用户名: 密码: 验证码:
光学频率合成关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频率稳定度、窄线宽激光器在精密测量物理、精密光谱、原子光钟与计量科学等方面有着举足轻重的作用,它的性能直接影响到精密测量或计量标准的精度。目前,采用Pound-Drever-Hall (PDH)稳频技术将激光频率锁定在高稳定度的参考腔上,可以在特定波段获得亚赫兹线宽激光器。而在实际应用时,往往需要在宽的波长范围内按需输出窄线宽的激光。若同样采用PDH技术,则需要多个光学参考腔分布在各个波段才能实现,不仅系统复杂,且造价昂贵。并且,将一台窄线宽激光器在比较宽的波长范围内实现精密调谐也是非常困难的。光学频率合成可为获得宽波长范围内的相干光输出提供有效途径,它的关键是如何将单一波长激光的相干性和频率稳定性传递到所需要的工作波长。论文针对光学频率合成关键技术研究了亚赫兹线宽参考激光、赫兹线宽光学频率梳和连续可调谐窄线宽激光,实现单一波长激光的相干性和频率稳定性向连续可调谐激光的传递。
     采用PDH技术、垂直振动免疫的Fabry-Perot (FP)参考腔(腔长7.75cm)、被动隔振和高稳定的温度控制装置(sub-mK)、光纤位相噪声抑制系统和稳定的光学系统建立了两台亚赫兹线宽Nd:YAG激光器(1064nm)。经比对测试表明,激光线宽为0.6Hz,频率稳定度为1.2×10-15(1s的积分时间),达到了FP参考腔的热噪声极限。这两套亚赫兹线宽激光系统可连续工作一个月以上。亚赫兹线宽激光将作为光学频率合成的参考源。
     以亚赫兹线宽Nd:YAG激光器作为参考激光,通过对高重复频率(800MHz)钛宝石飞秒激光光梳精密锁相控制,实现了对光梳梳齿线宽的压窄。经比对测试,证实光梳在一个倍频程(532nm-1064nm)内梳齿的绝对线宽在1Hz量级。
     由于光梳的所有频谱分量在同一个激光束中,且每一个梳齿的功率极其微弱,还不能满足精密光谱与精密测量的需要。为此,采用精密锁相控制技术将宽带可调谐钛宝石单频激光受控于窄线宽光学频率梳,频率跟踪精度为8×10-17(1s的积分时间),相对线宽<1mHz。经比对测试,证明连续可调谐钛宝石窄线宽激光的线宽达到Hz量级。通过波长计粗锁定和精密位相锁定系统相结合,初步实现对连续可调谐钛宝石窄线宽激光频率的精密调谐。
     论文最后讨论了利用计算机自动化控制激光频率精密调谐以及将光学频率合成波段拓展的进一步研究工作。
High frequency stability and narrow-linewidth lasers are indispensable tools in various scientific fields, such as tests of fundamental physics, precision spectroscopy, optical atomic clocks, precision measurement and metrology. Recently, state-of-the-art lasers with subhertz-linewidth at some specific wavelengths have been constructed by using the Pound-Drever-Hall (PDH) technique. In such laser systems, ultra-stable external optical cavities with high finesse are employed to reduce the laser linewidth. However, for most applications, in which narrow-linewidth lasers should be realized over a wide range of wavelength, it will become complex and much expensive. And it is also difficult to realize if a narrow-linewidth laser needs to be continuously tuned over a relatively broad spectrum precisely. Optical frequency synthesis is the feasible solution to satisfy requirements. In this thesis, we introduce a method of optical frequency synthesis which can yield narrow-linewidth lasers at an arbitrary wavelength over a relatively broad spectrum by transferring high frequency stability and coherence from an ultrastable laser at a specific wavelength to a tunable, single-frequency laser bridged by an optical frequency comb. Key techniques of optical frequency synthesis including a subhertz-linewidth laser, a narrow-linewidth optical frequency comb and a tunable, narrow-linewidth single-frequency laser have been studied and developed.
     Two narrow-linewidth Nd:YAG lasers at1064run are constructed by independently frequency-stabilizing to two separately-located, vertically-mounted vibration-insensitive reference cavities of7.75cm-long. Benefiting from passive vibration isolation, high stable temperature control with sub-mK stability, fiber noise cancellation system, as well as stable optical systems, we have realized two subhertz-linewidth lasers. Measurements show that each laser system has achieved a linewidth of0.6Hz and fractional frequency instability of1.2×10-15at1s averaging time. Systematic evaluation shows the frequency instability and linewidth of each laser system is limited by thermal noise of the reference cavity. The laser systems have been running continuously for more than one month.
     By precisely phase-locking an optical frequency comb with a repetition rate of800MHz to one of the subhertz-linewidth NdrYAG lasers at1064nm, we have realized a narrow-linewidth optical frequency comb. The absolute linewidth of the comb teeth has been measured to be1Hz over an octave spectrum from532nm to1064nm.
     In order to obtain a frequency tunable, narrow-linewidth untra-stable laser, a widely tunable, single-frequency Ti:sapphire laser is precisely phase-locked to the narrow-linewidth optical frequency comb with a frequency tracking accuracy of8×10-17at1s averaging time and a relative linewidth of less than1mHz. Measurements show that a narrow-linewidth Ti:sapphire laser at the Hz level has been realized. The laser frequency of the narrow-linewidth Ti:sapphire laser can be coarsely determined by a wavemeter and be finely tuned by precision phase-locking systems.
     Finally, an outlook of further work of optical frequency synthesis on laser frequency tuning by computer and spectrum extension has been discussed.
引文
[1]R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator [J]. Appl. Phys. B 31(2),97-105 (1983).
    [2]E. Black. Notes on Pound-Drever-Hall Technique [M]. LIGO Technical notes,1998.
    [3]E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization [J]. Am. J. Phys.69(1),79-87 (2001).
    [4]Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma. Nd:YAG lasers at 1064 nm with 1-Hz linewidth [J]. Appl. Phys. B 98(1),61-67 (2010).
    [5]H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr. Diode laser with 1 Hz linewidth [J]. Opt. Lett.31(6),736-738 (2006).
    [6]M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity [J]. Opt Lett.30(14),1815-1817 (2005).
    [7]T. Liu, Y. H. Wang, R. Dumke, A. Stejskal, Y. N. Zhao, J. Zhang, Z. H. Lu, L. J. Wang, Th. Becker and H. Walther. Narrow linewidth light source for an ultraviolet optical frequency standard [J]. Appl. Phys. B 87(2),227-232 (2007).
    [8]H. Jiang, F. Kefelian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli. Long-distance frequency transfer over an urban fiber link using optical phase stabilization [J]. J. Opt. Soc. Am. B 25(12), 2029-2035 (2008).
    [9]B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist Visible lasers with subhertz linewidths [J]. Phys. Rev. Lett.82(19),3799-3802 (1999).
    [10]S. A. Webster, M. Oxborrow, and Patrick Gill. Subhertz-linewidth Nd:YAG laser [J]. Opt. Lett.29(13),1497-1499 (2004).
    [11]J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hansch. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities [J]. Phys. Rev. A 77(5),053809(9) (2008).
    [12]A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15 [J]. Opt. Lett.32(6),641-643 (2007).
    [13]Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates. Making optical atomic clocks more stable with 10'16-level laser stabilization [J]. Nat. Photonics 5(3),158-161 (2011).
    [14]T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, and F. Riehle. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity [J]. Nat Photonics 6,687-692 (2012).
    [15]M. D. Swallows, M. J. Martin, M. Bishof, C. Benko, Y. Lin, S. Blatt, A. M. Rey, and J. Ye. Operating a 87Sr optical lattice clock with high precision and at high density [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3),416-425 (2012).
    [16]H. Q. Chen, Y. Y. Jiang, S. Fang, Z. Y. Bi, and L. S. Ma. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz [J]. J. Opt. Soc. Am. B 30(6), 1546-1550(2013).
    [17]S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland. An optical clock based on a single trapped 199Hg+ion [J]. Science 293(5531), 825-828 (2001).
    [18]A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T, M, Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock [J]. Science 319(5871),1805-1808 (2008).
    [19]N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates. Spin-1/2 optical lattice clock [J]. Phys. Rev. Lett.103(6),063001(4) (2009).
    [20]C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband. Frequency comparison of two high-accuracy Al+optical clocks [J]. Phys. Rev. Lett. 104(7),070802(4) (2010).
    [21]J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guena, Y. Le Coq, and S. Bize. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty= 5.7×10-15 [J]. Phys. Rev. Lett.108(18),183004(5) (2012).
    [22]M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera, and Ph. Laurent. Absolute frequency measurement of the 40Ca+4s 2S1/2-3d 2D5/2 clock transition [J]. Phys. Rev. Lett.102(2),023002(4) (2009).
    [23]N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, and E. Peik. High-accuracy optical clock based on the octupole transition in 171Yb+[J]. Phys. Rev. Lett.108(9),090801(5) (2012).
    [24]Y. Huang, J. Cao, P. Liu, K. Liang, B. Ou, H. Guan, X. Huang, T. Li, and K. Gao. Hertz-level measurement of the 40Ca+4s 2S1/2-3d2D5/2 clock transition frequency with respect to the SI second through the Global Positioning System [J]. Phys. Rev. A 85(3),030503(6) (2012).
    [25]T. C. Li, and Z. J. Fang. From meter to second at NIM:Stabilized lasers-Cs fountain clocks-fs optical freuqency combs-Sr lattice clock (in Chinese) [J]. Chin. Sci. Bull.56(10),709-716 (2011).
    [26]C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband. Frequency comparison of two high-accuracy Al+optical clocks [J]. Phys. Rev. Lett. 104(7),070802(4) (2010).
    [27]B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye. A new generation of atomic clocks:accuracy and stability at the 10-18 level [J]. Nature 506,71-75 (2014).
    [28]S. G. Turyshev. Experimental tests of general relativity:recent progress and future directions [J]. Phys.-Usp.52(1),1-27 (2009).
    [29]M. Takamoto, F. L. Hong, R. Higashi, and H. Katori. An optical lattice clock [J]. Nature, 435(7040),321-324 (2005).
    [30]T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye. Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s [J]. Phys. Rev. Lett.109(23),230801(5) (2012).
    [31]Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser [J]. Phys. Rev. Lett.82(18),3568-3571 (1999).
    [32]R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye. Phase-coherent optical pulse synthesis from separate femtosecond lasers [J]. Science 293(5533),1286-1289 (2001).
    [33]T. W. Hansch. Nobel Lecture:passion for precision [J]. Rev. Mod. Phys.78(4), 1297-1309(2006).
    [34]J. L. Hall. Nobel Lecture:defining and measuring optical frequencies [J]. Rev. Mod. Phys. 78(4),1279-1295 (2006).
    [35]L. S. Ma, L. Robertsson, S. Picard, M. Zucco. Z. Y. Bi, S. H. Wu, and R. S. Windeler. First international comparison of femtosecond laser combs at the International Bureau of Weights and Measures [J]. Opt. Lett.29(6),641-643 (2004).
    [36]L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams. Optical frequency synthesis and comparison with uncertainty at the 10"19 level [J]. Science 306(5700), 1355-1358(2004).
    [37]I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter [J]. Nat. Photonics 1,283-287 (2007).
    [38]W. Zhang, Z. Xu, M Lours, R. Boudot, Y. Kersale, G. Santarelli, and Y. Le Coq. Sub-100 attoseconds stability optics-to-microwave synchronization [J]. Appl. Phys. Lett. 96(21),211105(3) (2010).
    [39]K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. L. Hong. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control [J]. Opt. Express 20(13), 13769-13776(2012).
    [40]D. Nicolodi, B. Argence, W. Zhang, R. Le Targat, G. Santarelli, and Y. Le Coq. Spectral purity transfer between optical wavelengths at the 10-18 level [J]. Nat. Photonics 8, 219-223 (2014).
    [41]T. R Schibli, T. R Schibli, I. Haitl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye. Optical frequency comb with submillihertz linewidth and more than 10 W average power [J]. Nat. Photonics 2,355-359 (2008).
    [42]A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams. Stabilization of femtosecond laser frequency combs with subhertz residual linewidths [J]. Opt. Lett.29(10),1081-1083 (2004).
    [43]S. Fang, H. Q. Chen, T. Y. Wang, Y. Y. Jiang, Z. Y. Bi, and L. S. Ma. Optical frequency comb with an absolute linewidth of 0.6 Hz-1.2 Hz over an octave spectrum [J]. Appl. Phys. Lett.102(23),231118(4) (2013).
    [44]H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F. L. Hong. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb [J]. Opt. Express 21(7), 7891-7896 (2013).
    [45]C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, and U. Sterr. Providing 10"16 short-term stability of a 1.5-μm laser to optical clocks [J]. IEEE Trans. Instrum. Meas.62(6),1556-1562 (2013).
    [46]T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place [J]. Science 319(5871),1808-1812 (2008).
    [47]T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, J. Shirley and J. E. Stalnaker. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance [J]. Phys. Rev. Lett. 98(7),070801(4) (2007).
    [48]A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references [J]. Opt. Lett 30(6),667-669 (2005).
    [49]T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams. Generation of ultrastable microwaves via optical frequency division [J]. Nal. Photonics 5(7),425-429 (2011).
    [50]S. J. Waldman. Status of LIGO at the start of the fifth science run. Class [J]. Quantum Grav.23(19), S653-S660 (2006).
    [51]D. Leibfried, R. Blatt, C. Monroe, and D. Wineland. Quantum dynamics of single trapped ions [J]. Rev. Mod. Phys.75(1),281-324 (2003).
    [52]R. L. Barger, M. S. Sorem, and J. L. Hall. Frequency stabilization of a cw dye laser [J]. Appl. Phys. Lett.22(11),573-575 (1973).
    [53]A. D. White. Frequency stabilization of gas lasers [J]. IEEE J. Quantum electron. QE-1(8),349-357 (1965).
    [54]C. E. Wieman, and S. L. Gilbert. Laser-frequency stabilization using mode interference from a reflecting reference interferometer [J]. Opt. Lett.7(10),480-482 (1982).
    [55]R. V. Pound. Electronic frequency stabilization of microwave oscillators [J]. Rev. Sci. Instrum.17(11),490-505 (1946).
    [56]E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund. Residual amplitude modulation in laser electro-optic phase modulation [J]. J. Opt Soc. Am. B 2(8),1320-1326 (1985).
    [57]J. Sathian, and E. Jaatinen. Intensity dependent residual amplitude modulation in electro-optic phase modulators [J]. Appl. Opt 51(16),3684-3691 (2012).
    [58]A. D. Ludlow. The strontium optical lattice clock:optical spectroscopy with sub-hertz accuracy [D]. JILA,2008.
    [59]E. A. Whittaker, and C. M. Shum, H. Grebel, and H. Lotem. Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation [J]. J. Opt Soc. Am. B 5(6),1253-1256 (1988).
    [60]N. C. Wong, and J. L. Hall. Servo control of amplitude modulation in frequency-modulation spectroscopy:demonstration of shot-noise-limited detection [J]. J. Opt Soc. Am. B 2(9),1527-1533 (1985).
    [61]Y. H. Chen, Y. Y. Jiang, Z. Y. Bi, and L. S. Ma Suppression of residual amplitude modulation in electro-optical phase modulators using Fabry-Perot cavity [J]. Acta. Optica. Sinica 27(10),1877-1882 (2007).
    [62]L. Li, F. Liu, C. Wang, and L. Chen. Measurement and control of residual amplitude modulation in optical phase modulation [J]. Rev. Sci. Instrum.83(4),043111(10) (2012).
    [63]L. Chen, J. L. Hall and J. Ye. Vibration-induced elastic deformation of Fabry-Perot cavities [J]. Phys. Rev. A 74(5),053801(13) (2006).
    [64]G. D. Domenico, S. Schilt, and P. Thomann. Simple approach to the relation between laser frequency noise and laser line shape [J]. Appl. Opt.49(25),4801-4807 (2010).
    [65]S. A. Webster, M. Oxborrow, and P. Gill. Vibration insensitive optical cavity [J]. Phys. Rev. A 75(1),011801(4) (2007).
    [66]T. Nazarova, F. Fiehle, and U. Sterr. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser [J]. Appl. Phys. B,83(4),531-536 (2006).
    [67]J. Millo, D. V. Magalhaes, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli. Ultrastable lasers based on vibration insensitive cavities [J]. Phys. Rev. A 79(5),053829(7) (2009).
    [68]Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability [J]. Opt. Express 17(11),8970-8982 (2009).
    [69]K. Numata, A. Kemery, and J. Camp. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities [J]. Phys. Rev. Lett.93(25),250602 (2004).
    [70]H. B. Callen, and R. F. Greene. On a theorem of irreversible thermodynamics [J]. Phys. Rev.86(5),702-710 (1952).
    [71]M. Notcutt, L. S. Ma, A. D. Ludlow, S. M. Foreman, J. Ye, and J. L. Hall. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers [J]. Phys. Rev. A 73(3),031804(4) (2006).
    [72]T. Legero, T. Kessler, and U. Sterr. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors [J]. J. Opt. Soc. Am. B 27(5),914-919 (2010).
    [73]J. P. Richard, and J. J. Hamilton. Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency [J]. Rev. Sci. Instrum.62(10),2375-2378 (1991).
    [74]G. D. Cole, S. Groblacher, K. Gugler, S. Gigan, and M. Aspelmeyer. Monocrystalline AlxGal-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime [J]. Appl. Phys. Lett.92(26),261108(3) (2008).
    [75]G. D. Cole, Y. Bai, M. Aspelmeyer, and E. A. Fitzgerald. Free-standing AlxGal-xAs heterostructures by gas-phase etching of germanium [J]. Appl. Phys. Lett.96(26), 261102(3) (2010).
    [76]L. S. Ma, P. Jungner, J. Ye, and J. L. Hall. Delivering the same optical frequency at two places:accurate cancellation of phase noise introduced by an optical fiber or other time-varying path [J]. Opt. Lett.19(21),1777-1779 (1994).
    [77]J. Ye, and J. L. Hall. Cavity ringdown heterodyne spectroscopy:High sensitivity with microwatt light power [J]. Phys. Rev. A 61(6),061802(4) (2000).
    [78]方苏.窄线宽激光和窄线宽光梳[D].华东师范大学,2013.
    [79]D. W. Allan. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-34(6),647-654 (1987).
    [80]Y. Y. Jiang, Z. Y. Bi, L. Robertsson, and L. S. Ma. A collinear self-referencing set-up for control of the carrier-envelope offset frequency in Ti:sapphire femtosecond laser frequency combs [J]. Metrologia 42,304-307 (2005).
    [81]D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L. S. Ma, and J. L. Hall. Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies [J]. Opt. Lett.25(5),308-310 (2000).
    [82]D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science 288 (5466),635-639 (2000).
    [83]U. Morgner, R. Ell, G. Metzler, T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen. Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime [J]. Phys.Rev. Lett.86 (24),5462-5465 (2001).
    [84]J. K. Ranka, R. S. Windeler, and A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Opt. Lett.25(1), 25-27(2000).
    [85]L. S. Ma, Z. Y. Bi, A. Bartels, K. Kim, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams. Frequency uncertainty for optically referenced femtosecond laser frequency combs [J]. IEEE J. Quantum Electron.43(2), 139-146(2007).
    [86]J. A. Scheer,and J. Kurtz. Coherent radar performance estimation [M]. Artech House, 1993.
    [87]P. W. Juodawlkis, J. C. Twichell G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson. Optically sampled analog-to-digital converters [J]. IEEE Trans. Micro. Theo. Tech.49(10),1840-1853 (2001).
    [88]S. Doeleman. Frequency standards and metrology:proceedings of the 7th symposium [M]. World Scientific,2009.
    [89]J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guena, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli. Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock [J]. Appl. Phys. Lett.94(14),141105(3) (2009).
    [90]S. Weyers, B. Lipphardt, and H. Schnatz. Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser [J]. Phys. Rev. A 79(3), 031803(4) (2009).
    [91]F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Y. Jiang, and S. A. Diddams. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider [J]. Opt. Lett.36(16),3260-3262 (2011).
    [92]J. E. Gray, and D. W. Allan. A method for estimating the frequency stability of an individual oscillator [M]. Proc 8th Ann. Symp. on Frequency Control,243-246 (1974).
    [93]A. D. Kersey, M. J. Marrone, and M. A. Davis. Polarisation-insensitive fibre optic michelson interferometer [J]. Electron. Lett.27(6),518-520 (1991).
    [94]N. C. Pistoni, and M. Martinelli. Polarization noise suppression in retracing optical fiber circuits [J]. Opt. Lett.16(10),711-713 (1991).
    [95]L. S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler. A new method of detemine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements [J]. IEEE J. Sel. Top. Quant Electron.9(4), 1066-1071 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700