用户名: 密码: 验证码:
自组织反馈光纤环形激光器模式非稳定性及协同学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对重大工程应用需求,进行一种新型自组织反馈光纤环形激光器非稳定性的研究,以期在充分了解系统非稳定特性的基础上,寻求稳定的有效方法。论文对自组织反馈光纤环形激光器的研究,涉及到非线性动力学和混沌等复杂的物理过程,这为包含自组织反馈机制的复杂系统协同学研究提供理想的量化物理模型和实证途径。
     自组织反馈光纤环形激光器具有良好的相干性和可调谐特性,但它的跳模,特别是偶发的持续跳模对工程应用有极大影响。利用激光电磁场理论难以处理系统非稳定和状态跳变问题。本论文采用了哈肯协同学方法将自组织反馈光纤环形激光器作为以模式强度为序参数的复杂系统,通过系统协同产生和协同破坏的研究,来揭示激光跳模的深层物理性质。在哈肯激光模型中不包括自组织反馈机制,相关理论不能直接用于处理论文研究激光器的非稳定性问题。论文首先根据研究对象激光器的实际结构和激光振荡产生过程,从描述光与物质相互作用的Maxwell-Bloch方程出发,严格导出包含掺铒光纤饱和吸收自组织光栅反馈作用的激光方程,此方程比经典的哈肯激光方程增加了自组织模式与生存环境耦合的相互作用机制。具有自组织反馈特性是许多重要复杂系统的共同特点,而这种反馈作用可以表现出对系统协同维持和协同破坏正反不同的效果。对激光器中光纤非匹配熔接点后向反射以及后向反射寄生增益光栅对激光振荡的影响的分析表明,这是一种削弱激光主振荡模式生存优势的协同破坏因素,以此模型为基础建立了包含正反作用自组织反馈的光纤环形激光器完整的理论模型和激光方程,此方程不仅描述了激光跳模协同破坏的物理机制,更是自然界中“马太效应”失效的物理诠释。根据论文建立模型和方程,给出了论文研究激光器的优化设计和性能改进的理论结果。论文中,发展了饱和吸收自组织光纤光栅特性参数测量和激光模态变化测量的有效方法,证实了新建激光方程的正确性和激光性能改进的有效性。
     实际自组织反馈光纤激光器的状态变化是多种因素互相关联共同影响的结果,论文采用复杂系统状态空间分析方法,测绘了以抽运参数和相对腔长变化为坐标的稳定性地图,得到了不同状态下,稳定性表现的明显差异,为激光器稳定性的工程研究和复杂系统协同学研究提供了有效的分析工具和实验素材。
     论文研究的自组织反馈光纤环形激光器为B类激光器,按照经典混沌理论,B类激光器和与此对应的B类复杂系统在无外加自由度的情况下不会产生混沌。论文利用复杂系统混沌的研究方法,进行了自组织反馈光纤环形激光器自发持续跳模状态下的序参数测量,得到了具有自组织反馈机制的B类激光器在没有外加自由度的情况下出现了混沌特征表现的实验结果。
     论文主要创新点如下:
     1.提出一种饱和吸收自组织光纤光栅特性参数的实验测试方法,为包含自组织反馈机制的协同体系模型建立提供坚实物理基础和准确参数,为自组织反馈环形光纤激光器的设计优化和性能提高提供实验基础。
     2.建立了以模式激发强度为序参数的自组织反馈光纤环形激光器的协同系统模型,给出了对这一序参数变化的相干测量实验方法,为自组织反馈光纤环形激光器非稳定性研究提供了有效工具,为自组织反馈复杂系统研究提供物理模型和实证途径。
     3.根据自组织反馈光纤环形激光器的实际物理结构,建立了包含正反自组织反馈作用的光纤环形激光器理论模型和激光方程,为自组织反馈激光器和与此对应的具有自组织反馈机制的复杂系统的协同维持和协同破坏定量研究提供了理论基础。
     4.得到了B类激光系统在没有外部反馈或没有外加自由度的情况下,可通过自身自组织反馈产生多种混沌特征表现的实验证据。
Aiming at meeting the rigorous demands in applications of the major projects, thisthesis studies the instabilities of a new type of self-organized feedback fiber ring lasers,and searches the effective methods to stabilize the lasers through a full understanding onits instability properties. This research involves some complex physical process such asthe nonlinear dynamics and chaos, and provides an ideal physical model and anempirical route for the synergetic study on the complex systems that contain theself-organized feedback mechanism.
     Self-organized feedback fiber ring lasers possess excellent coherence and tunability.However, its mode hopping phenomena, especially the occurrent and sustained modeshopping, have great impacts on the engineering applications. It is hard to handle theinstability and state jump problems in a complex system by traditional electromagnetictheory of lasers. In this thesis, the Haken’s synergetic method is used to study thegeneration and the breakdown of the system cooperation, which is aimed to reveal thedeep physical insight of the laser mode hopping, by treating the lasers as a complexsystem with the mode intensities as the order parameters. However, the Haken’s lasermodel can not be utilized to directly solve the instability problems of the objective lasersystem, for lacking of the self-organized feedback mechanism. In this thesis, bystarting from the Maxwell-Bloch equation which describes the processes of theinteraction of light with two-level system, we derive the laser equation which containsthe feedback mechanism provided by the erbium-doped saturable absorberself-organized fiber grating based on the real laser structure. The newly derived modelpossesses the interaction mechanism between the self-organized modes and their livingenvironment, which we call the self-organized feedback mechanism and it is a generalproperty in many important complex systems. Furthermore, this self-organized feedbackmechanism can behave two opposite effects such as maintaining the cooperation anddestroying the cooperation. Further analyse on the backscattering light at the unmatchedfusing point show that a parasitic gain grating is formed in the gain media and it playsan important role in weakening the major oscillating mode which possess the superiority,and in undermining the current cooperation. Based on these analyses, we establish a fullset of the theoretical model and laser equations, which contain both of the positive andnegative self-organized feedback mechanism. This equation not only describes thephysical mechanism of the breakdown of the laser cooperation, but also is a perfectphysical interpretation on the failure of the “Matthew Effect”. According to thesimulation results of the new laser model, an optimized design is provided and theperformance improvement is achieved. We also develop a novel method to measure thesaturable absorber self-organized fiber grating, and a set of tools to monitor the change of the laser modes, which is helpful to confirm the correctness of the laser model andthe effectivity of the improvement of the laser stability.
     The state changes of the practice self-organized feedback fiber ring lasers are theresults of associated influences of multiple factors. We employ the state space methodof the complex systems to map the stability state versus both the pump parameter andthe relative cavity length drift, and the results show that the system stability variesgreatly with laser structures. This method provides a powerful tool for the analysis ofthe laser stability in engineer applications and the results possess abundance materialsfor the synergetic study on the complex systems.
     The self-organized feedback fiber ring lasers in this thesis belong to the class Blasers, and will not generate chaos without additional degrees of freedom according tothe traditional chaos theory. The status of the order parameter of this laser system underspontaneous sustained mode hopping state is measured, and the phase spacereconstruction of the measured data show chaotic characteristics.
     The main works are provided as follows::
     1. A novel experimental method to precisely measure the transient reflectancespectra of the saturable absorber self-organized gratings is proposed, and it alsoprovides a solid physical foundation for the synergetic model which contains theself-organized feedback mechanism.
     2. The synergetic system model, which takes the mode intensities as its orderparameters, is established. A set of experimental measurement methods for the orderparameter through the coherent detection are given. These methods not only provideeffective tools for researches on the laser instabilities, but also provide empirical routesto study the complex systems contain self-organized feedback mechanism.
     3. According to the practical physical structure of the self-organized feedbackfiber ring lasers, the theoretical model and the laser equations that contain both thepositive and negative self-organized feedback mechanisms are established. This modelprovides a theoretical foundation for quantization analyses on the maintaining and thebreaking cooperation of the self-organized feedback lasers and corresponding complexsystems with isomorphic mechanisms.
     4. Some experimental evidences that the class B laser system without additionaldegrees of freedom can generate signals with multiple chaotic properties byself-organized feedback mechanism are obtained.
引文
[1]李福利.高等激光物理学(第二版)[M].北京:高等教育出版社,2006.
    [2]张洪钧.光学混沌[M].上海:上海科技教育出版社,1997.
    [3] Weiss C. O., Vilaseca R. Dynamics of Lasers[M]. New York: VCH Publishers,1991.
    [4]黄润生.混沌及其应用[M].武汉大学出版社,2000.
    [5]方锦清,姚伟光.非线性环型腔反馈激光系统的动力学特性及其混沌控制[J].强激光与粒子束.2001,13(2):155~163.
    [6] Otsuka Kenju. Nonlinear dynamics in optical complex systems[M]. KluwerAcademic Pub,2000.
    [7] Khanin I. A. Kov Izrailevich, Khanin Ya I. Fundamentals of laser dynamics[M].Cambridge Int Science Publishing,2006.
    [8] Welford W. T. Light, Vol.1: Waves, Photons, Atoms[J]. Journal Of ModernOptics,1982,29(1):6.
    [9] Haken H. Light. Vol.2, Laser light dynamics[M]. North-Holland,1985.
    [10] Erneux Thomas, Glorieux Pierre. Laser dynamics[M]. Cambridge UniversityPress,2010.
    [11] Pauliat Gilles, Dubreuil Nicolas, Roosen Gérald. Self-Organizing LaserCavities[M].2007:115,253~275.
    [12] Spiegelberg C., Geng J., Hu Y., et al. Low-noise narrow-linewidth fiber laser at1550nm[J]. IEEE, Journal of Lightwave Technology,2004,22(1):57~62.
    [13] Horowitz Moshe, Daisy Ron, Fischer Baruch, et al. Linewidth-narrowingmechanism in lasers by nonlinear wave mixing[J]. Optics Letters,1994,19(18):1406~1408.
    [14] Cheng Y., Kringlebotn J. T., Loh W. H., et al. Stable single-frequencytraveling-wave fiber loop laser with integral saturable-absorber-based trackingnarrow-band filter[J]. Optics Letters,1995,20(8):875~877.
    [15] Meng Zhou, Stewart George, Whitenett Gillian. Stable Single-Mode Operation ofa Narrow-Linewidth, Linearly Polarized,Erbium-Fiber Ring Laser Using aSaturable Absorber[J]. IEEE, Journal of Lightwave Technology,2006,24(5):2179~2183.
    [16]徐攀.超窄线宽多波长光纤激光器研究[D].长沙:国防科技大学,2008.
    [17]俞本立,钱景仁,罗家童等.线宽小于0.5KHz稳态的单频光纤环形腔激光器[J].量子电子学报.,18(4):345~348.
    [18] Frisken S. J. Transient Bragg reflection gratings in erbium-doped fiberamplifiers[J]. Optics Letters,1992,17(24):1776~1778.
    [19] Feuer Mark D. Length and power dependence of self-adjusting optical fiberfilters[J]. IEEE Photonics Technology Letters,1998,10(11):1587~1589.
    [20] Zhang Kang, Kang Jin U. C-band wavelength-swept single-longitudinal-modeerbium-doped fiber ring laser [J]. Optics Express,2008,16(18):14173~14179.
    [21] Pan Shilong, Yao Jianping. A wavelength-switchable single-longitudinal-modedual-wavelength erbium-doped fiber laser for switchable microwave generation[J]. Optics Express,2009,17(7):5414~5419.
    [22] Sun Junqiang, Yuan Xiuhua, Zhang Xinliang, et al. Single-longitudinal-modedual-wavelength ber ring laser by incorporating variable saturable absorbers andfeedback ber loops[J]. Optics Communications,2007(273):231~237.
    [23] Meng Zhou, Hu Zhengliang, Hu Yongming, et al. Fast-turning narrow-linewidthall polarization maintaining fiber ring laser: Laser Source Technology for Defenseand Security III, Proc. of SPIE[Z].2007:6552.
    [24]伍波,刘永智,刘爽等.1550nm高效窄线宽光纤激光器[J].光电子·激光.2007,7(18):770~772.
    [25] He X., Fang X., Liao C., et al. A tunable and switchable single-longitudinal-modedual-wavelength fiber laser with a simple linear cavity.[J]. Optics Express,2009,17(24):21773~21781.
    [26] Y W Song Student Member Ieee S., Y Xie, A E Willner, et al.40-nm-WideTunable Fiber Ring Laser With Single-Mode Operation Using a HighlyStretchable FBG [J]. IEEE Photonics Technology Letters,2001,13(11):2001.
    [27] Chien Hung-Chang, Yeh Chien-Hung, Lee Chien-Chung, et al. A tunable andsingle-frequency S-band erbium ber laser with saturable-absorber-basedautotracking lter[J]. Optics Communications,2005,250:163~167.
    [28] Kang Myeong Soo, Lee Myoung Soo, Yong Jae Chul, et al. Characterization ofWavelength-Tunable Single-Frequency Fiber Laser Employing AcoustoopticTunable Filter[J]. Journal of Lightwave Technology,2006,24(4):1812~1823.
    [29] Lamb Jr Willis E. Theory of an optical maser[J]. Phys. Rev,1964,134(6A):A1429~A1450.
    [30] Lamb W. E., Schleich W. P., Scully M. O., et al. Laser physics: Quantumcontroversy in action[J]. Reviews Of Modern Physics,1999,71(2): S263~S273.
    [31] Haken H. Analogy between higher instabilities in fluids and lasers[J]. Phys. Lett.A,1975,53:77~78.
    [32] Haken H. Synergetics-An introduction.3rd ed.[M]. Berlin: Springer,1983.
    [33] Haken Hermann. Synergetics: Introduction and advanced topics[M]. SpringerVerlag,2004.
    [34] Prigogine Ilya. Introduction to thermodynamics of irreversible processes[J]. NewYork: Interscience,1967,3rd ed.,1967,1.
    [35] Prigogine Ilya, Hiebert Erwin N. From being to becoming: Time and complexityin the physical sciences[J]. Physics Today,1982,35:69.
    [36] Haken Hermann. Synergetic computers and cognition: a top-down approach toneural nets[M]. Springer,2004.
    [37]哈肯,徐锡申.协同学:引论:物理学,化学和生物学中的非平衡相变和自组织[M].原子能出版社,1984.
    [38]哈肯,Haken H.,郭治安等.高等协同学[M].科学出版社,1989.
    [39]吴彤.论协同学理论方法—自组织动力学方法及其应用[J].内蒙古社会科学.2000(6):19~26.
    [40]哈肯.协同学——大自然构成的奥秘[M].上海:上海译文出版社,2001.
    [41] Maps Discrete Noisy. Advanced synergetics[J]. Springer Series in Synergetics,1983,20.
    [42] Ohtsu M., Teramachi Y., Otsuka Y., et al. Analyses of mode-hopping phenomenain an AlGaAs laser[J]. Quantum Electronics, IEEE Journal of,1986,22(4):535~543.
    [43] Linke R. A. Mode power parition events in nearly singl-frequency lasers [J]. IEEEJ. Lightwave Technol,1985,3(6):706~711.
    [44] Ohtsu Motoichi, Teramachi Y. Analyses of mode partition and mode hopping insemiconductor lasers[J]. Quantum Electronics, IEEE Journal of,1989,25(1):31~38.
    [45] Vanwiggeren Gregory D., Roy Rajarshi. Optical communication with chaoticwaveforms[J]. Physical Review Letters,1998,81(16):3547~3550.
    [46] Argyris Apostolos, Syvridis Dimitris, Larger Laurent, et al. Chaos-basedcommunications at high bit rates using commercial fibre-optic links[J]. Nature,2005,438(7066):343~346.
    [47] Uchida Atsushi, Amano Kazuya, Inoue Masaki, et al. Fast physical random bitgeneration with chaotic semiconductor lasers[J]. Nature Photonics,2008,2(12):728~732.
    [48] Kanter Ido, Aviad Yaara, Reidler Igor, et al. An optical ultrafast random bitgenerator[J]. Nature Photonics,2009,4(1):58~61.
    [49]赵清春,王云才.混沌激光通信的保密性能研究进展[J].激光与光电子学进展.2010,47(6).
    [50]方锦清.混沌通信及其相关网络信息安全研究的若干进展[J].系统工程学报.2010,25(6):725~741.
    [51] Otsuka Kenju. Nonlinear dynamics in Optical complex system[M]. Boston:Kluwer Academic Publishers,2001.
    [52] Haken H. The science of structure, synergetics[M]. New York: Van NostrandReinhold,1984.
    [53] A Popp F., Warnke U, L Koning H. Coherent photon storage of biologicalsystems[J]. Electromagnetic Bio-Information,1989:144~167.
    [54] Kim Hyo Sang, Kim Seung Kwan, Kim Byoung Yoon. Longitudinal modecontrol in few-mode erbium-doped fiber lasers[J]. Optics Letters,1996,21(15):1144~1146.
    [55] Tang C. L., Statz H., Demars G. Regular spiking and single-mode operation ofruby laser[J]. Applied Physics Letters,1963,2(11):222~224.
    [56] Whitten W. B., Ramsey J. M. Mode selection in a continuous-wave dye laser withan intracavity photorefractive element[J]. Optics Letters,1987,12(2):117~119.
    [57] Kishi Naoto, Yazaki Tomonori. Frequency Control of a Single-Frequency FiberLaser by Cooperatively Induced Spatial-Hole Burning[J]. IEEE Photonic. Tech.L.,1999,2(11):182~184.
    [58]俞本立,钱景仁,罗家童等.线宽小于0.5kHz稳态的单频光纤环形腔激光器[J].量子电子学报.2001,18(4):345~348.
    [59]杨敬,瞿荣辉,孙国勇等.一种新型结构的单纵模光纤激光器[J].中国激光.2005,32(4):441~444.
    [60]伍波,刘永智,张谦述等.基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器[J].中国激光.2007,3(34):350~353.
    [61]梁迅,姚琼,胡永明.基于非平衡光纤干涉仪的窄线宽激光器光源跳模实时测试方法[J].光学学报.2009,29(2):437~442.
    [62] Willemsen M. B., Khalid M. U. F., van Exter M. P., et al. Polarization Switchingof a Vertical-Cavity Semiconductor Laser as a Kramers Hopping Problem[J].Physical Review Letters,1999,82(24):4815~4818.
    [63] Beri S., Gelens L., Mestre M., et al. Topological Insight into the Non-ArrheniusMode Hopping of Semiconductor Ring Lasers[J]. Physical Review Letters,2008,101(9):93903.
    [64] Lang R., Kobayashi K. External optical feedback effects on semiconductorinjection laser properties[J]. Quantum Electronics, IEEE Journal of,1980,16(3):347~355.
    [65] Heumier T. A., Carlsten J. L. Detecting mode hopping in semiconductor lasers bymonitoring intensity noise[J]. IEEE Journal Of Quantum Electronics,1993,25(1):2756~2761.
    [66] Sato T., Yamaoto F., Tsuji K., et al. An uncooled external cavity diode laser forcoarse-WDM access network systems[J]. Photonics Technology Letters, IEEE,2002,14(7):1001~1003.
    [67]周炳琨,高以智.激光原理[M].北京:国防工业出版社,2004.
    [68] Ahmed Moustafa, Yamada M. Influence of instantaneous mode competition onthe dynamics of semiconductor lasers[J]. Quantum Electronics, IEEE Journal of,2002,38(6):682~693.
    [69] Homar M., Balle S., San Miguel M. Mode competition in a Fabry-Perotsemiconductor laser: travelling wave model with asymmetric dynamical gain[J].Optics Communications,1996,131(4–6):380~390.
    [70] Furfaro Luca, Pedaci F., Giudici M., et al. Mode-switching in semiconductorlasers[J]. Quantum Electronics, IEEE Journal of,2004,40(10):1365~1376.
    [71] Yacomotti A. M., Furfaro L., Hachair X., et al. Dynamics of multimodesemiconductor lasers[J]. Physical Review A,2004,69(5):53816.
    [72] Kubodera K., Otsuka K. Spike-Mode Oscillations in Laser-Diode PumpedLiNdP4O12Lasers[J]. IEEE J. Quantum Electron,1981, QE-17(6):1139~1144.
    [73] Baer T. Large-amplitude fluctuations due to longitudinal mode coupling indiode-pumped intracavity-doubled Nd:YAG lasers[J]. Journal of the OpticalSociety of America B,1986,3(9):1175~1180.
    [74] Otsuka Kenju. Winner-takes-all dynamics and antiphase states in modulatedmultimode lasers[J]. Physical Review Letters,1991,67(9):1090.
    [75] Otsuka Kenju, Sato Yoshinori, Chern Jyh-Long. Grouping of antiphaseoscillations in modulated multimode lasers[J]. Physical Review A,1996,54(5):4464.
    [76] Otsuka Kenju. Multimode laser dynamics[J]. Progress In Quantum Electronics,1999,23(3):97~129.
    [77] Larotonda M. A., Yacomotti A. M., Mart nez O. E. Antiphase Q-switchdynamics in a multimode solid-state laser with saturable absorber[J]. OpticsCommunications,1999,169(1-6):149~158.
    [78] Peil M., Jacquot M., Chembo Y. K., et al. Routes to chaos and multiple time scaledynamics in broadband bandpass nonlinear delay electro-optic oscillators.[J].Phys Rev E Stat Nonlin Soft Matter Phys,2009,79(2Pt2):26208.
    [79] Mandel Paul, Georgiou M., Otsuka Kenju, et al. Transient and modulationdynamics of a multimode Fabry-Perot laser[J]. Optics Communications,1993,100(1-4):341~350.
    [80] Erneux Thomas, Mandel Paul. Minimal equations for antiphase dynamics inmultimode lasers[J]. Physical Review A,1995,52(5):4137.
    [81] Liu Y., Ohtsubo J. Chaos in an active interferometer[J]. Journal of Optical Societyof America B,1992,9(2):261~265.
    [82] Larger Laurent, Goedgebuer Jean-Pierre, Delorme Franck. Optical encryptionsystem using hyperchaos generated by an optoelectronic wavelength oscillator[J].Physical Review E,1998,57(6):6618~6624.
    [83] Liu Y., Davis P. Synchronization of chaotic mode hopping.[J]. Optics Letters,2000,25(7):475~477.
    [84]吕国辉.频域光纤光学双稳态及其应用[M].哈尔滨:黑龙江大学出版社,2010.
    [85] Ikeda K., Daido H., Akimoto O. Optical Turbulence: Chaotic Behavior ofTransmitted Light from a Ring Cavity[J]. Physical Review Letters,1980,45(9):709.
    [86] Otsuka K. Self-induced phase turbulence and chaotic itinerancy in coupled lasersystems.[J]. Physical Review Letters,1990,65(3):329~332.
    [87] Otsuka K. Chaotic itinerancy in a coupled-element multistable optical chain.[J].Physical Review A,1991,43(1):618~621.
    [88] Otsuka Kenju, Ikeda Kensuke. Self-induced spatial disorder in a nonlinear opticalsystem[J]. Physical Review Letters,1987,59(2):194.
    [89] Otsuka Kenju, Ikeda Kensuke. Cooperative dynamics and functions in a collectivenonlinear optical element system[J]. Physical Review A,1989,39(10):5209.
    [90] Virte Martin, Panajotov Krassimir, Thienpont Hugo, et al. Deterministicpolarization chaos from a laser diode[J].2013,7(1):60~65.
    [91] Frisken S. J. Transient bragg reflection gratings in erbium-doped fiberamplifiers[J]. Optics Letters,1992,17(24):1776~1778.
    [92] Fischer Baruch, Zyskind John L., Sulhoff James W., et al. Nonlinear wave mixingand induced gratings in erbium-doped fiber amplifiers[J]. Optics Letters,1993,18(24):2108~2110.
    [93] Havstad Steven A., Fischer Baruch, Willner Alan E., et al. Loop-mirror filtersbased on saturable-gain or-absorber gratings[J]. Optics Letters,1999,24(21):1466~1468.
    [94] Fan X. Y., He Z. Y., Mizuno Y., et al. Bandwidth-adjustable dynamic grating inerbium-doped fiber by synthesis of optical coherence function[J]. Optics Express,2005,13(15):5756~5761.
    [95] Horowitz Moshe, Daisy Ron, Fischer Baruch. Filtering behavior of a self-inducedthree-mirror cavity formed by intracavity wave mixing in a saturable absorber[J].Optics Letters,1996,21(4):299~301.
    [96] Wey J. S., Butler D. L., Rush N. W., et al. Optical bit-pattern recognition by useof dynamic gratings in erbium-doped fiber.[J]. Optics Letters,1997,22(23):1757~1759.
    [97] Stepanov S., Hernández E., Plata M. Two-wave mixing by means of dynamicBragg gratings recorded by saturation of absorption in erbium-doped fibers[J].Optics Letters,2004,29(12):1327~1329.
    [98] Stepanov Serguei, Cota Fernando Pérez. Transient two-wave mixing in a linearconfiguration of an adaptive interferometer based on Er-doped fiber withsaturable absorption[J]. Optics Letters,2007,32(17):2532~2534.
    [99] Fan X. Y., He Z. Y., Hotate K. Novel strain-and temperature-sensing mechanismbased on dynamic grating in polarization-maintaining erbium-doped fiber[J].Optics Express,2006,14(2):556~561.
    [100] Fan X. Y., He Z. Y., Hotate K. Distributed strain sensor based on dynamic gratingin polarization-maintaining erbium-doped fiber[J]. Optics Letters,2008,33(15):1647~1649.
    [101] Xu Pan, Hu Zhengliang, Jiang Nuan, et al. Detecting mode hopping in fiber ringlasers by anisotropic dynamic gratings[C].2012.
    [102] Stepanov Serguei, Hernández Eliseo, Plata Marcos. Two-wave mixing oforthogonally polarized waves via anisotropic dynamic gratings in erbium-dopedoptical fiber[J]. Journal of the Optical Society of America B,2005,22(6):1161~1166.
    [103] Stepanov Serguei, Sánchez Marcos Plata. Slow and fast light via two-wavemixing in erbium-doped fibers with saturable absorption[J]. Physical Review A,2009,80(5):53830.
    [104] Melle Sonia, Calderón Oscar G., Zhuo Zhong C., et al. Dynamic populationgratings in highly doped erbium fibers[J]. Journal of the Optical Society ofAmerica B,2011,28(7):1631~1637.
    [105] Fischer B., Zyskind J. L., Sulhoff J. W., et al. Nonlinear four-wave mixing inerbium-doped fibre amplifiers[J]. Electronics Letters,1993,29(21):1858~1859.
    [106] Horowitz Moshe, Daisy Ron, Fischer Baruch. Filtering behavior of a self-inducedthree-mirror cavity formed by intracavity wave mixing in a saturable absorber[J].Optics Letters,1996,21(4):299~301.
    [107] Boothroyd S. A., Skirtach A., Chan Les, et al. Measurement of real-time gaingratings in erbium-doped fiber[J]. Quantum Electronics, IEEE Journal of,1999,35(1):39~46.
    [108] Stepanov S., Santiago C. Nun Ez. Intensity dependence of the transient two-wavemixing by population grating in Er-doped fiber[J]. Optics Communications,2006,264(1):105~115.
    [109] Barmenkov Yuri O., Kir'Yanov Alexander V., Andrés Miguel V. Dynamic Bragggratings induced in erbium-doped fiber at phase-modulated beams' coupling[J].Quantum Electronics, IEEE Journal of,2005,41(9):1176~1180.
    [110] Stepanov Serguei. Dynamic population gratings in rare-earth-doped opticalfibres[J]. Journal of Physics D: Applied Physics,2008,41(22):224002.
    [111] Govind P. Agrawal.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002.
    [112] Stepanov Serguei, Hernández Eliseo Hernández. Phase contribution to dynamicgratings recorded in Er-doped fiber with saturable absorption[J]. OpticsCommunications,2007,271(1):91~95.
    [113] Stepanov Serguei, Hernández Eliseo Hernández. Phase contribution to dynamicgratings recorded in Er-doped fiber with saturable absorption[J]. OpticsCommunications,2007,271(1):91~95.
    [114] Agrawal G. P., Lax M. Effects of interference on gain saturation in laserresonators[J]. JOSA,1979,69(12):1717~1719.
    [115] Agrawal G. P., Lax M. Analytic evaluation of interference effects on laser outputin a Fabry-Perot resonator[J]. JOSA,1981,71(5):515~519.
    [116] Forster R. J., Langford N. Longitudinal mode control of a narrow-linewidth fiberlaser by use of the intrinsic birefringence of the fiber laser.[J]. Optics Letters,1996,21(20):1679~1681.
    [117] Feuer Mark D. Length and Power Dependence of Self-Adjusting Optical FiberFilters[J]. IEEE Photonics Technology Letters,1998,10(11):1587~1589.
    [118] Havstad Steven A., Fischer Baruch, Willner Alan E., et al. Loop-mirror filtersbased on saturable-gain or-absorber gratings[J]. Optics Letters,1999,24(21):1466~1468.
    [119] Yang Jing, Qu Ronghui, Sun Guoyong, et al. Suppression of mode competition infiber lasers by using a saturable absorber and a fiber ring[J]. Chinese OpticsLetters,2006,4(7):410~412.
    [120] Kang Myeong Soo, Lee Myoung Soo, Yong Jae Chul, et al. Characterization foWavelength-Tunable Single-Frequency Fiber Laser Employing AcoustoopticTunable Filter[J]. Jounal of Lightwave Technology,2006,24(4):1812~1823.
    [121] Xu Pan, Hu Zhengliang, Jiang Nuan, et al. Transient reflectance spectra ofadaptive filters based on dynamic population gratings[J]. Optics Letters,2012,37(11):1992~1994.
    [122] Stepanov S. Dynamic population gratings in rare-earth-doped optical bres[J].Journal of Rhysics D:Applied Physics,2008,41:224002.
    [123] Barmenkov Y. O., Kir Yanov A. V., Andrés M. V. Dynamic Bragg GratingsInduced in Erbium-Doped Fiber at Phase-Modulated Beams’ Coupling[J]. IEEEJournal Of Quantum Electronics,2005,41(9):1176~1180.
    [124] Mandel Paul. Theoretical problems in cavity nonlinear optics[M]. CambridgeUniversity Press,2005.
    [125] Desurvire Emmanuel. Erbium-doped fiber amplifiers: principles andapplications[M]. Wiley New York,1994.
    [126] Desurvire Emmanuel. Study of the complex atomic susceptibility oferbium-doped fiber amplifiers[J]. IEEE,Journal of Lightwave Technology,1990,8(10):1517~1527.
    [127] Giles C. R., Desurvire E. Modeling Erbium-Doped Fiber Amplifiers[J].IEEE,Journal of Lightwave Technology,1991,2(9):271~283.
    [128] Zhang Xin, Zhu Ning Hua, Xie Liang, et al. A stabilized and tunablesingle-frequency erbium-doped fiber ring laser employing external injectionlocking[J]. IEEE, Journal of Lightwave Technology,2007,25(4):1027~1033.
    [129] Desurvire E., Zyskind J. L., Simpson J. R. Spectral Gain Hole-Burning at1.53μm in Erbium-Doped Fiber Amplifiers[J]. IEEE Photonics Technology Letters,1990,4(2):246~248.
    [130] Deshazer David J., García-Ojalvo J., Roy Rajarshi. Bursting dynamics of a fiberlaser with an injected signal[J]. Physical Review E,2003,67(3):36602.
    [131]科尔德伦,科尔津.二级管激光器与集成光路: Diode lasers and photonicintegrated circuits[Z].史寒星.北京邮电大学出版社,2006.
    [132] Ohtsu M. A simple interferometric method for monitoring mode hopping intunable external-cavity semiconductor lasers [J]. IEEE Journal of LightwaveTechnology,1989,7(1):68~76.
    [133] Brunner Daniel, Porte Xavier, Soriano Miguel C., et al. Real-time frequencydynamics and high-resolution spectra of a semiconductor laser with delayedfeedback[J]. Scientific Reports,2012,2.
    [134] Dandridge A., Tveten A. B., Giallorenzi T. G. Homodyne Demodulation Schemefor Fiber Optic Sensors Using Phase Generated Carrier[J]. Microwave Theoryand Techniques, IEEE Transactions on,1982,30(10):1635~1641.
    [135]孟洲.基于光频调制PGC解调的光纤水听器阵列技术研究[D].长沙:国防科技大学,2003.
    [136]倪明,熊水东,孟洲等.数字化相位载波解调方案在光纤水听器系统中的实现[J].应用声学.2004,23(6):5~11.
    [137]梁迅,姚琼,胡永明等.基于非平衡光纤干涉仪的窄线宽激光光源跳模实时测试方法[J].光学学报.2009,29(2):437~442.
    [138]马明祥,徐攀,胡正良等.基于光纤MZ干涉仪相干度变化的超窄线宽激光器跳模检测研究[J].半导体光电.2011,32(1):123~127.
    [139] Ma Mingxiang, Hu Zhengliang, Xu Pan, et al. Detecting mode hopping insingle-longitudinal-mode fiber ring lasers based on an unbalanced fiberMichelson interferometer[J]. Applied Optics,2012,51(30):7420~7425.
    [140]王海燕,卢山.非线性时间序列分析及其应用[M].科学出版社,2006.
    [141] Takens Floris. On the numerical determination of the dimension of anattractor[M]. Springer,1985.
    [142] Hegger Rainer, Kantz Holger, Schreiber Thomas. Practical implementation ofnonlinear time series methods: The TISEAN package[J]. Chaos: AnInterdisciplinary Journal of Nonlinear Science,1999,9(2):413~435.
    [143] Hegger R., Schreiber T. The TISEAN software package[Z].2002.
    [144] Kantz H., Schreiber T. Tisean—Nonlinear time series analysis[J]. URL=http://www. mpipksdresden. mpg. de/tisean/, Last access May,2003.
    [145] Merkwirth C., Parlitz U., Wedekind I., et al. Open-TSTOOL[J]. MATLABtoolbox.[cited2009-03-20]. Access ed at http://www. phsik3. gwdg. de/tstool,2007.
    [146] Merkwirth Christian, Parlitz Ulrich, Wedekind Immo, et al. OpenTSTOOL usermanual[J]. G ttingen, Germany: Drittes Physikalisches Institut, Universit tG ttingen,2009.
    [147] Stam C. J., Pijn Jpm, Pritchard W. S. Reliable detection of nonlinearity inexperimental time series with strong periodic components[J]. Physica D:Nonlinear Phenomena,1998,112(3):361~380.
    [148] Packard Norman H., Crutchfield James P., Farmer J. Doyne, et al. Geometry froma time series[J]. Physical Review Letters,1980,45(9):712~716.
    [149] Ma é Ricardo. On the dimension of the compact invariant sets of certainnon-linear maps[M]. Dynamical systems and turbulence, Warwick1980, Springer,1981,230~242.
    [150] Sauer Tim, Yorke James A., Casdagli Martin. Embedology[J]. Journal OfStatistical Physics,1991,65(3-4):579~616.
    [151] Abarbanel Henry Di, Brown Reggie, Sidorowich John J., et al. The analysis ofobserved chaotic data in physical systems[J]. Reviews Of Modern Physics,1993,65(4):1331.
    [152] Fraser Andrew M., Swinney Harry L. Independent coordinates for strangeattractors from mutual information[J]. Physical Review A,1986,33(2):1134.
    [153] Fraser Andrew M. Information and entropy in strange attractors[J]. InformationTheory, IEEE Transactions on,1989,35(2):245~262.
    [154] Ding Mingzhou, Grebogi Celso, Ott Edward, et al. Estimating correlationdimension from a chaotic time series: When does plateau onset occur?[J]. PhysicaD: Nonlinear Phenomena,1993,69(3):404~424.
    [155] Grassberger Peter, Procaccia Itamar. Characterization of strange attractors[J].Physical Review Letters,1983,50(5):346~349.
    [156] Grassberger Peter, Procaccia Itamar. Measuring the strangeness of strangeattractors[J]. Physica D: Nonlinear Phenomena,1983,9(1):189~208.
    [157] Kennel Matthew B., Brown Reggie, Abarbanel Henry Di. Determiningembedding dimension for phase-space reconstruction using a geometricalconstruction[J]. Physical Review A,1992,45(6):3403.
    [158] Cao Liangyue. Practical method for determining the minimum embeddingdimension of a scalar time series[J]. Physica D: Nonlinear Phenomena,1997,110(1):43~50.
    [159] Rapp Paul E., Albano Alfonso M., Schmah T. I., et al. Filtered noise can mimiclow-dimensional chaotic attractors[J]. Physical Review E,1993,47(4):2289.
    [160] Osborne A. Ro, Provenzale A. Finite correlation dimension for stochastic systemswith power-law spectra[J]. Physica D: Nonlinear Phenomena,1989,35(3):357~381.
    [161] Lai Ying-Cheng, Lerner David. Effective scaling regime for computing thecorrelation dimension from chaotic time series[J]. Physica D: NonlinearPhenomena,1998,115(1):1~18.
    [162] Theiler James. Spurious dimension from correlation algorithms applied to limitedtime-series data[J]. Physical Review A,1986,34(3):2427.
    [163] Eckmann J-P, Kamphorst S. Oliffson, Ruelle David. Recurrence plots ofdynamical systems[J]. Europhysics Letters,1987,4(9):973.
    [164] Zbilut Joseph P., Webber Charles L. Embeddings and delays as derived fromquantification of recurrence plots[J]. Physics Letters A,1992,171(3):199~203.
    [165] Casdagli M. C. Recurrence plots revisited[J]. Physica D: Nonlinear Phenomena,1997,108(1):12~44.
    [166] Iwanski Joseph S., Bradley Elizabeth. Recurrence plots of experimental data: Toembed or not to embed?[J]. Chaos: An Interdisciplinary Journal of NonlinearScience,1998,8(4):861~871.
    [167] Gao Jianbo, Cai Huaqing. On the structures and quantification of recurrenceplots[J]. Physics Letters A,2000,270(1):75~87.
    [168] Bradley E., Mantilla R. Recurrence plots and unstable periodic orbits.[J]. Chaos,2002,12(3):596~600.
    [169] Thiel M., Romano M. C., Read P. L., et al. Estimation of dynamical invariantswithout embedding by recurrence plots.[J]. Chaos,2004,14(2):234~243.
    [170] Marwan Norbert, Kurths Jürgen. Line structures in recurrence plots[J]. PhysicsLetters A,2005,336(4):349~357.
    [171] Marwan Norbert, Carmen Romano M., Thiel Marco, et al. Recurrence plots forthe analysis of complex systems[J]. Physics Reports,2007,438(5):237~329.
    [172]刘耀宗.碰摩转子混沌振动识别与控制技术研究[M].国防科技大学出版社,2005.
    [173] Bracikowski C., Roy Rajarshi. Chaos in a multimode solid‐state laser system[J].Chaos: An Interdisciplinary Journal of Nonlinear Science,1991,1(1):49~64.
    [174] Kenju Otsuka And Tomoaki Nakamura. Chaotic itinerancy in antiphaseintracavity second-harmonic generation[J]. Quantum and Semiclassical Optics:Journal of the European Optical Society Part B,1996,8(6):1179.
    [175]王东生,曹磊.混沌,分形及其应用[M].中国科学技术大学出版社,1995.
    [176] Kuznetsov Yuri. Elements of applied bifurcation theory[M]. Springer,1998.
    [177] Pérez-Serrano Antonio, Javaloyes Julien, Balle Salvador. Bichromatic emissionand multimode dynamics in bidirectional ring lasers[J]. Physical Review A,2010,81(4):43817.
    [178]曹涧秋.自组织固态激光器阵列的调频混沌和相位锁定物理机制的研究[D].长沙:国防科技大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700