用户名: 密码: 验证码:
拟南芥质体定位的叶酰聚谷氨酸合成酶AtDFB生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶酸在植物体内主要以多谷氨酸尾形式存在,参与很多重要的生命活动。单谷氨酸尾形式的叶酸可以在叶酰聚谷氨酸合成酶(FPGS)的作用下生成多谷氨酸尾形式的叶酸。本研究利用质体定位的FPGS (又称FPGS1或AtDFB)功能缺失的突变体解析叶酸在拟南芥发育和代谢中的生物学功能。主要结果如下:
     1.当培养基中氮源充足时,atdfb突变体主根明显短于野生型,培养11天时突变体的主根长度只有野生型的23%。突变体对低氮胁迫反应比野生型更敏感:在低氮条件下,突变体发育几乎停滞,培养11天时突变体的主根长度只有野生型的4%。不管在氮源充足还是低氮条件,互补植物的表型均恢复至野生型水平。另外,低氮条件下突变体发育几乎停滞的表型可以被5-甲酰四氢叶酸(5-F-THF)恢复。同时,在添加5-F-THF的条件下突变体的静止中心细胞排列正常。
     2.土壤培养条件下,播种后5天的突变体主根比野生型短,15天时其主根长度与野生型类似。另外,突变体的抽薹时间比野生型要晚一周。
     3.成熟的突变体种子体积比野生型小,千粒重比野生型降低5%。突变体种子总碳(C)含量比野生型低,而总氮(N)含量高于野生型,C/N比值比野生型低23%,说明突变体种子的碳氮分配能力不足。进一步分析发现突变体种子中储存的营养物质含量发生变化,碳含量丰富的化合物如糖类、有机酸、脂肪酸等含量偏高,而氮含量丰富的化合物如氨基酸、可溶蛋白和N03含量降低。
     4.黑暗培养条件下,突变体只能利用培养环境中的硝态氮(N03),不能利用铵态氮(NH4+)或有机氮(例如Asn或Gln)。在硝酸根(N03)充足条件下,突变体暗形态建成异常,下胚轴长度只有野生型的80%,进一步研究发现突变体下胚轴伸长的障碍可能与种子胚中储存的物质不足有关。在N03不足时,突变体的下胚轴随着培养基中N03的减少而逐渐缩短。在上述两种NO3条件下,5-F-THF均能使突变体短下胚轴长度恢复至野生型水平,但是在铵态氮条件下,5-F-THF不能使突变体下胚轴伸长恢复。
     5.暗形态建成过程中突变体的叶酸代谢发生紊乱,主要表现为:总叶酸和5-甲基四氢叶酸(5-M-THF)含量低于野生型,5-M-THF占总叶酸的比例较野生型低,七谷氨酸尾形式的5-M-THF和5-F-THF含量较野生型高。氮源充足的条件下突变体中多种代谢物含量异常,如氨基酸、菜油甾醇、S-腺苷甲硫氨酸等;低氮条件下突变体中积累了更多的代谢物,如氨基酸、糖类、豆甾醇、有机酸和脂肪酸等。转录组数据分析表明,这些代谢物含量的变化与对应代谢途径关键酶基因的表达改变有关。5-F-THF在一定程度上可以恢复突变体的叶酸代谢和其他代谢。
     总之,我们的研究结果表明,(1) AtDFB的功能缺失影响了拟南芥根的发育及种子储存物的积累;(2)种子储存物积累的异常影响了突变体的暗形态建成;(3)突变体中叶酸代谢的紊乱导致多条代谢途径基因表达变化及代谢网络中多种代谢物含量的异常,最终导致了拟南芥暗形态建成的异常。该研究阐述了叶酸代谢对植物种子储存物积累的影响,建立了叶酸代谢与其他代谢网络及暗形态建成之间的联系。
Folates take part in many important physiological processes during plant development, andpolyglutamylated species are dominant form of folates in plants. Folylpolyglutamate synthetase (FPGS)catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. In thisstudy, the T-DNA insertion mutant of the plastidial FPGS (named FPGS1or AtDFB) was use to explorethe role of folates during seedling development and metabolism in Arabidopsis. The results are asfollows.
     1. The atdfb mutant displayed shorter primary root than the wild type even under nitrogen(N)-sufficient conditions, and the length of primary root of11-day-old atdfb seedlings was23%of thewild type. Under N-limited conditions, the development of atdfb almost stagnated, with the primary rootlength of11-day-old atdfb seedlings was only4%of the wild type. Phenotypes of the complementedplants were similar to the wild type under both N-sufficient and limited conditions. Under N-limitedconditions, exogenous5-formyl-tetrahydrofolate (5-F-THF) restored the phenotype of atdfb to the wildtype. At the same time, the quiescent center in atdfb was well organized as the wild type.
     2. When grown in the soil, the mutant seedling of5day after sowing (DAS) displayed shorterprimary root than the wild type, while the length of primary root of atdfb was similar to the wild type inseedlings of15DAS. Besides, the bolting time of atdfb was one week later than the wild type.
     3. The dimensions of mature atdfb seeds were smaller than the wild type, and the weight per1000seeds in atdfb was5%lighter than the wild type. The mutant seeds had lower carbon (C) content andhigher nitrogen (N) content. The C/N ratio in atdfb was23%less than the wild type, indicative of analtered C and N partitioning capacity. Further analysis revealed that the seed storage in atdfb was altered,with higher content of C-rich metabolites, such as sugars, organic acids and fatty acids, and less N-richmetabolites, such as amino acids, soluble protein and nitrate (NO-3). These results indicated significantchanges in seed storage in the mutant.
     4. During the skotomorphogenesis, the mutant could use NO-3but not ammonium (NH+4) ororganic N (such as Asn or Gln) as the sole N source. Even under N-sufficient conditions, the mutantdisplayed defects in skotomorphogenesis, with80%of the hypocotyl length of the wild type. Furtheranalysis indicated possible relation between hypocotyl elongation defects and shortage of storage inembryo in atdfb. Under N-insufficient conditions, the hypocotyl length of atdfb reduced when theconcentration of NO-3decreased. Exogenous5-F-THF restored the hypocotyl length in atdfb seedlingsto that of the wild type under both N-sufficient and limited conditions with NO-3not NH+4as the sole Nsource.
     5. Folate profiling was altered in atdfb, with lower total folates content,5-methyl-tetrahydrofolate(5-M-THF) content, and proportion of5-M-THF in total folates, and higher level of heptaglutamylatedforms of5-M-THF and5-F-THF. The metabolites profiling in atdfb was also perturbed, with alteredcontents of amino acids, campesterol and S-adenosylmethionine even under N-sufficient conditions.Under N-limited conditions, many metabolites accumulated in atdfb, such as amino acids, sugars, stigmasterol, organic acids and fatty acids. Transcriptome analysis indicated altered expression of genesinvolved in multiple metabolic pathways. Exogenous application of5-F-THF restored the amounts ofmany metabolites to wild-type levels in atdfb seedlings or significantly reduced differences in the levelsof many metabolites between atdfb and the wild type, including the5-M-THF content and theproportion of5-M-THF in total folates.
     In brief, our results indicated that (1) AtDFB was required for primary root development and seedreserves accumulation in Arabidopsis;(2) The altered seed accumulation in atdfb led to defectivehypocotyl elongation in darkness;(3) The perturbed folates profiling led to altered gene expressionabundance and metabolites content involved in multiple metabolic pathways, resulting in defectiveskotomorphogenesis with shortened hypocotyls in atdfb. Taken together, this study demonstrated thatfolate metabolism played an important role in seed reserve accumulation, seed germination andpost-germinative hypocotyl elongation, providing novel insights into potential associations amongfolate metabolism, metabolic networks, and skotomorphogenesis.
引文
1. Achard P., Vriezen W.H., Van Der Straeten D., and Harberd N.P. Ethylene regulates Arabidopsisdevelopment via the modulation of DELLA protein growth repressor function. Plant Cell,2003,15:2816-2825.
    2. Akhtar T.A., McQuinn R.P., Naponelli V., Gregory J.F., Giovannoni J.J., and Hanson A.D. Tomatoγ-glutamylhydrolases: expression, characterization, and evidence for heterodimer formation. PlantPhysiol,2008,148:775-785.
    3. Akhtar T.A., Orsomando G., Mehrshahi P., Lara-Nunez A., Bennett M.J., Gregory J.F.,3rd, andHanson A.D. A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J,2010,64:256-66.
    4. Alabadí D., Gil J., Blázquez M.A., and García-Martínez J.L. Gibberellins repress photomorphogenesisin darkness. Plant Physiol,2004,134:1050-1057.
    5. Alabadi D., Gallego-Bartolome J., Orlando L., Garcia-Carcel L., Rubio V., Martinez C., Frigerio M.,Iglesias-Pedraz J.M., Espinosa A., Deng X.W., and Blazquez M.A. Gibberellins modulate lightsignaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J,2008,53:324-35.
    6. Andre C., and Benning C. Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable toutilize seed storage compounds for germination and establishment. Plant Physiol,2007,145:1670-80.
    7. Anguera M.C., Suh J.R., Ghandour H., Nasrallah I.M., Selhub J., and Stover P.J.Methenyltetrahydrofolate synthetase regulates folate turnover and accumulation. J Bio Chem,2003,278:29856-29862.
    8. Anukul N., Ramos R.A., Mehrshahi P., Castelazo A.S., Parker H., Diévart A., Lanau N., Mieulet D.,Tucker G., and Guiderdoni E. Folate polyglutamylation is required for rice seed development. Rice,2010,3:181-193.
    9. Avila C., Suarez M.F., Gomez-Maldonado J., and Canovas F.M. Spatial and temporal expression oftwo cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogenmetabolism during early stages of conifer development. Plant J,2001,25:93-102.
    10. Barrero J.M., Rodriguez P.L., Quesada V., Alabadi D., Blazquez M.A., Boutin J.P., Marion-Poll A.,Ponce M.R., and Micol J.L. The ABA1gene and carotenoid biosynthesis are required for lateskotomorphogenic growth in Arabidopsis thaliana. Plant Cell Environ,2008,31:227-34.
    11. Basset G.J., Quinlivan E.P., Gregory J.F., and Hanson A.D. Folate synthesis and metabolism in plantsand prospects for biofortification. Crop Sci,2005,45:449-453.
    12. Basset G.J., Quinlivan E.P., Ravanel S., Rébeillé F., Nichols B.P., Shinozaki K., Seki M.,Adams-Phillips L.C., Giovannoni J.J., and Gregory J.F. Folate synthesis in plants: thep-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids.Proc Natl Acad Sci USA,2004a,101:1496-1501.
    13. Basset G.J., Ravanel S., Quinlivan E.P., White R., Giovannoni J.J., Rébeillé F., Nichols B.P.,Shinozaki K., Seki M., and Gregory J.F. Folate synthesis in plants: the last step of thep-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J,2004b,40:453-461.
    14. Baud S., Boutin J.-P., Miquel M., Lepiniec L., and Rochat C. An integrated overview of seeddevelopment in Arabidopsis thaliana ecotype WS. Plant Physiol Bioch,2002,40:151-160.
    15. Baud S., Dubreucq B., Miquel M., Rochat C., and Lepiniec L. Storage reserve accumulation inArabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book,2008,6: e0113.
    16. Bedhomme M., Hoffmann M., McCarthy E.A., Gambonnet B., Moran R.G., Rébeillé F., and RavanelS. Folate metabolism in plants an arabidopsis homolog of the mammalian mitochondrial folatetransporter mediates folate import into chloroplasts. J Bio Chem,2005,280:34823-34831.
    17. Beligni M.V., and Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, andinhibits hypocotyl elongation, three light-inducible responses in plants. Planta,2000,210:215-21.
    18. Bernard S.M., and Habash D.Z. The importance of cytosolic glutamine synthetase in nitrogenassimilation and recycling. New Phyto,2009,182:608-620.
    19. Bewley J.D. Seed Germination and Dormancy. Plant Cell,1997,9:1055-1066.
    20. Bi Y.M., Wang R.L., Zhu T., and Rothstein S.J. Global transcription profiling reveals differentialresponses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis.BMC Genomics,2007,8:281.
    21. Blancquaert D., Storozhenko S., Loizeau K., De Steur H., De Brouwer V., Viaene J., Ravanel S.,Rébeillé F., Lambert W., and Van Der Straeten D. Folates and folic acid: from fundamental researchtoward sustainable health. Crit Rev Plant Sci,2010,29:14-35.
    22. Bognar A.L., Osborne C., Shane B., Singer S.C., and Ferone R. Folylpoly-gamma-glutamatesynthetase-dihydrofolate synthetase. Cloning and high expression of the Escherichia coli folC geneand purification and properties of the gene product. J Bio Chem,1985,260:5625-5630.
    23. Bongue-Bartelsman M., and Phillips D. Nitrogen stress regulates gene expression of enzymes in theflavonoid biosynthetic pathway of tomato. Plant Physiol Bioch,1995,33:539-546.
    24. Borisjuk L., Rolletschek H., Radchuk R., Weschke W., Wobus U., and Weber H. Seed developmentand differentiation: a role for metabolic regulation. Plant Biol (Stuttg),2004,6:375-86.
    25. Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., and Gorlach J.Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functionalgenomics in plants. Plant Cell,2001,13:1499-510.
    26. Brocard-Gifford I.M., Lynch T.J., and Finkelstein R.R. Regulatory networks in seeds integratingdevelopmental, abscisic acid, sugar, and light signaling. Plant Physiol,2003,131:78-92.
    27. Cammaerts D., and Jacobs M. A study of the role of glutamate dehydrogenase in the nitrogenmetabolism of Arabidopsis thaliana. Planta,1985,163:517-526.
    28. Canas R.A., de la Torre F., Canovas F.M., and Canton F.R. High levels of asparagine synthetase inhypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen.Planta,2006,224:83-95.
    29. Castaings L., Camargo A., Pocholle D., Gaudon V., Texier Y., Boutet-Mercey S., Taconnat L., RenouJ.P., Daniel-Vedele F., and Fernandez E. The nodule inception-like protein7modulates nitrate sensingand metabolism in Arabidopsis. Plant J,2009,57:426-435.
    30. Cernac A., Andre C., Hoffmann-Benning S., and Benning C. WRI1is required for seed germinationand seedling establishment. Plant Physiol,2006,141:745-757.
    31. Chalker-Scott L. Environmental significance of anthocyanins in plant stress responses. PhotochemPhotobio,1999,70:1-9.
    32. Chan P.Y., Coffin J.W., and Cossins E.A. In Vitro synthesis of pteroylpoly-γ-glutamates by cotyledonextracts of Pisum sativum L. Plant Cell Physiol,1986,27:431-441.
    33. Chen I.J., Lo W.S., Chuang J.Y., Cheuh C.M., Fan Y.S., Lin L.C., Wu S.J., and Wang L.C. Achemical genetics approach reveals a role of brassinolide and cellulose synthase in hypocotylelongation of etiolated Arabidopsis seedlings. Plant Sci,2013,209:46-57.
    34. Chen L., Chan S.Y., and Cossins E.A. Distribution of folate derivatives and enzymes for synthesis of10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol,1997,115:299-309.
    35. Chen M., and Thelen J.J. The plastid isoform of triose phosphate isomerase is required for thepostgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell,2010,22:77-90.
    36. Collakova E., Goyer A., Naponelli V., Krassovskaya I., Gregory J.F.,3rd, Hanson A.D., andShachar-Hill Y. Arabidopsis10-formyl tetrahydrofolate deformylases are essential forphotorespiration. Plant Cell,2008,20:1818-32.
    37. Cowling R.J., and Harberd N.P. Gibberellins control Arabidopsis hypocotyl growth via regulation ofcellular elongation. J Exp Bot,1999,50:1351-1357.
    38. Crété P., Caboche M., and Meyer C. Nitrite reductase expression is regulated at thepost-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana.Plant J,1997,11:625-634.
    39. De Grauwe L., Vandenbussche F., Tietz O., Palme K., and Van Der Straeten D. Auxin, ethylene andbrassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol,2005,46:827-36.
    40. de la Garza R.D., Quinlivan E.P., Klaus S.M., Basset G.J., Gregory J.F., and Hanson A.D. Folatebiofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad SciUSA,2004,101:13720-13725.
    41. Derbyshire P., McCann M.C., and Roberts K. Restricted cell elongation in Arabidopsis hypocotyls isassociated with a reduced average pectin esterification level. BMC Plant Bio,2007a,7:31.
    42. Derbyshire P., Findlay K., McCann M.C., and Roberts K. Cell elongation in Arabidopsis hypocotylsinvolves dynamic changes in cell wall thickness. J Exp Bot,2007b,58:2079-89.
    43. Diaz C., Saliba-Colombani V., Loudet O., Belluomo P., Moreau L., Daniel-Vedele F., Morot-GaudryJ. F., and Masclaux-Daubresse C. Leaf yellowing and anthocyanin accumulation are two geneticallyindependent strategies in response to nitrogen limitation in Arabidopsis thaliana. Plant Cell Physiol,2006,47:74-83.
    44. Diaz C., Lema tre T., Christ A., Azzopardi M., Kato Y., Sato F., Morot-Gaudry J.-F., Le Dily F., andMasclaux-Daubresse C. Nitrogen recycling and remobilization are differentially controlled by leafsenescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol,2008,147:1437-1449.
    45. Ding L., Wang K., Jiang G., Biswas D., Xu H., Li L., and Li Y. Effects of nitrogen deficiency onphotosynthetic traits of maize hybrids released in different years. Ann Bot-London,2005,96:925-930.
    46. Eastmond P.J. SUGAR-DEPENDENT1encodes a patatin domain triacylglycerol lipase that initiatesstorage oil breakdown in germinating Arabidopsis seeds. Plant Cell,2006,18:665-75.
    47. Eastmond P.J., and Rawsthorne S. Coordinate changes in carbon partitioning and plastidialmetabolism during the development of oilseed rape embryos. Plant Physiol,2000a,122:767-74.
    48. Eastmond P.J., and Graham I.A. Re-examining the role of the glyoxylate cycle in oilseeds. TrendsPlant Sci,2001,6:72-8.
    49. Eastmond P.J., Germain V., Lange P.R., Bryce J.H., Smith S.M., and Graham I.A. Postgerminativegrowth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA,2000b,97:5669-74.
    50. Eudes A., Bozzo G.G., Waller J.C., Naponelli V., Lim E.-K., Bowles D.J., Gregory J.F., and HansonA.D. Metabolism of the folate precursor p-aminobenzoate in plants glucose ester formation andvacuolar storage. J Bio Chem,2008,283:15451-15459.
    51. Fait A., Angelovici R., Less H., Ohad I., Urbanczyk-Wochniak E., Fernie A.R., and Galili G.Arabidopsis seed development and germination is associated with temporally distinct metabolicswitches. Plant Physiol,2006,142:839-54.
    52. Fait A., Nesi A.N., Angelovici R., Lehmann M., Pham P.A., Song L., Haslam R.P., Napier J.A., GaliliG., and Fernie A.R. Targeted enhancement of glutamate-to-gamma-aminobutyrate conversion inArabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependentmanner. Plant Physiol,2011,157:1026-42.
    53. Forde B.G. Nitrate transporters in plants: structure, function and regulation. BBA-Biomembranes,2000,1465:219-235.
    54. Gambonnet B., Jabrin S., Ravanel S., Karan M., Douce R., and Rebeille F. Folate distribution duringhigher plant development. J Sci Food Agr,2001,81:835-841.
    55. Gan Y., Filleur S., Rahman A., Gotensparre S., and Forde B.G. Nutritional regulation of ANR1andother root-expressed MADS-box genes in Arabidopsis thaliana. Planta,2005,222:730-742.
    56. Gao Y., Wang S., Asami T., and Chen J.G. Loss-of-function mutations in the Arabidopsisheterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signalingand biosynthesis mutants. Plant Cell Physiol,2008,49:1013-24.
    57. Goyer A., and Navarre D.A. Determination of folate concentrations in diverse potato germplasm usinga trienzyme extraction and a microbiological assay. J Agric Food Chem,2007,55:3523-8.
    58. Goyer A., and Navarre D.A. Folate is higher in developmentally younger potato tubers. J Sci FoodAgr,2009,89:579-583.
    59. Goyer A., Collakova E., Diaz de la Garza R., Quinlivan E.P., Williamson J., Gregory J.F.,3rd,Shachar-Hill Y., and Hanson A.D.5-Formyltetrahydrofolate is an inhibitory but well toleratedmetabolite in Arabidopsis leaves. J Biol Chem,2005,280:26137-42.
    60. Graham I.A. Seed storage oil mobilization. Annu. Rev. Plant Biol.,2008,59:115-142.
    61. Guo F.Q., Wang R., and Crawford N.M. The Arabidopsis dual-affinity nitrate transporter geneAtNRT1.1(CHL1) is regulated by auxin in both shoots and roots. J Exp Bot,2002,53:835-44.
    62. Guo F.Q., Wang R., Chen M., and Crawford N.M. The Arabidopsis dual-affinity nitrate transportergene AtNRT1.1(CHL1) is activated and functions in nascent organ development during vegetativeand reproductive growth. Plant Cell,2001,13:1761-77.
    63. Gutiérrez R.A., Stokes T.L., Thum K., Xu X., Obertello M., Katari M.S., Tanurdzic M., Dean A.,Nero D.C., and McClung C.R. Systems approach identifies an organic nitrogen-responsive genenetwork that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA,2008,105:4939-4944.
    64. Hanson A.D., and Roje S. One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant MolBiol,2001,52:119-137.
    65. Hanson A.D., and Gregory J.F.,3rd. Synthesis and turnover of folates in plants. Curr Opin Plant Biol,2002,5:244-9.
    66. Hanson A.D., and Gregory J.F.,3rd. Folate biosynthesis, turnover, and transport in plants. Annu RevPlant Biol,2011,62:105-25.
    67. Hanson A.D., Gage D.A., and Shachar-Hill Y. Plant one-carbon metabolism and its engineering.Trends Plant Sci,2000,5:206-13.
    68. Ho C.H., Lin S.H., Hu H.C., and Tsay Y.F. CHL1functions as a nitrate sensor in plants. Cell,2009,138:1184-1194.
    69. Hossain T., Rosenberg I., Selhub J., Kishore G., Beachy R., and Schubert K. Enhancement of folatesin plants through metabolic engineering. Proc Natl Acad Sci USA,2004,101:5158-5163.
    70. Hu H.C., Wang Y.Y., and Tsay Y.F. AtCIPK8, a CBL-interacting protein kinase, regulates thelow-affinity phase of the primary nitrate response. Plant J,2009,57:264-278.
    71. Ishikawa T., Machida C., Yoshioka Y., Kitano H., and Machida Y. The GLOBULAR ARREST1gene,which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana.Plant J,2003,33:235-44.
    72. Jabrin S., Ravanel S., Gambonnet B., Douce R., and Rébeillé F. One-carbon metabolism in plants.Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol,2003,131:1431-1439.
    73. Jiang L., Liu Y., Sun H., Han Y., Li J., Li C., Guo W., Meng H., Li S., Fan Y., and Zhang C. Themitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during earlyseedling development in Arabidopsis. Plant Physiol,2013,161:971-89.
    74. Josse E.M., and Halliday K.J. Skotomorphogenesis: the dark side of light signalling. Curr Biol,2008,18: R1144-6.
    75. Kang J., and Turano F.J. The putative glutamate receptor1.1(AtGLR1.1) functions as a regulator ofcarbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA,2003,100:6872-6877.
    76. Khamis S., Lamaze T., Lemoine Y., and Foyer C. Adaptation of the photosynthetic apparatus in maizeleaves as a result of nitrogen limitation relationships between electron transport and carbonassimilation. Plant Physiol,1990,94:1436-1443.
    77. Klaus S.M., Kunji E.R., Bozzo G.G., Noiriel A., De La Garza R.D., Basset G.J., Ravanel S., RébeilléF., Gregory J.F., and Hanson A.D. Higher plant plastids and cyanobacteria have folate carriers relatedto those of trypanosomatids. J Bio Chem,2005,280:38457-38463.
    78. Krouk G., Tillard P., and Gojon A. Regulation of the high-affinity NO-3uptake system by NRT1.1-mediated NO-3demand signaling in Arabidopsis. Plant Physiol,2006,142:1075-1086.
    79. Kumar S., Yoshizumi T., Hongo H., Yoneda A., Hara H., Hamasaki H., Takahashi N., Nagata N.,Shimada H., and Matsui M. Arabidopsis mitochondrial protein TIM50affects hypocotyl cellelongation through intracellular ATP level. Plant Sci,2012,183:212-7.
    80. Kushwah S., and Laxmi A. The interaction between glucose and cytokinin signal transductionpathway in Arabidopsis thaliana. Plant Cell Environ,2013.
    81. Lam H. M., Coschigano K., Oliveira I., Melo-Oliveira R., and Coruzzi G. The molecular-genetics ofnitrogen assimilation into amino acids in higher plants. Annu Rev Plant Bio,1996,47:569-593.
    82. Lee I., Ambaru B., Thakkar P., Marcotte E.M., and Rhee S.Y. Rational association of genes with traitsusing a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol,2010,28:149-156.
    83. Lemieux B., Miquel M., Somerville C., and Browse J. Mutants of Arabidopsis with alterations in seedlipid fatty acid composition. Theor Appl Genet,1990,80:234-40.
    84. Li J., Wang X., Qin T., Zhang Y., Liu X., Sun J., Zhou Y., Zhu L., Zhang Z., Yuan M., and Mao T.MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizingcortical microtubules in Arabidopsis. Plant Cell,2011,23:4411-27.
    85. Loizeau K., De Brouwer V., Gambonnet B., Yu A., Renou J.P., Van Der Straeten D., Lambert W.E.,Rebeille F., and Ravanel S. A genome-wide and metabolic analysis determined the adaptive responseof Arabidopsis cells to folate depletion induced by methotrexate. Plant Physiol,2008,148:2083-95.
    86. Loudet O., Chaillou S., Merigout P., Talbotec J., and Daniel-Vedele F. Quantitative trait loci analysisof nitrogen use efficiency in Arabidopsis. Plant Physiol,2003,131:345-358.
    87. Lucas J.R., Courtney S., Hassfurder M., Dhingra S., Bryant A., and Shaw S.L. Microtubule-associatedproteins MAP65-1and MAP65-2positively regulate axial cell growth in etiolated Arabidopsishypocotyls. Plant Cell,2011a,23:1889-903.
    88. Lucas M., Swarup R., Paponov I.A., Swarup K., Casimiro I., Lake D., Peret B., Zappala S., MairhoferS., Whitworth M., Wang J., Ljung K., Marchant A., Sandberg G., Holdsworth M.J., Palme K.,Pridmore T., Mooney S., and Bennett M.J. Short-Root regulates primary, lateral, and adventitious rootdevelopment in Arabidopsis. Plant Physiol,2011b,155:384-98.
    89. Markham K.R., Gould K.S., Winefield C.S., Mitchell K.A., Bloor S.J., and Boase M.R. Anthocyanicvacuolar inclusions-their nature and significance in flower colouration. Phytochemistry,2000,55:327-336.
    90. Masclaux-Daubresse C., Daniel-Vedele F., Dechorgnat J., Chardon F., Gaufichon L., and Suzuki A.Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productiveagriculture. Ann Bot-London,2010,105:1141-1157.
    91. Masclaux-Daubresse C., Reisdorf-Cren M., Pageau K., Lelandais M., Grandjean O., Kronenberger J.,Valadier M.H., Feraud M., Jouglet T., and Suzuki A. Glutamine synthetase-glutamate synthasepathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco.Plant Physiol,2006,140:444-456.
    92. McIntosh S.R., and Henry R.J. Genes of folate biosynthesis in wheat. J Cereal Sci,2008,48:632-638.
    93. Mehrshahi P., Gonzalez-Jorge S., Akhtar T.A., Ward J.L., Santoyo-Castelazo A., Marcus S.E.,Lara-Nunez A., Ravanel S., Hawkins N.D., Beale M.H., Barrett D.A., Knox J.P., Gregory J.F.,3rd,Hanson A.D., Bennett M.J., and Dellapenna D. Functional analysis of folate polyglutamylation and itsessential role in plant metabolism and development. Plant J,2010,64:267-79.
    94. Miflin B.J. The location of nitrite reductase and other enzymes related to amino acid biosynthesis inthe plastids of root and leaves. Plant Physiol,1974,54:550-555.
    95. Miflin B.J., and Habash D.Z. The role of glutamine synthetase and glutamate dehydrogenase innitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J ExpBot,2002,53:979-987.
    96. Miyashita Y., and Good A.G. NAD(H)-dependent glutamate dehydrogenase is essential for thesurvival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot,2008,59:667-680.
    97. Mouillon J., Ravanel S., Douce R., and Rébeillé F. Folate synthesis in higher-plant mitochondria:coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities.Biochem. J,2002,363:313-319.
    98. O'Neill C.M., Gill S., Hobbs D., Morgan C., and Bancroft I. Natural variation for seed oil compositionin Arabidopsis thaliana. Phytochemistry,2003,64:1077-90.
    99. Orsel M., Filleur S., Fraisier V., and Daniel Vedele F. Nitrate transport in plants: which gene andwhich control? J Exp Bot,2002,53:825-833.
    100. Orsomando G., de la Garza R.D., Green B.J., Peng M., Rea P.A., Ryan T.J., Gregory J.F., and HansonA.D. Plant γ-Glutamyl Hydrolases and Folate Polyglutamates characterization, compartmentation, andco-occurrence in vacuoles. J Biol Chem,2005,280:28877-28884.
    101. Pant B.D., Musialak-Lange M., Nuc P., May P., Buhtz A., Kehr J., Walther D., and Scheible W.R.Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensivereal-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol,2009,150:1541-1555.
    102. Pego J.V., Weisbeek P.J., and Smeekens S.C. Mannose inhibits Arabidopsis germination via ahexokinase-mediated step. Plant Physiol,1999,119:1017-23.
    103. Pelletier S., Van Orden J., Wolf S., Vissenberg K., Delacourt J., Ndong Y.A., Pelloux J., Bischoff V.,Urbain A., and Mouille G. A role for pectin de-methylesterification in a developmentally regulatedgrowth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol,2010,188:726-739.
    104. Penfield S., Graham S., and Graham I.A. Storage reserve mobilization in germinating oilseeds:Arabidopsis as a model system. Biochem Soc Trans,2005,33:380-3.
    105. Penfield S., Rylott E.L., Gilday A.D., Graham S., Larson T.R., and Graham I.A. Reserve mobilizationin the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid,and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell,2004,16:2705-18.
    106. Peng M., Bi Y.M., Zhu T., and Rothstein S.J. Genome-wide analysis of Arabidopsis responsivetranscriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant MolBiol,2007a,65:775-797.
    107. Peng M., Hannam C., Gu H., Bi Y.M., and Rothstein S.J. A mutation in NLA, which encodes aRING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J,2007b,50:320-337.
    108. Peng M., Hudson D., Schofield A., Tsao R., Yang R., Gu H., Bi Y.M., and Rothstein S.J. Adaptationof Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlledby the NLA gene. J Exp Bot,2008,59:2933-2944.
    109. Piironen V., Edelmann M., Kariluoto S., and Bed Z. Folate in wheat genotypes in theHEALTHGRAIN diversity screen. J Agr Food Chem,2008,56:9726-9731.
    110. Purnell M.P., and Botella J.R. Tobacco isoenzyme1of NAD(H)-dependent glutamate dehydrogenasecatabolizes glutamate in vivo. Plant Physiol,2007,143:530-539.
    111. Rader J.I., and Schneeman B.O. Prevalence of neural tube defects, folate status, and folate fortificationof enriched cereal-grain products in the United States. Pediatrics,2006,117:1394-1399.
    112. Raichaudhuri A., Peng M., Naponelli V., Chen S., Sánchez-Fernández R., Gu H., Gregory J.F.,Hanson A.D., and Rea P.A. Plant vacuolar ATP-binding cassette transporters that translocate folatesand antifolates in vitro and contribute to antifolate tolerance in vivo. J Bio Chem,2009,284:8449-8460.
    113. Ramos-Parra P.A., Garcia-Salinas C., Hernandez-Brenes C., and Diaz de la Garza R.I. Folate Levelsand Polyglutamylation Profiles of Papaya (Carica papaya cv. Maradol) during Fruit Development andRipening. J Agr Food Chem,2013.
    114. Ravanel S., Cherest H., Jabrin S., Grunwald D., Surdin-Kerjan Y., Douce R., and Rebeille F.Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolatesynthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc NatlAcad Sci USA,2001,98:15360-5.
    115. Ravanel S., Block M.A., Rippert P., Jabrin S., Curien G., Rebeille F., and Douce R. Methioninemetabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can importS-adenosylmethionine from the cytosol. J Biol Chem,2004,279:22548-57.
    116. Raz V., and Ecker J.R. Regulation of differential growth in the apical hook of Arabidopsis.Development,1999,126:3661-3668.
    117. Rebeille F., Macherel D., Mouillon J.M., Garin J., and Douce R. Folate biosynthesis in higher plants:purification and molecular cloning of a bifunctional6-hydroxymethyl-7,8-dihydropterinpyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J,1997,16:947-957.
    118. Refrégier G., Pelletier S., Jaillard D., and H fte H. Interaction between wall deposition and cellelongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol,2004,135:959-968.
    119. Remans T., Nacry P., Pervent M., Girin T., Tillard P., Lepetit M., and Gojon A. A central role for thenitrate transporter NRT2.1in the integrated morphological and physiological responses of the rootsystem to nitrogen limitation in Arabidopsis. Plant Physiol,2006,140:909-921.
    120. Renault H., El Amrani A., Palanivelu R., Updegraff E.P., Yu A., Renou J.P., Preuss D., BouchereauA., and Deleu C. GABA accumulation causes cell elongation defects and a decrease in expression ofgenes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Plant Cell Physiol,2011,52:894-908.
    121. Roos A., and Cossins E. Pteroylglutamate derivatives in Pisum sativum L. Biosynthesis ofcotyledonary tetrahydropteroylglutamates during germination. Biochem. J,1971,125:17-26.
    122. Sahr T., Ravanel S., and Rebeille F. Tetrahydrofolate biosynthesis and distribution in higher plants.Biochem Soc Trans,2005,33:758-62.
    123. Sahr T., Ravanel S., Basset G., Nichols B., Hanson A., and Rébeillé F. Folate synthesis in plants:purification, kinetic properties, and inhibition of aminodeoxychorismate synthase. Biochem J,2006,396:157-162.
    124. Scheible W.R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N., Schindelasch D.,Thimm O., Udvardi M.K., and Stitt M. Genome-wide reprogramming of primary and secondarymetabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure ofArabidopsis in response to nitrogen. Plant Physiol,2004,136:2483-2499.
    125. Scott J., Rébeillé F., and Fletcher J. Folic acid and folates: the feasibility for nutritional enhancementin plant foods. J Sci Food Agr,2000,80:795-824.
    126. Smets R., Le J., Prinsen E., Verbelen J.P., and Van Onckelen H.A. Cytokinin-induced hypocotylelongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acidtransport. Planta,2005,221:39-47.
    127. Srivastava A.C., Tang Y., de la Garza R.I., and Blancaflor E.B. The plastidial folylpolyglutamatesynthetase and root apical meristem maintenance. Plant Signal Behav,2011a,6:751-4.
    128. Srivastava A.C., Ramos-Parra P.A., Bedair M., Robledo-Hernandez A.L., Tang Y., Sumner L.W.,Diaz de la Garza R.I., and Blancaflor E.B. The folylpolyglutamate synthetase plastidial isoform isrequired for postembryonic root development in Arabidopsis. Plant Physiol,2011b,155:1237-51.
    129. Stokes M.E., Chattopadhyay A., Wilkins O., Nambara E., and Campbell M.M. Interplay betweensucrose and folate modulates auxin signaling in arabidopsis. Plant Physiol,2013,162:1552-65.
    130. Storozhenko S., Navarrete O., Ravanel S., De Brouwer V., Chaerle P., Zhang G. F., Bastien O.,Lambert W., Rébeillé F., and Van Der Straeten D. Cytosolic HydroxymethyldihydropterinPyrophosphokinase/Dihydropteroate Synthase from Arabidopsis thaliana a specific role in earlydevelopment and stress response. J Biol Chem,2007,282:10749-10761.
    131. Str lsj L.M., Witth ft C.M., Sj holm I.M., and J gerstad M.I. Folate content in strawberries(Fragaria×ananassa): effects of cultivar, ripeness, year of harvest, storage, and commercial processing.J Agr Food Chem,2003,51:128-133.
    132. Suh J.R., Herbig A.K., and Stover P.J. New perspectives on folate catabolism. Annu Rev of Nutr,2001,21:255-282.
    133. Takahashi M., Sasaki Y., Ida S., and Morikawa H. Nitrite reductase gene enrichment improvesassimilation of NO2in Arabidopsis. Plant Physiol,2001,126:731-741.
    134. Tischner R. Nitrate Uptake and Reduction in Plants. J Crop Improv,2006,15:53-95.
    135. Tsay Y.F., Chiu C.C., Tsai C.B., Ho C.H., and Hsu P.K. Nitrate transporters and peptide transporters.FEBS Lett,2007,581:2290-300.
    136. Tschoep H., Gibon Y., Carillo P., Armengaud P., Szecowka M., NUNES-NESI A., Fernie A.R., KoehlK., and Stitt M. Adjustment of growth and central metabolism to a mild but sustainednitrogen-limitation in Arabidopsis. Plant Cell Environ,2009,32:300-318.
    137. Ullah H., Chen J.G., Young J.C., Im K.H., Sussman M.R., and Jones A.M. Modulation of cellproliferation by heterotrimeric G protein in Arabidopsis. Science,2001,292:2066-9.
    138. Van Wilder V., De Brouwer V., Loizeau K., Gambonnet B., Albrieux C., Van Der Straeten D.,Lambert W.E., Douce R., Block M.A., Rebeille F., and Ravanel S. C1metabolism and chlorophyllsynthesis: the Mg-protoporphyrin IX methyltransferase activity is dependent on the folate status. NewPhytol,2009,182:137-45.
    139. Vauclare P., Diallo N., Bourguignon J., Macherel D., and Douce R. Regulation of the expression ofthe glycine decarboxylase complex during pea leaf development. Plant Physiol,1996,112:1523-1530.
    140. Vert G., and Chory J. A toggle switch in plant nitrate uptake. Cell,2009,138:1064-1066.
    141. Vidal E.A., and Gutiérrez R.A. A systems view of nitrogen nutrient and metabolite responses inArabidopsis. Curr Opin Plant Biol,2008,11:521-529.
    142. Vidal E.A., Tamayo K.P., and Gutierrez R.A. Gene networks for nitrogen sensing, signaling, andresponse in Arabidopsis thaliana. WIRES Sys Bio Med,2010,2:683-693.
    143. Vriezen W.H., Achard P., Harberd N.P., and Van Der Straeten D. Ethylene-mediated enhancement ofapical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J,2004,37:505-516.
    144. Waller J.C., Akhtar T.A., Lara-Nú ez A., Gregory J.F., McQuinn R.P., Giovannoni J.J., and HansonA.D. Developmental and feedforward control of the expression of folate biosynthesis genes in tomatofruit. Mol Plant,2010,3:66-77.
    145. Weber H., Borisjuk L., and Wobus U. Molecular physiology of legume seed development. Annu RevPlant Biol,2005,56:253-79.
    146. Wei Z., Sun K., Sandoval F.J., Cross J.M., Gordon C., Kang C., and Roje S. Folate polyglutamylationeliminates dependence of activity on enzyme concentration in mitochondrial serinehydroxymethyltransferases from Arabidopsis thaliana. Arch Biochem Biophys,2013,536:87-96.
    147. Xu Z., and Zhou G. Research advance in nitrogen metabolism of plant and its environmentalregulation. Ying Yong Sheng Tai Xue Bao,2004,15:511-6.
    148. Zhang H., and Forde B.G. An Arabidopsis MADS box gene that controls nutrient-induced changes inroot architecture. Science,1998,279:407-409.
    149. Zhang H., Deng X., Miki D., Cutler S., La H., Hou Y.J., Oh J., and Zhu J.K. Sulfamethazinesuppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. Plant Cell,2012,24:1230-41.
    150. Zhang Y., Sun K., Sandoval F.J., Santiago K., and Roje S. One-carbon metabolism in plants:characterization of a plastid serine hydroxymethyltransferase. Biochem J,2010a,430:97-105.
    151. Zhang Y., Liu Z., Wang L., Zheng S., Xie J., and Bi Y. Sucrose-induced hypocotyl elongation ofArabidopsis seedlings in darkness depends on the presence of gibberellins. J Plant Physiol,2010b,167:1130-6.
    152. Zheng Z. L. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav,2009,4:584-591.
    153. Zhou H.R., Zhang F.F., Ma Z.Y., Huang H.W., Jiang L., Cai T., Zhu J.K., Zhang C., and He X.J.Folate polyglutamylation is involved in chromatin silencing by maintaining global DNA methylationand histone H3K9dimethylation in Arabidopsis. Plant Cell,2013,25:2545-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700