[M].长春:吉林大学建设工程学院,2009.
    [87]徐良,孙友宏,高科.仿生孕镶金刚石钻头高效碎岩机理[J].吉林大学学报:地球科学版,2008,38(6):1015-1019.
    [88]徐良.硬岩钻进用仿生耦合金刚石取芯钻头研究[D].长春:吉林大学,2009.
    [89]高科.孕镶金刚石仿生钻头的研究[D].长春:吉林大学,2006.
    [90]马银龙.金刚石定位仿生取芯钻头研究[D].长春:吉林大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700