用户名: 密码: 验证码:
大地震前后CO、O_3和CH_4遥感地球化学异常特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地震给人类带来巨大灾难,通过监测和预测地震减轻地震灾害是迫切的社会需求。地震发生前后由于构造应力场作用,大量的地球内部气体(CO、CO2、H2、Hg、He、Rn和CH4等)会沿断裂向上逸出到地表。利用新兴的卫星高光谱遥感技术监测地震带地下逸出气体,研究气体异常与地震活动的关系,不仅在科学方面能揭示地震活动过程中地球化学变化过程,而且能丰富地震监测的技术手段,在减轻地质灾害方面有应用价值。
     本文利用AIRS获取的2003~2012年CO、O3和CH4数据,建立了全球不同月份的CO、O3和CH4背景场。通过剔除背景的影响,提取了2003~2012年全球113个7级以上地震(震源深度<35km)的CO、O3和CH4异常,分析了其在地震前后的异常特征,进而探讨了异常形成机制及其与地震的关系。
     论文主要取得如下结果:
     (1)113个震例中,出现CO、O3或CH4异常的概率达到63.7%。CO异常震例54个,占研究震例的47.8%,异常强度范围为0.88~11.92×1017molecules/cm-2;O3异常震例65个(57.5%),异常强度范围为11.72~74.56DU;CH4异常震例34个(30.1%),异常强度范围为1.17~5.05×10-8。
     (2)CO、O3、CH4异常大多在震前3个月出现,只有四分之一左右的震例在地震当月或者震后出现气体异常。CO和O3异常持续时间较长,从1到12个月以上不等,大多在6个月以上;CH4异常持续时间相对较短,多在6个月以下。
     (3)CO、O3和CH4气体地球化学异常主要是由地震孕育过程中的地球脱气增加造成的。地下脱出的气体在大气中发生各种物理化学过程,最终导致了这些气体地球化学异常。
     (4)CO、O3和CH4之间相互反应、相互依赖,关系密切。CO和CH4是O3的重要前体物,都受OH浓度的影响,研究它们之间的关系和异常特征有利于了解地震活动的演化过程。
Great earthquakes usually cause great calamity. It is the pressing social needs tomitigate earthquake disaster by monitoring and predicting earthquake. Plenty of gases(CO, CO2,H2, Hg, He, Rn and CH4) emit along the fault zones from the solid earth tothe atmosphere under the action of tectonic stress before and after the earthquakes. Tomonitor the variation of gas emission from the seismic zones using the hyper-spectralremote sensing technique developed in recent years is not only scientificallysignificant in investigating genetic mechanisms of the gas anomalies duringearthquake activities, but also provides new technique of earthquake monitoring andfavors mitigating earthquake disaster.
     The monthly background fields (values) of total column CO, O3and CH4VMRwere calculated using the AIRS data from2003to2012. Anomalies of total columnCO, total O3and CH4VMR before and after113earthquakes with M>7.0and focaldepth less than35km, which occurred throughout the world from2003to2012, wereextracted based on the background data. Consequently, the characteristics andmechanisms of the obtained gas anomalies were discussed.
     The results can be briefly summarized as following:
     (1) It was found that63.7%of the studied earthquakes were accompanied withCO, O3and/or CH4anomalies. The data showed that the54studied cases (47.8%oftotal) were accompanied with the CO anomalies, of which the strength had a range of0.88~11.92×1017molecules/cm-2;65studied earthquakes (57.5%) with the O3anomalies with an abnormal strength range of1.72~74.56DU; and34earthquakes(30.1%) with CH4anomalies with an abnormal strength range of1.17~5.05×10-8.
     (2) The anomalies of CO and O3concentrations and CH4VMR appeared mostlyin3months before the earthquakes, while appropriately a quarter of the gas anomaliesappeared in the month of earthquake occurrences or after the events. In general, thedurations of total CO and O3anomalies ranged from1to12months (more than6months mostly). However, the durations of CH4VMR anomalies were usually lessthan6months.
     (3) The geochemical anomalies of CO and O3and CH4VMR associated withearthquakes can be mainly attributed to the gas emission from the lithosphere duringthe earthquake activities as well as the physical and chemical alteration of the emittedgaseous components in the atmosphere.
     (4) CO, O3and CH4altered by chemical reactions. Both CO and CH4acted asthe precursors of O3under the OH catalysis. The results are conducive tounderstanding the process of seismic activities.
引文
1. Adushkin V V, Kudryavtsev V P, Estimating the Global Flux of Methane into theAtmosphere and Its Seasonal Variations. Atmos. Ocean. Phys.,2013,49(2):128~136
    2. Amani A, Mansor S, Pradhan B, et al., Coupling effect of ozone column and atmosphericinfrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake,Iran. Arab J. Geos.,2013, doi:10.1007/s12517-013-0877-6
    3. Aumann H H, Chahine M T, Gautier C, et al., AIRS/AMSU/HSB on the Aqua mission:Design, science objectives, data products and processing system. IEEE Trans. Geosci.Remote Sens.,2003,41:253~264
    4. Aumann H H, Miller C R, The Atmospheric Infrared Sounder(AIRS)on the earth observingsystem. SPIE,1995,2583:332~343
    5. Baragiola R A, Dukes C A, Hedges D, Ozone generation by rock fracture: Earthquake earlywarning? Appl. Phys. Lett.,2011,99:204101, doi:10.1063/1.3660763
    6. Barnet C D, Goldberg M, McMillin L, et al., Remote sounding of trace gases with theEOS/AIRS instrument. Atmospheric and Environmental Remote Sensing Data Processingand Utilization: an End-to-End System Perspective.2004,5548:300~312
    7. Blumstein D, Chalon G, Carlier T, IASI instrument: technical overview and measuredperformances. SPIE,2004,5543:196~207
    8. Bousquet P, Ciais P, Miller J B, et al., Contribution of anthropogenic and natural sources toatmospheric methane variability. Nature,2006,439~443
    9. Chameides W L, Liu S C, Cicerone R J, Possible Variations in Atmospheric Methane. J.Geophys. Res.,1977,82(2):1795~1798
    10. Clarisse L, R’Honi Y, Coheur P F, et al., Thermal Infrared Nadir Observations of24Atmospheric Gases. Geophys. Res. Lett.,2011,38: L10802~L10806
    11. Clerbaux C, Boynard A, Clarisse L, et al., Monitoring of atmospheric composition using thethermal infrared IASI/MetOp sounder. Atmos. Chem. Phys.,2009,9(16):6041~6054
    12. Crisp D, Atlas R M, Breon F-M, et al., The Orbiting Carbon Observatory (OCO) mission.Adv. Space Res.,2004,34(4):700~709
    13. Crutzen P J, A discussion of the chemistry of some minor constituents in the stratosphere andtroposphere, Pure Appl. Geophys.,1973,106-108:1385~1399
    14. Crutzen P J, Ozone production in an oxygen-hydrogen-nitrogen oxide atmosphere. J.Geophys. Res.,1971,76:7311~7333
    15. Crutzen P J, Photochemical reactions initiated by and influencing ozone in unpollutedtropospheric air. Tellus,1974,24:47~57
    16. Cui Y, Du J, Zhang D, et al., Anomalies of total column CO and O3associated with greatearthquakes in recent years. Nat. Hazard. Earth Sys. Sci.,2013,13:2513~2519
    17. Dey S, Sarkar S, Singh R P, Anomalous changes in column water vapor after Gujaratearthquake. Adv. Space Res.,2004,33(3):274~278
    18. Du J, Si X, Chen Y, et al., Geochemical anomalies connected with great earthquakes in China.In: ó. Stefánsson (Ed), Geochemistry Research Advances, New York: Nova SciencePublishers, Inc.,2008,57~92
    19. Etiope G, Beneduce P, Calcara M, et al., Structural pattern and CO2–CH4degassing of UsticaIsland, Southern Tyrrhenian basin. J. Volcanol. Geotherm. Res.,1999,88:291~304
    20. Etiope G, Klusman R W, Geologic emissions of methane to the atmosphere. Chemosphere,2002,49:777~789
    21. Etiope G, Subsoil CO2and CH4, and their advective transfer from faulted grassland to theatmosphere. J. Geophys. Res.,1999,104(D14):16889~16894
    22. Famin V, Nakashima S, Boullier A M, et al., Earthquakes produce carbon dioxide in crustalfaults. Earth Planet. Sci. Lett.,2008,265(3-4):487~497
    23. Fischer D, Mogollón J M, Strasser M, et al., Subduction zone earthquake as potential triggerof submarine hydrocarbon seepage. Nature Geosci.,2013,6:647~651
    24. Fishman J, Seiler W, Correlative nature of ozone and carbon monoxide in the troposphere:implications for the tropospheric ozone budget. J. Geophys. Res.,1983,88(C6):3662~3670
    25. Fishman J, Solomon S, Crutzen P J, Observational and theoretical evidence in support of asignificant in-situ photochemical source of tropospheric ozone. Tellus,1979,31(5):432~446
    26. Frankenberg C, Platt U, Wagner T, Retrieval of CO from SCIAMACHY onboard ENVISAT:detection of strongly polluted areas and seasonal patterns in global CO abundances. Atmos.Chem. Phys.,2005,(5):1639~1644
    27. Freund F, Time-resolved study of charge generation and propagation in igneous rocks. J.Geophys.,2000,105:11001~11019
    28. Ganguly N D, The impact of transported ozone-rich air on the atmospheric ozone contentfollowing the26January2001and7March2006Gujarat earthquake, Remote Sens. Lett.,2011,2(3):195~202
    29. Ganguly N D, Variation in atmospheric ozone concentration following strong earthquakes.Int. J. Remote Sens.,2009,30(2):349~356
    30. GAW. Revision of the world data centre for greenhouse gases data submission anddissemination guide,2009,188
    31. Gerlach T M. Etna’s greenhouse pump. Nature,1991,315:352~353
    32. Ghosh D, Deb A, Sengupta R, Anomalous radon emission as precursor of earthquake. J. Appl.Geophys.,69(2):67~81
    33. Giardini A A, The emission of occluded gas from rocks as a function of stress: its possibleuse as a tool for predicting earthquakes. Geophys. Res. Lett.,1976,3(6):355~358
    34. Giggenbach W F, Geothemal gas equilibria. Geochim. Cosmochim. Acta.,1980,44:2021~2032
    35. Gille J C, Pan L, Smith M W, et a1., Retrieval of carbon monoxide profiles and total methanefrom MOPITT measurements. Geosci. Remote Sens. Symposium,1994,2:684~686
    36. Gold T, Terrestrial sources of carbon and earthquake outgassing. J. Petrol. Geol.,1979.1(3):3~19
    37. Gorny V I, Salman A G, Tronin A A, et al., The Earth outgoing IR radiation as an indicatorof seismic activity. P. Acad. Sci. USSR,1988,301:67~69
    38. Gottwald M, Bovensmann H, Lichtenberg G, et al., SCIAMACHY, Monitoring the ChangingEarth’s Atmosphere. Oberpfaffenhoffen: DLR,2006
    39. Granieri D, Avino R, Ghiodini G. Carbon dioxide diffuse emission from the soil: ten yearsof observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity.B. Volcanol.,2010,72(1):103~118
    40. Hamza V M, Tectonic leakage of fault bounded aquifers subject to non-isothermal recharge:A mechanism generating thermal precursors to seismic events. Phys. Earth Planet. In.,2001,26:163~177
    41. Hartmann J, Levy J K, Hydrogeological and Gasgeochemical Earthquake precursors-AReview for Application. Nat. Hazards,2005,34:279~304
    42. Horowitz L W, Walters S, Mauzerall D L, et al., A global simulation of tropospheric ozoneand related tracers: Description and evaluation of MOZART, version2. J. Geophys. Res.,2003, D24(108):4784
    43. Houghton J T, Ding Y, Griggs D J, et al., Climate Change2001: The Scientific Basis.Intergovernmental Panel on Climate Change(IPCC) Working Group I Third AssessmentReport. New York: Cambridge University Press,2001
    44. Houghton R A, The annual net flux of carbon to the atmosphere from changes in land use1850-1990. Tell.,1999,50B:298~313
    45. Irwin W P, Barnes I, Tectonic relations of carbon dioxide discharges and earthquakes. J.Geophys. Res.,1980,85(B6):3115~3121
    46. Justice C O, The MODIS fire products. Remote Sensing of Environment,2002,83:244~262
    47. Kaplan L D. Inference of Atmospheric Structure from Remote Radiation Measurements. J.Opt. Soc. Am.,1959,49(10):1004~1007
    48. Kasimov N S, Kovin M I, Proskuryakov Y V, et al., Geochemistry of the soils of fault zones(exemplified by Kazakhstan). Soy. Soil Sci. Engl. Transl.,1978,11:397~406
    49. King C Y, King B S, Evans W C, et al., Spatial radon anomalies on active faults in California.Appl. Geochem.,1996,11(4):497~510
    50. King C Y, Zhang W, Zhang Z C, Earthquake-induced groundwater and gas changes. PureAppl. Geophys.,2006,163:633~645
    51. King C Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys.Res.,1986,91(B12):12269~12281
    52. King J I F.Scientific Use of Earth Satellites. Ann Arbor Michigam:Ann Arbor University ofMichigan Press,1956,133~136
    53. Kobayashi H, Shimota A, Kondo K, et a1., Development and evaluation of theinterferometric monitor for green-house gases: a high-throughput Fourier-transform infraredradiometer for nadir Earth observation. Appl. Opt.,1999b,38(33):6801~68047
    54. Kobayashi H, Shimota A, Yoshigahara C, et al., Satellite-borne high-resolution FTIR forlower atmosphere sounding and its evalution. IEEE Geosci. Remote,1999a,37(3):1496~1507
    55. Le Cloarec M-F, Marty B, Volatile fluxes from volcanoes. Terra Nova,1991,3:17~27
    56. Levy H, Normal atmosphere: Large radical and formaldehyde concentrhtiosn predicted.Science,1971,173:141~143
    57. Levy H, Photochemistry of the lower troposphere. Planet. Space Sci.,1972,20:919~935
    58. Li Y, Du J, Wang X, et al., Spatial Variations of Soil Gas Geochemistry in the TangshanArea of Northern China. Terr. Atmos. Ocean. Sci.,2013,24(3):323~332
    59. Lin Y, Zhao C, Peng L, et al., A new method to calculate monthly CO emissions usingMOPITT satellite data. Chin. Sci. Bull.,2007,52(18):2551~2558
    60. Liu S C, Donahue T M, Cicerone R J, et al., Effect of water vapor on the destruction of ozonein the stratosphere perturbed by ClX or NOx pollutants. J. Geophys. Res.,1976,81:3111~3118
    61. Loyola D, van Geffen J, Valks1P, et al., Satellite-based detection of volcanic sulphur dioxidefrom recent eruptions in Central and South America. Adv. Geosci.,2008,14:35~40
    62. Martinelli G, Plescia P, Carbon dioxide and methane emissions from calcareousmarly rockunder stress: experimental tests results. Ann. Geophys.,2005,48:167~173
    63. Matsuda T, Ikeya M, Variation of nitric oxide concentration before the Kobe earthquake,Japanese. Atmos. Environ.,2001,35:3097~3102
    64. McConnell J C, McElroy M B, Wofsy S C, Natural sources of atmospheric CO. Nature,1971,233:187~188
    65. McElroy M B, Wofsy S C, Penner J E, et al., Atmospheric ozone: Possible impact ofstratospheric aviation. J. Atmos. Sci.,1974,31:287~303
    66. McMillan W W, Barnet C, Strow L, et al., Daily global maps of carbon monoxide fromNASA’s Atmospheric Infrared Sounder. Geophys. Res. Lett.,2005,32, L11801,doi:10.1029/2004GL021821
    67. M rner N, Etiope G, Carbon degassing from the lithosphere. Global Planet. Change,2002,33:185~203
    68. Neeck S P, Volz S M, NASA’s earth science missions overview. SPIE,2009,7474:74740B-1
    69. Olsen E T, AIRS version5retrieval channel sets. Jet Propulsion Laboratory, CaliforniaInstitute of Technology, Pasadena, CA,2007
    70. Olsen E T, Chahine M T, Chen L L, et al., Retrieval of mid-tropospheric CO2directly fromAIRS measurements. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics andSpace Administration.2008
    71. Ouzounov D, Freund F, Mid-infrared emission prior to strong earthquakes analyzed byremote sensing data. Adv. Space Res.,2004,33:268~273
    72. Pagano T S, Aumann H H, Hagan D E, et al., Prelaunch and in-flight radiometric calibrationof the Atmospheric Infrared Sounder (AIRS). IEEE Trans. Geosci. Remote Sens.,2003,41:265~273
    73. Pal D, Extension of Aravalli basement below Garhwal Himalaya and its geological controlover the occurrences of Natural Hazards in Uttaranchal State, National Seminar onGeodynamics and environment management of Himalaya, Department of Geology, H. N. B.University, Uttranchal, India,2002
    74. Pandow M, MacKay C, Wolfgang R. The reaction of atomic carbon with oxygen:significance for the natural radio-carbon cycle. J. Inorg. Nucl. Chem.,1960,14(3~4):153~158
    75. Persky M J, A review of spaceborne infrared Fourier transform spectrometers for remotesensing. Rev. Sci. Instrum.,1995,66:4763~4797
    76. Pickles W L, Cover W A,2004. Hyperspectral geobotanical remote sensing for CO2storagemonitoring. In: Benson S M.1994. Carbon dioxide Capture for Storage in Deep GeologicFormations, Elsevier Ltd., Oxford,1045~1070
    77. Pulinets S, Dunajecka M., Specific variations of air temperature and relative humidity aroundthe time of Michoacan earthquake M8.1Sept.19,1985as a possible indicator of interactionbetween tectonic plates. Tectonophys.,2007,431(1~4):221~230
    78. Pulinets S, Ionospheric precursors of earthquakes; recent advances in theory and practicalapplications. TAO,2004,15:413~435
    79. Pulinets S, Ouzounov D, Lithosphere–atmosphere–ionosphere coupling (LAIC) model—anunified concept for earthquake precursors validation. J. Asian Earth Sci.,2011,41(4):371~382
    80. Qiang Z J, Xu X D, Dian C G, Thermal infrared anomaly precursor of impendingearthquakes. Pure Appl. Geophys.,1997,149:159~171
    81. Qiang Z J, Xu X D, Dian C G, Thermal infrared anomaly precursor of impendingearthquakes. Chin. Sci. Bull.,1991,36(4):319~323
    82. Qiang Z, Lin C, Li L, et al., Atellitic thermal infrared brightness temperature anomalyimage—short-term and impending earthquake precursors. Sci. China Ser. D,1999,42(3):313~324
    83. Quattrocchi F, Galli G, Gasparini A, et al., Very slightly anomalous leakage of CO2, CH4andradon along the main activated faults of the strong L’Aquila earthquake (Magnitude6.3,Italy). Implications for risk assessment monitoring tools&public acceptance of CO2and CH4underground storage. Energy Procedia,2011,4:4067~4075
    84. Razavi1A, Clerbaux C, Wespes C, et al., Characterization of methane retrievals from theIASI space-borne sounder. Atmos. Chem. Phys.,2009,9:7889~7899
    85. Rothman L S, Gordon I E, Barbe A, et al., The HITRAN2008molecular spectroscopicdatabase. J. Quant. Spectrosc. Ra.,2009,110:533~572
    86. Salazar J M L, Perez N M, Hernandez P A, et al., Precursoy diffuse carbon dioxide degassingsignature related to a5.1magnitude earthquake in El Salvado, Central America. Earth Planet.Sci. Lett.,2002,205:81~89
    87. Shimoda H. Overview of Japanese earth observation programs. SPIE,2009,7474:74740G-1
    88. Simarski L T, Volcanism and climate change. AGU Special Report.1992, AmericanGeophysical Union, Washington, DC.
    89. Singh R P, Cervone G, Singh V P, et al., Generic precursors to coastal earthquakes:Inferences from Denali fault earthquake. Tectonophys.,2007,431:231~240
    90. Singh R P, Kumar S J, Zlotnicki J, et al., Satellite detection of carbon monoxide emissionprior to the Gujarat earthquake of26January2001. Appl. Geochem.,2010a,25:580~585
    91. Singh R P, Mehdi W, Gautam R, et al., Precursory signals using satellite and ground dataassociated with the Wenchuan Earthquake of12May2008. Int. J. Remote Sens.,2010b,31(13):3341~3354
    92. Smith W L, Woolf H M, Hayden C M, et a1., The TIROS-N operational verticalsounder.Bull. Am. Meteorol. Soc.,1979,60:1177~1187
    93. Soucy M-A A, Chateauneuf F,Deutsch C, ACE-FTS instrument detailed design. SPIE,2002,4814:70~81
    94. Strow L L, Hannon S E, De Souza-Machado S, et al., An overview of the AIRS radiativetransfer model, IEEE Trans. Geosci. Remote Sens.,2003,41:303~313
    95. Susskind J, Barnet C D, Blaisdell J M, Retrieval of atmospheric and surface parameters fromAIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens.,2003,41:390~409
    96. Tank V, Pfanz H, Gemperlein H, et al., Infrared remote sensing of Earth degassing–Groundstudy. Ann. Geophys.,2005,48(1):181~194
    97. Tank V, Pfanz H, Kick H, New remote sensing techniques for the detection andquantification of earth surface CO2degassing. J. Volcanol. Geotherm. Res.,2008,177:515~524
    98. Tedesco D, Chemical and isotopic gas emissions at Campi Flegrei: evidence for an abortedperiod of unrest. J. Geophys. Res.,1994,99:15623~15631
    99. Tertyshinikov A V, The variations of ozone content in the atmosphere above strongearthquake epicenter. Phys. Solid Earth,1996,31:789~794
    100. Thompson A M, Cicerone R J, Possible Perturbations to Atmospheric CO, CH4, and OH. J.Geophys. Res.,1986,91(10):10853~10864
    101. Tie X, Brasseur G P, Zhao C, et al., Chemical characterization of air pollution in EasternChina and the Eastern United States. Atmos. Environ.,2006,40:2607~2625
    102. Toutain J P, Baubron J C, Gas geochemistry and seismotectonics: a review. Tectonophys.,1999,304:1~27
    103. Tramutoli V, Aliano C, Corrado R, et al., Abrupt change in greenhouse gases emission rate asa possible genetic model of TIR anomalies observed from satellite in Earthquake activeregions, in: Proceedings of33rd International Symposium on Remote Sensing ofEnvironment (ISRSE33), Stresa, Lago Maggiore, Italy,2009,4~8
    104. Tramutoli V, Di Bello G, Pergola N, et al., Robust satellite techniques for remote sensing ofseismically active areas. Ann. Geophys.,2001,44(2):295~312
    105. Tronin A A, Hayakawa M, Molchanov O A, Thermal IR satellite data application forearthquake research in Japan and China. J. Geodyn.,2002,33(4-5):519~534
    106. Tronin A A, Remote sensing and earthquakes: A review. Phys. Chem. Earth,2006,31(4-9):138~142
    107. Uysal I T, Feng Yue-xing, Zhao Jian-xin, et al., Hydrothermal CO2degassing in seismicallyactive zones during the late Quaternary. Chem. Geol.,2009,265:442~454
    108. Varekamp J C, Kreulen R, Poorter R P E, et al., Carbon sources in arc volcanism, withimplications for the carbon cycle. Terra Nova,1992,4:363~373
    109. Vingarzan N D, A Review of Surface Ozone Background Levels and Trends. Atmos. Envir.,2004,(38):3431~3442
    110. Voltattorni N, Quattrocchi F, Gasparini A, et al., Soil gas degassing during the2009L’Aquilaearthquake: study of the seismotectonic and fluid geochemistry relation. Ital. J. Geosci.,2012,131(3):440~447
    111. Walia V, Virk H S, Bajwa B S, Radon precursory signals for some earthquakes ofmagnitude>5occurred in NW Himalaya: an overview. Pure Appl. Geophys.,2006,163(4):711~721
    112. Walia V, Yang T F, Hong W L, et al., Geochemical variation of soil-gas composition forfault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan. Appl.Radiat. Isotopes,2009,67:1855~1863
    113. Weinlich F H, Faber E, Bou ková A, et al., Seismically induced variations in MariánskéLázně fault gas composition in the NW Bohemian swarm quake region, Czech Republic-Acontinuous gas monitoring. Tectonophys.,2006,421(1-2):89-110
    114. Weinstock B, Niki H.1972. Carbon monoxide balance in nature. Science,176(32):290-292.
    115. Wofsy S C, Interactions of CH4and CO in the earth's atmosphere. Annu. Rev. Earth Planet.Sci.,1976,4:441~469
    116. Won Young-In. Readme document for AIRS Level-3version5standard products: Daily(AIRH3STD, AIRX3STD, AIRS3STD)8-days (AIRH3ST8, AIRX3ST8, AIRS3ST8)&monthly (AIRH3STM, AIRX3STM, AIRS3STM).2008
    117. Xiong X, Barnet C, Maddy E, et al., Characterization and validation of methane productsfrom the Atmospheric Infrared Sounder (AIRS). J. Geophys. Res.,2008,113: G00A01,doi:10.1029/2007JG000500
    118. Yasuka Y, Igarashi G, Ishikawa T, et al., Evidence of precursor phenomena in the Kobeearthquake obtained from atmospheric radon concentration. Appl. Geochem.,2006,21:1064~1072
    119. Yurganov L N, Dzhola A V, Grechko E I, Carbon monoxide and total ozone in Arctic andAntarctic regions: seasonal variations, long-term trends and relationships. Sci. Total Environ.,1995,161:831~840
    120. Zhang W, Luo G, Xin Y, et al., A gas geochemical method in detecting active faults. J. Earth.Res. in China,1988,2:537~541
    121. Zhou X, Du J, Chen Z, et al., Geochemistry of soil gas in the seismic fault zone produced bythe Wenchuan Ms8.0earthquake, southwestern China. Geochem. Trans.,2010,11(5), doi:
    10.1186/1467-4866-11-5
    122.陈杨.地震红外遥感异常特征综合研究:[硕士学位论文].北京:中国地震局地震预测研究所,2011
    123.崔月菊,杜建国,陈志,等.2010年玉树Ms7.1地震前后大气物理化学遥感信息.地球科学进展,2011a,26(7):787~794
    124.崔月菊,杜建国,张德会,等.应用于地震预测的遥感气体地球化学.地球科学进展,2012,27(10):148~153
    125.崔月菊,杜建国,周晓成,等.墨西哥下加利福尼亚Mw7.2地震前后CO遥感地球化学异常.矿物岩石地球化学通报,2011b,30(4):458~464
    126.崔月菊.地震相关的卫星高光谱气体地球化学信息:[硕士学位论文].北京:中国地震局地震预测研究所,2011
    127.丁鉴海,申旭辉,潘威炎,等.地震电磁前兆研究进展.电波科学学报,2006,21(5):791~801
    128.丁仲礼,段晓男,葛全胜,等.国际温室气体排放方案评估及中国长期排放权讨论.中国科学D辑,2009,12:1659~1671
    129.杜建国,康春丽.地震地下流体发展概述.地震,2000,20(增刊):107~113
    130.杜乐天,强祖基.地球排气作用与自然灾害.流体地球科学进展.北京:地震出版社,1999
    131.杜乐天.地球的五个气圈与氢、烃资源—兼论气体地球动力学.铀矿地质,1993,9(5):257~265
    132.郭广猛,曹云刚,龚建明.使用MODIS和MOPITT卫星数据监测震前异常.地球科学进展,2006,2(7):695~698
    133.郭正府,李晓惠,张茂亮.火山活动与深部碳循环的关系.第四纪研究,2010,30(3):497~505
    134.荆凤,申旭辉,张铁宝,等.与地震相关的活动断裂带红外辐射变化特征.国土资源遥感,2013,25(1):56~60
    135.刘德富,康春丽.地球长波辐射(OLR)遥感与重大自然灾害预测.地学前缘,2003.10(2):427~434
    136.刘毅,吕达仁,陈洪滨,等.卫星遥感大气CO2的技术与方法进展综述.遥感技术与应用,2011,26(2):247~254
    137.卢振权,强祖基,吴必豪.南海临震前卫星热红外增温异常原因初探.地球学报,2002,23(1):42~46
    138.强祖基,赁常恭.青海共和7级地震卫星热红外临震增温前兆.现代地质,1992,6(3):297~300
    139.强祖基,杜乐天.地球排气与森林火灾和地震活动.地学前缘,2001,8(2):236~245
    140.秦瑜,赵春生,大气化学基础.北京:气象出版社,2003,168~170
    141.屈春燕,马瑾,单新建.利用卫星热红外观测地球排气现象的一次尝试.地震地质,2004,26(3):539~547
    142.孙玉涛,杜建国,崔月菊,等.苏门答腊2004、2005年两次大地震前后CO和O3遥感信息.遥感信息,2014a(待刊)
    143.孙玉涛,杜建国,崔月菊,等.苏门答腊两次M>8.0地震前后CO和O3气体地球化学异常与地面验证.地震研究,2014b(待刊)
    144.汪成民,李宣瑚.我国断层气测量在地震科学研究中的应用现状.中国地震,1991,7(2):19~30
    145.徐秀登,徐向民,马升灯,等.临震大气增温异常成因的初步认识.地震学报,1995,17(1):123~137
    146.徐秀登,徐向民.地震前红外异常的基本特征与成因机理.西北地震学报,2001,23(3):310~312
    147.姚清林,强祖基,王弋平.青藏高原地震前CO的排放与卫星热红外增温异常.地球科学进展,2005,20(5):505~510
    148.张茂亮,郭正府,成智慧,等.长白山温室气体排放研究进展.地球科学进展,2011,26(12):1235~1247
    149.张学民,刘静,钱家栋,等.西藏改则6.9级地震前的电离层电磁扰动.地震,2008,28(3):14~22
    150.郑乐平.温室气体CO2的另一源—地球内部.环境科学研究,1998,11(2):21~24
    151.郑玉权.温室气体遥感探测仪器发展现状.中国光学,2011,4(6):546~561
    152.朱宏任,汪成民,万登堡,等.地震烈度的气体地球化学标度初探.中国地震,1991,7(1):59~64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700