用户名: 密码: 验证码:
基于MARG传感器的AHRS关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于各向异性磁阻(AMR)的三轴磁强计以及基于微机电系统(MEMS)的三轴加速度计和三轴陀螺仪具有小体积、低成本、低功耗等突出优点。这三种传感器的组合,即MARG传感器,提供了一种可用于测量载体姿态以及导航定位的便捷可靠的手段。采用MARG传感器的航向与姿态参考系统(AHRS)性能优越且用途广泛,其相关理论与技术的研究具有重要的学术价值和现实意义。
     本文针对基于MARG传感器的AHRS研发及应用中的若干关键问题展开研究,主要进行了以下工作。
     首先,针对三轴磁强计和三轴加速度计的误差校正与补偿问题,深入研究和探讨了三轴矢量场传感器的校正方法,特别是在无外部设备辅助条件下的校正方法。对已有文献和研究报道中广泛采用的基于椭球拟合的校正方法进行了详细分析,指出了该方法的固有缺陷,即无法有效辨识和补偿传感器间的非对准误差,并揭示了这一缺陷对AHRS的影响。进而,提出了三轴矢量场传感器校正的“点积不变法”,从根本上改善了校正效果,并且能与椭球拟合法相互配合而实现无需外部基准的三轴矢量场传感器自动校正。
     其次,针对三轴MEMS陀螺仪的标定问题,尤其是在缺少转台等精密设备的条件下标定陀螺仪的问题,提出了“叉积标定法”。该方法利用三轴矢量场传感器经校正后的测量值为参考,无需外部设备辅助即可实现三轴MEMS陀螺仪的标定,且标定精度能接近传统的转台标定法的水平。叉积标定法与点积不变法和椭球拟合法联合使用,可以实现MARG传感器在使用环境下的全自动误差校正与补偿,对基于MARG传感器的AHRS的实际应用具有重大意义。
     再者,针对基于MARG传感器的AHRS中的姿态融合滤波问题,通过对各种滤波算法的比较,选择以乘性姿态误差矢量为基础,介绍和分析了由其衍生出的乘性扩展卡尔曼滤波(MEKF)、乘性无迹卡尔曼滤波(MUKF)和广义互补滤波(GCF)三种算法,详细讨论了三者具体设计实现中的关键问题。进而在各种软硬件环境下对这三种姿态融合滤波算法进行了数值模拟实验,检验和对比了三者的性能表现,证明了GCF是一种计算量小且性能稳定可靠的姿态融合滤波解决方案。
     最后,针对基于重力与地磁场双矢量的姿态解算问题,引入CORDIC(坐标旋转数字计算机)算法,并在其基础上设计了双矢量CORDIC(DV-CORDIC)姿态解算方法,以提高计算效率。深入分析了CORDIC和DV-CORDIC的误差来源及上限,并分别讨论和推导了二者计算角度的不确定度,继而通过数值模拟验证了所提出的不确定度表达式的合理性。同时,模拟结果也显示了32位DV-CORDIC算法的精度可以达到单精度浮点运算的水平,但其速度相对后者具有明显的优势。
Tri-axial anisotropic magneto-resistive (AMR) magnetometers, as well as tri-axialmicro electro-mechanical system (MEMS) accelerometers and gyros, have theoutstanding advantages of small size, low cost, low power consumption, etc. Thecombination of the above three types of sensors, which is called MARG sensor,provides an efficient and reliable solution for attitude determination and navigation. Theattitude and heading reference systems (AHRS) based on MARG sensors have highperformance and versatility. Therefore, the research on its theory and technology hasacademic and practical significance.
     The research presented in this dissertation is focused on several critical problemsin the development and application of the AHRS based on MARG sensor. The majorcontributions are listed below.
     Firstly, aiming at the calibration and compensation for the errors of tri-axialmagnetometers and accelerometers, the calibration methods for tri-axial vector fieldsensors, especially the calibration techniques without external equipments, are studiedand discussed in depth. The ellipsoid fitting method, which was commonly used in theexisting literature, is analyzed in detail. It is pointed out that the inherent defect of theellipsoid fitting method is that it cannot identify and compensate the mutualmisalignment, or inter-triad misalignment, between different sensors. The impact of thisdefect on the AHRS is also revealed. And then the dot product invariance method fortri-axial vector field sensors calibration is introduced, which brings in essentialenhancement for the calibration results. The dot product invariance method can also beused with the ellipsoid fitting method, in order to form a self-calibration scheme fortri-axial vector field sensors without the aim of external equipment.
     Secondly, the cross product calibration method is presented for the calibration oftri-axial MEMS gyros, especially the calibration without a rate table or other precisiondevices. The cross product calibration method uses the measurement of calibratedtri-axial vector field sensors as the reference, instead of external equipment, to carry outthe calibration of tri-axial MEMS gyros. And its precision is very close to that of thetradition method using a rate table. Moreover, the combination of the cross productcalibration method, the dot product invariance method, and the ellipsoid fitting methodcan accomplish the fully automatic in-use calibration for MARG sensor, and thus it hasgreat significance for the applications of MARG sensor.
     Thirdly, the attitude fusion and filtering problem of MARG-based AHRS isdiscussed. After the comparison of different filtering methods, the multiplicative attitudeerror vector is chosen as the basis of attitude fusion and filtering. Then themultiplicative extended Kalman filters (MEKF), the multiplicative unscented Kalmanfilters (MUKF), as well as the generalized complementary filters (GCF), are presentedand analyzed. The critical points in the design and implementations of the above threealgorithms are discussed. Furthermore, numerical simulations of the above threealgorithms are performed in different software and hardware environments, to evaluateand compare their performance. The GCF is proved to be an efficient, stable, andreliable solution for attitude fusion and filtering.
     Last but not least, for the attitude determination using the gravity and thegeomagnetic vectors, the CORDIC (coordinate rotation digital computer) algorithm isadopted. The dual-vector CORDIC (DV-CORDIC) algorithm is presented, which canimprove the computational efficiency. The error sources and the upper bound of errorsfor CORDIC and DV-CORDIC are analyzed in depth, and the expressions of the angleuncertainties are also given and verified by numerial simulations. Simulation resultsalso prove that the precision of32-bit DV-CORDIC algorithm can achieve the level ofsingle precision floating point arithmetic, but the former has an obvious advantage incomputation speed over the latter.
引文
[1]刘诗斌.B-7小型靶机航向系统研究.西安:西北工业大学,1988.
    [2]孙希任,刘诗斌.二轴捷联式磁航向系统探讨.计测技术,1989(6):18-20.
    [3]刘诗斌.微型智能磁航向系统研究.西安:西北工业大学,2001.
    [4]Caruso M J. Applications of magneto-resistive sensors in navigation systems. SAETechnical Papers, International Congress and Exposition, Detroit, MI:1997.
    [5]Caruso M J, Bratland T, Smith C H, et al. A new perspective on magnetic fieldsensing. Sensors Expo Proceedings,1998,10:195-213.
    [6]Caruso M J. Applications of magneto-resistive sensors in navigation systems.Sensors and Actuators,1997,42(9):15-21.
    [7]Caruso M J. Applications of magnetic sensors for low cost compass system. Record-IEEE PLANS, Position, Location and Navigation Symposium. San Diego, CA,2000:177-184.
    [8]Vcelak J, Ripka P, Kubik J, et al. AMR navigation systems and methods of theircalibration. Sensors and Actuators A: Physical,2005,123-124:122-128.
    [9]Vcelak J, Ripka P, Platil A, et al. Errors of AMR compass and methods of theircompensation. Sensors and Actuators, A: Physical,2006,129:53-57.
    [10]Kubik J, Vcelak J, Ripka P. On cross-axis effect of the anisotropic magneto-resistivesensors. Sensors and Actuators, A: Physical,2006,129:15-19.
    [11]赵忠,何海涛,徐晓东.基于系统芯片(SoC)的低成本电子罗盘的设计.测控技术,2006,25(9):9-11.
    [12]徐晓东,赵忠,李丽锦.采用磁阻传感器与加速度计的电子罗盘设计.兵工自动化,2005,24(5):21-22.
    [13]邵婷婷,马建仓,张永波.具有倾斜补偿功能的三轴磁阻电子罗盘研制.电子测量技术,2008,31(6):140-142.
    [14]马建仓,胡士峰,邵婷婷.三轴磁阻电子罗盘设计.火力与指挥控制,2009,34(3):142-144.
    [15]王永强,曾连荪,金志华.一种基于磁阻传感器的数字罗盘的设计.计算机测量与控制,2007,15(12):1864-1866.
    [16]郑玉冰,章雪挺,刘敬彪.AMR电子罗盘的设计及其误差补偿.杭州电子科技大学学报,2008,28(2):41-44.
    [17]刘敬彪,郑玉冰,章雪挺.三轴磁罗盘的设计与误差校正.自动化仪表,2008,29(9):10-12.
    [18]李翔.基于地磁场的水平方位角测量研究.桂林:桂林电子科技大学,2010.
    [19]王勇军.基于磁阻和加速度传感器的三轴电子罗盘研制.桂林:桂林电子科技大学,2010.
    [20]王勇军,李智,李翔.三轴电子罗盘的设计与误差校正.传感器与微系统,2010,29(10):110-112.
    [21]牛晓航,刘诗斌,冯文光.基于ARM的低成本微型捷联航姿系统设计.测控技术,2012,31(11):67-70.
    [22]徐玉,李平,韩波.一种面向机动的低成本姿态测量系统.传感技术学报,2007,20(10):2272-2275.
    [23]徐玉,任沁源,孙文达,等.微小型无人直升机地磁导航算法研究.兵工学报,2011,32(3):337-342.
    [24]徐烨烽,仇海涛,何孟珂.微小型航姿测量系统设计及误差补偿.仪器仪表学报,2010,31(10):2221-2227.
    [25]张丽杰,常佶.微小型航姿测量系统及其数据融合方法.中国惯性技术学报,2011,19(3):307-311.
    [26]Vasconcelos J F, Elkaim G, Silvestre C. Geometric approach to strapdownmagnetometer calibration in sensor frame. IEEE Transactions on Aerospace andElectronic Systems,2011,47(2):1293-1306.
    [27]晁敏,蒋东方,文彩虹.磁罗盘误差分析与校准.传感技术学报,2010,23(4):525-532.
    [28]Merayo J M G, Brauer P, Primdahl F, et al. Scalar calibration of vectormagnetometers. Measurement Science and Technology,2000,11(2):120-132.
    [29]Barber G W, Arrott A S. History and magnetics of compass adjusting. IEEETransactions on Magnetics,1988,24(6):2883-2885.
    [30]郝东,绳涛,陈小前,等.三轴磁强计测量误差修正方法.航天器环境工程,2011,28(5):463-466.
    [31]代刚.MEMS-IMU误差分析补偿与实验研究.北京:清华大学,2011.
    [32]郭鹏飞,华春红,任章,等.基于递推最小二乘的航姿系统罗差校正.中国惯性技术学报,2008,16(1):24-27.
    [33]郭鹏飞,任章,邱海韬,等.一种十二位置不对北的磁罗盘标定方法.中国惯性技术学报,2007,15(5):598-601.
    [34]Li Zhi, Li Xiang, Wang Yongjun. A calibration method for magnetic sensors andaccelerometer in tilt-compensated digital compass. ICEMI2009-Proceedings of9th International Conference on Electronic Measurement and Instruments, Beijing,China,2009:2868-2871.
    [35]张娇,陈静,杨栓虎.三轴磁阻式传感器标定方法研究.弹箭与制导学报,2010,30(6):46-48.
    [36]Ortega J M, Rheinbodt W C. Iterative Solution of Nonlinear Equations in SeveralVariables. Academic Press, New York:1974.
    [37]Moulin M, Guodon J C, Marsy J M, et al. Process for compensating the magneticdisturbances in the determination of a magnetic heading, and devices for carryingout this process. United States Patent: No.4414753,1983-11-15.
    [38]Gambhir B. Determination of magnetometer biases using module RESDIG.Computer Sciences Corporation, Report No.3000-32700-01TN,1975.
    [39]Lerner G M. Scalar checking. Spacecraft Attitude Determination and Control,Kluwer Academic Publishers, Dordrecht,1978:328-334.
    [40]Thompson R H, Neal G N, Shuster M D. Magnetometer bias determination andspin-axis attitude estimation for the AMPTE mission. Journal of Guidance, Control,and Dynamics,1984,7(4):505-507.
    [41]Davenport P B, Rumpl W M, Welter G L. In-flight determination of spacecraftmagnetic bias independent of attitude. Proceedings, Flight Mechanics/EstimationTheory Symposium, NASA Goddard Space Flight Center, Greenbelt, Maryland,1988:326-343.
    [42]Alonso R, Shuster M D. A new algorithm for attitude-independent magnetometercalibration. Proceedings of the Flight Mechanics/Estimation Theory Symposium(NASA/CP-3265), NASA-Goddard Space Flight Center, Greenbelt, MD,1994:513-527.
    [43]Merayo J M G, Brauer P, Primdahl F, et al. Scalar calibration of vectormagnetometers. Measurement Science and Technology,2000,11(2):120-132.
    [44]Risbo T, Brauer P, Merayo J M G, et al. rsted pre-flight magnetometer calibrationmission. Measurement Science and Technology,2003,14(5):674-688.
    [45]刘诗斌,冯晓毅,李宏.基于椭圆假设的电子罗盘误差补偿方法.传感器技术,2002,21(10):28-30,33.
    [46]刘诗斌,李宏,冯晓毅.具有自动误差补偿功能的智能磁航向系统.传感器技术,2002,21(12):23-25,28.
    [47]杨新勇,黄圣国.磁罗盘的罗差分析与验证.电子科技大学学报,2004,33(5):547-550.
    [48]杨新勇,黄圣国.磁航向测量系统误差修正方法研究.仪器仪表学报,2004,25(4):466-469.
    [49]Gebre-Egziabher D, Elkaim G H, Powell J D, et al. Calibration of strap-downmagnetometers in magnetic field domain. Journal of Aerospace Engineering,2006,19(2):87-102.
    [50]邱丹,黄圣国.组合航向系统中数字磁罗盘的罗差补偿研究.仪器仪表学报,2006,27(S6):1369-1371,1401.
    [51]沈鹏,徐景硕,高扬.电子磁罗盘测量误差校正方法研究.仪器仪表学报,2007,28(10):1902-1905.
    [52]秦勇,赵杰,王晓宇.基于椭圆拟合误差补偿算法的数字磁罗盘.吉林大学学报(工学版),2009,39(2):489-493.
    [53]盛庆轩,吴美平,李涛,等.基于椭圆假设的磁强计罗差校正实验研究.传感器与微系统,2009,28(10):46-48,51.
    [54]张晓明,赵剡.基于椭圆约束的新型载体磁场标定及补偿技术.仪器仪表学报,2009,30(11):2438-2443.
    [55]孙宏伟,房建成,李艳.椭圆拟合方法在磁罗盘罗差校准中的应用.光学精密工程,2009,17(12):3034-3039.
    [56]吴浩文,杜刚,叶萍,等.基于椭圆假设的磁罗盘航向测量算法研究.计算机仿真,2010,27(2):352-355.
    [57]史连艳,宋文渊,王红云.基于旋转因子的磁传感器误差补偿改进椭圆法.探测与控制学报,2010,32(2):5-8.
    [58]崔瑞芬,常佶.微型磁阻式电子罗盘的设计及罗差补偿方法的研究.计算机测量与控制,2010,18(11):2608-2611.
    [59]杜英,李杰,孔祥雷,等.无航向基准条件下电子罗盘的误差补偿方法研究.传感技术学报,2010,23(9):1285-1288.
    [60]刘诗斌.无人机磁航向测量的自动罗差补偿研究.航空学报,2007,28(2):411-414.
    [61]黄学功,王炅.地磁信号检测系统误差分析与补偿方法研究.兵工学报,2011,32(1):33-36.
    [62]李勇,刘文怡,李杰,等.基于椭球拟合的三轴磁传感器误差补偿方法.传感技术学报,2012,25(7):917-920.
    [63]张樨,李杰,蒋窍,等.基于椭球拟合的三轴磁传感器快速标定补偿方法.机械工程与自动化,2012(4):163-165,167.
    [64]朱建良,王兴全,吴盘龙,等.基于椭球曲面拟合的三维磁罗盘误差补偿算法.中国惯性技术学报,2012,20(5):562-566.
    [65]谢启源,陆宇平,乔兵,等.一种基于椭球约束和Procrustes分析的磁矢量传感器校正算法.传感技术学报,2012,25(12):1684-1687.
    [66]龙礼,张合.三轴地磁传感器误差的自适应校正方法.仪器仪表学报,2013,34(1):161-165.
    [67]龙礼,张合,刘建敬.姿态检测地磁传感器误差分析与补偿方法.中国惯性技术学报,2013,21(1):80-83.
    [68]Fang Jiancheng, Sun Hongwei, Cao Juanjuan, et al. A novel calibration method ofmagnetic compass based on ellipsoid fitting. IEEE Transactions on Instrumentationand Measurement,2011,60(6):2053-2061.
    [69]Long Li, Zhang He. Automatic calibration of the3d vector magnetometer.Advanced Materials Research, Manufacturing Engineering and Automation II,2012,591-593:1256-1259.
    [70]Feng Wenguang, Liu Shibin, Liu Shiwei, et al. A calibration method of three-axismagnetic sensor based on ellipsoid fitting. Journal of Information andComputational Science,2013,10(6):1551-1558.
    [71]Pang Hongfei, Li Ji, Chen Dixiang, et al. Calibration of three-axis fluxgatemagnetometers with nonlinear least square method. Measurement: Journal of theInternational Measurement Confederation,2013,46(4):1600-1606.
    [72]Alonso R, Shuster M D. Attitude-independent magnetometer bias determination: Asurvey. Journal of the Astronautical Science,2003,50(4):453-475.
    [73]Alonso R, Shuster M D. TWOSTEP: A fast algorithm for attitude-independentmagnetometer bias determination. Journal of the Astronautical Science,2003,50(4):433-451.
    [74]Alonso R, Shuster M D. Centering and observability in attitude-independentmagnetometer bias determination. Journal of the Astronautical Science,2003,51(2):133-141.
    [75]Alonso R, Shuster M D. Complete linear attitude-independent magnetometercalibration. Journal of the Astronautical Science,2003,50(4):477-490.
    [76]Crassidis J L, Lai Kok-Lam, Harman R R. Real-time attitude-independentthree-axis magnetometer calibration. Journal of Guidance, Control, and Dynamics,2005,28(1):115-120.
    [77]Foster C C, Elkaim G H. Extension of a two-step calibration methodology toinclude nonorthogonal sensor axes. IEEE Transactions on Aerospace andElectronic Systems,2008,44(3):1070-1078.
    [78]Vasconcelos J F, Elkaim G H, Silvestre C, et al. Geometric approach to strapdownmagnetometer calibration in sensor frame. IEEE Transactions on Aerospace andElectronic Systems,2011,47(2):1293-1306.
    [79]Chatfield A B. Fundamentals of High Accuracy Inertial Navigation, AmericanInstitute of Aeronautics and Astronautics, Inc.,1997.
    [80]Titterton D H, Weston J L. Strap-down Inertial Navigation Technology, London:Peter Peregrinus on behalf of the Institute of Electrical Engineers,2004.
    [81]Lotters J C, Schipper J, Veltink P H, et al. Procedure for in-use calibration of triaxialaccelerometers in medical applications. Sensors and Actuators A: Physical,1998,68(1-3):221-228.
    [82]Jurman D, Jankovec M, Kamnik R, et al. Calibration and data fusion solution forthe miniature attitude and heading reference system. Sensors and Actuators A:Physical,2007,138(2):411-420.
    [83]Syed Z F, Aggarwal P, Goodall C, et al. A new multi-position calibration method forMEMS inertial navigation systems. Measurement Science and Technology,2007,18(7):1897-1907.
    [84]Pylvanainen T. Automatic and adaptive calibration of3D field sensors. AppliedMathematical Modelling,2008,32(4):575-587.
    [85]Bonnet S, Bassompierre C, Godin C, et al. Calibration methods for inertial andmagnetic sensors. Sensors and Actuators A: Physical,2009,156(2):302-311.
    [86]Frosio I, Pedersini F, Borghese N A. Autocalibration of MEMS accelerometers.IEEE Transactions on Instrumentation and Measurement,2009,58(6):2034-2041.
    [87]Zhang Hongliang, Wu Yuanxin, Wu Wenqi, et al. Improved multi-positioncalibration for inertial measurement units. Measurement Science and Technology,2010,21(1): Art. no.015107.
    [88]Won S P, Golnaraghi F. A tri-axial accelerometer calibration method using amathematical model. IEEE Transactions on Instrumentation and Measurement,2010,59(8):2144-2153.
    [89]Sipos M, Paces P, Rohac J, et al. Analyses of triaxial accelerometer calibrationalgorithms. IEEE Sensors Journal,2012,12(5):1157-1165.
    [90]Frosio I, Pedersini F, Borghese A B. Autocalibration of triaxial MEMSaccelerometers with automatic sensor model selection. IEEE Sensors Journal,2012,12(6):2100-2108.
    [91]范玉宝,李杰,张晓明,等.基于椭球拟合的微惯性测量组合现场快速标定方法.传感技术学报,2011,24(11):1547-1550.
    [92]李杰,田晓春,范玉宝,等.基于椭球拟合的弹载MIMU现场快速标定技术.弹箭与制导学报,2013,33(1):10-12,16.
    [93]刘仁浩,王华,夏金秀.基于椭球假设的三轴加速度计无依托校准方法.纳米技术与精密工程,2012,10(6):520-524.
    [94]Ahn Sung Joon, Wolfgang R, Hans-Jurgen W. Least-squares orthogonal distancesfitting of circle, sphere, elipse, hyperbola, and parabola. Pattern Recognition,2001,34(12):2283-2303.
    [95]Golub G H, Van Loan C F. Matrix Computations2nd ed. Baltimore, MD: JohnsHopkins University Press,1989.
    [96]Kincaid D, Cheney W. Numerical Analysis,2nd ed. Brooks/Cole,1996.
    [97]Gebre-Egziabher D. Magnetometer autocalibration leveraging measurement locusconstraints. Journal of Aircraft,2007,44(4):1361-1368.
    [98]李智,李翔.基于椭球假设的三轴电子罗盘罗差补偿研究.仪器仪表学报,2011,32(10):2210-2215.
    [99]张韦,刘诗斌,冯文光,等.基于磁通门的三轴电子罗盘自动误差补偿方法.传感技术学报,2012,25(12):1692-1695.
    [100]刘艳霞,李希胜,冯毅博,等.三轴磁罗盘标定位置分布的研究.仪器仪表学报,2013,34(3):684-690.
    [101]Markovsky I, Kukush A, Van Huffel S. Consistent least squares fitting of ellipsoids.Numerische Mathematik.2004,98(1):177-194.
    [102]Kukush A, Markovsky I, Van Huffel S. Consistent estimation in an implicitquadratic measurement error model. Computational Statistics and Data Analysis,2004,47(1):123-147.
    [103]Renaudin V, Afzal M H, Lachapelle G. Complete triaxis magnetometer calibrationin the magnetic domain. Journal of sensors,2010: Art. ID967245.
    [104]Beyer W H. CRC Standard Mathematical Tables (28th ed.). Boca Raton, CRCPress,1987.
    [105]Harris J W, Stocker H. Handbook of Mathematics and Computational Science.Springer-Verlag, NewYork,1998.
    [106]Li Qingde, Griffiths J G. Least squares ellipsoid specific fitting. Proceedings-Geometric Modeling and Processing, Beijing, China,2004:335-340.
    [107]Ying Xianghua, Yang Li, Kong Jing, et al. Direct least square fitting of ellipsoids.Proceedings-International Conference on Pattern Recognition, Tsukuba, Japan,2012:3228-3231.
    [108]Auster H U, Fornacon K H. Calibration of fluxgate magnetometers using relativemotion. Measurement Science and Technology,2002,13(7):1124-1131.
    [109]Schonemann P H. A generalized solution of the orthogonal procrustes problem.Psychometrika,1966,31(6):1-10.
    [110]Mizutani A, Rosser K, Chahl J.2011Semiautomatic calibration and alignment of alow cost,9sensor inertial magnetic measurement sensor. Proceedings of SPIE-TheInternational Society for Optical Engineering,7975,2011: Art. no.797517.
    [111]Fitzgibbon A, Maurizio P, Robert B F. Direct least square fitting of ellipses. IEEETransactions on Pattern Analysis and Machine Intelligence,1999,21(5):476-480.
    [112]李翔,李智.航姿参考系统三轴磁强计校正的点积不变法.仪器仪表学报,2012,33(8):1813-1818.
    [113]Li Zhi, Li Xiang. Research on self-calibration method for tri-axial magneticcompass. Proceedings of SPIE-The International Society for Optical Engineering,8759,2013: Art. no.875948.
    [114]Li Xiang, Li Zhi. A new calibration method for tri-axial field sensors instrap-down navigation systems. Measurement Science and Technology,2012,23(10):105105.
    [115]Ford J J, Evans M E. Online estimation of Allan variance parameters. Journal ofGuidance, Control, and Dynamics,2000,23(6):980-987.
    [116]Sabatini A M. A wavelet-based bootstrap method applied to inertial sensorstochastic error modelling using the Allan variance. Measurement Science andTechnology,2006,17(11):2980-2988.
    [117]El-Sheimy N, Hou Haiying, Niu Xiaoji. Analysis and modeling of inertial sensorsusing Allan variance. IEEE Transactions on Instrumentation and Measurement,2008,57(1):140-149.
    [118]ANSI/IEEE Std293-1969. IEEE Test Procedure for Single-Degree-Of-FreedomSpring-Restrained Rate Gyros.
    [119]IEEE Std517-1974. IEEE Standard Specification Format Guide and TestProcedure for Single-Degree-Of-Freedom Rate-Integrating Gyros.
    [120]IEEE Std952-1997. IEEE Standard Specification Format Guide and TestProcedure for Single-Axis Interferometric Fiber Optic Gyros.
    [121]IEEE Std647-2006. IEEE Standard Specification Format Guide and TestProcedure for Single-Axis Laser Gyros.
    [122]陈北鸥,孙文胜,张桂宏,等.捷联组合(设备无定向)六位置测试标定.导弹与航天运载技术,2001(3):23-27.
    [123]肖龙旭,魏诗卉,孙文胜.惯测组合快速高精度标定方法研究.宇航学报,2008,29(1):172-177.
    [124]刘百奇,房建成.一种改进的IMU无定向动静混合高精度标定方法.仪器仪表学报,2008,29(6):1250-1254.
    [125]杨孟兴,徐兵华.激光陀螺捷联惯性导航系统的误差参数标定.中国惯性技术学报,2008,16(3):306-309.
    [126]徐兵华,杨孟兴.激光陀螺IMU的不水平指北标定方法.压电与声光,2010,32(2):226-228,232.
    [127]蔚国强,杨建业,张合新.激光陀螺捷联惯组的无定向快速标定技术研究.中国惯性技术学报,2011,19(1):21-27.
    [128]何昆鹏,吴俊伟,李光春,等.光纤捷联惯性测量组件在无安装基准时标定方法.北京理工大学学报,2009,29(3):219-223.
    [129]查峰,许江宁,覃方君.一种高精度无定向的光纤陀螺IMU转停标定方法.中国惯性技术学报,2011,19(4):387-392.
    [130]Seong Yun Cho, Chan Gook Park. A calibration technique for a redundant IMUcontaining low-grade inertial sensors. ETRI Journal,2005,27(4):418-425.
    [131]Bekkeng J K. Calibration of a novel MEMS inertial reference unit. IEEETransactions on Instrumentation and Measurement,2009,58(6):1967-1974.
    [132]Nieminen T, Kangas J, Suuriniemi S, et al. An enhanced multi-position calibrationmethod for consumer-grade inertial measurement units applied and tested.Measurement Science and Technology,2010,21(10): Art. no.105204.
    [133]Dongkyu Lee, Sangchul Lee, Sanghyuk Park, et al. Test and error parameterestimation for MEMS-based low cost IMU calibration. International Journal ofPrecision Engineering and Manufacturing,2011,12(4):597-603.
    [134]孙宏伟,房建成,盛蔚.一种基于MEMS的微惯性测量单元标定补偿方法.北京航空航天大学学报,2008,34(4):439-442.
    [135]李杰,洪惠惠,张文栋.MEMS微惯性测量组合标定技术研究.传感技术学报,2008,21(7):1169-1173.
    [136]宋丽君,秦永元.MEMS陀螺仪的一种实用标定法.压电与声光,2010,32(3):372-374,378.
    [137]Eun-Hwan Shin. Accuracy Improvement of Low Cost INS/GPS for LandApplications. Calgary, Alberta, Canada: University of Calgary,2001.
    [138]Eun-Hwan Shin. Estimation Techniques for Low-cost Inertial Navigation. Calgary,Alberta, Canada: University of Calgary,2005.
    [139]杨晓霞,黄一.激光捷联惯导系统的一种系统级标定方法.中国惯性技术学报,2008,16(1):1-7.
    [140]杨晓霞,黄一.外场标定条件下捷联惯导系统误差状态可观测性分析.中国惯性技术学报,2008,16(6):551-558.
    [141]杨晓霞,黄一.利用ESO和TD进行的激光接连惯组误差参数外场标定方法.中国惯性技术学报,2010,18(1):1-10.
    [142]杨晓霞,孟浩然,王帅.激光捷联惯导系统的外场动态标定方法.中国惯性技术学报,2011,19(4):393-398.
    [143]吴赛成,秦石乔,王省书,等.激光陀螺惯性测量单元系统级标定方法.中国惯性技术学报,2011,19(2):185-189.
    [144]牟玉涛,周振威,方海涛.SINS外场系统级标定方法的优化——最佳六位置.北京航空航天大学学报,2011,37(7):855-860.
    [145]薛文超,牟玉涛,黄一.外场条件下激光捷联惯组多位置标定方法精度分析.中国惯性技术学报,2012,20(1):39-45.
    [146]Li You, Niu Xiaoji, Zhang Quan, et al. An in-situ hand calibration method using apseudo-observation scheme for low-end inertial measurement units. MeasurementScience and Technology,2012,23(10): Art. no.105104.
    [147]刘百奇,房建成.光纤陀螺IMU的六位置旋转现场标定新方法.光电工程,2008,35(1):60-65.
    [148]万亮,黄新生.陀螺误差现场系统标定方法研究.计算机仿真,2008,25(6):50-53.
    [149]陈雪芹,耿云海.一种利用星敏感器对陀螺进行在轨标定的算法.系统工程与电子技术,2005,27(12):2112-2116.
    [150]高伟,林星辰,王秋滢,等.CCD星敏感器辅助光纤陀螺在线标定技术.系统工程与电子技术,2012,34(8):1680-1684.
    [151]Bar-Itzhack I Y, Harman R R. Implicit and explicit spacecraft gyro calibration.Collection of Technical Papers-AIAA Guidance, Navigation, and ControlConference,2004,5:3034-3050.
    [152]Fong W T, Ong S K, Nee A Y C. Methods for in-field user calibration of an inertialmeasurement unit without external equipment. Measurement Science andTechnology,2008,19(8): Art. no.085202.
    [153]Cheuk Chi Ming, Lau Tak Kit, Lin Kai Wun, et al. Automatic calibration forinertial measurement unit.201212th International Conference on Control,Automation, Robotics and Vision, ICARCV2012:1341-1346.
    [154]Dorveaux E, Boudot T, Hillion M, et al. Combining inertial measurements anddistributed magnetometry for motion estimation. Proceedings of the2011AmericanControl Conference, ACC2011:4249-4256.
    [155]Dorveaux E. Magneto-Inertial Navigation Principles and Application to an IndoorPedometer. Paris, France: école Nationale Supérieure des Mines de Paris,2011.
    [156]Jekeli C. Inertial Navigation Systems with Geodetic Applications. Berlin: deGruyter,2000.
    [157]Saxena A, Gupta G, Gerasimov V, et al. In use parameter estimation of inertialsensors by detecting multilevel quasi-static state. Lecture Notes in ComputerScience, v3684LNAI, Knowledge-Based Intelligent Information and EngineeringSystems-9th International Conference, KES2005, Proceedings,2005:595-601.
    [158]徐士良.计算方法.北京:人民邮电出版社,2009.
    [159]Kane T R, Likins P W, Levinson D A. Spacecraft Dynamics. McGraw-Hill,1983.
    [160]Schaub H, Junkins J L. Stereographic orientation parameters for attitude dynamics:a generalization of the rodrigues parameters. Journal of the Astronautical Sciences,1996,44(1):1-20.
    [161]Rodrigues O. Des lois géométriques qui régissent les déplacements d`un systèmesolide dans l’espace, et de la variation des coordonnées provenant de cesdéplaements considérés indépendamment des causes qui peuvent les produire.Journal de Mathématiques Pures de Appliquées,1840,5:380-440.
    [162]Gibbs J W, Wilson E B. Vector Analysis. Scribner, New York,1901.
    [163]Marandi S R, Modi V J. A preferred coordinate system and the associatedorientation representation in attitude dynamics. Acta Astronautica,1987,15(11):833-843.
    [164]Stuelpnagel J C. On the parameterization of the three-dimensional rotation group.SIAM Review,1964,6(4):422-430.
    [165]Junkins J L, Turner J D. Optimal Spacecraft Rotational Maneuvers. Elsevier,Amsterdam,1986.
    [166]Markley F L. Parameterization of the attitude. Spacecraft Attitude Determinationand Control. Kluwer Academic Publishers, Dordrecht,1978:410-420.
    [167]Shuster M D. A survey of attitude representations. Journal of the AstronauticalSciences,1993,41(4):439-517.
    [168]Kalman R E. A new approach to linear filtering and prediction problems.Transactions of the ASME–Journal of Basic Engineering,1960,82D:35-45.
    [169]Smith G L, Schmidt S F. The application of statistical filter theory to optimaltrajectory determination on board a circumlunar vehicle. Reprint61-92, AmericanAcademy of Science Metting,1961.
    [170]Mclean J D, Schmidt S F. Optimal filtering and linear prediction applied to anon-board navigation system for the circumlunar mission. Reprint61-93, AmericanAcademy of Science Meeting,1961.
    [171]Jazwinski A H. Stochastic Process and Filtering Theory. New York, AcademicPress,1970.
    [172]Maybeck P S. Stochastic Models Estimation and Control. New York, AcademicPress,1982.
    [173]Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters foronline nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on SignalProcessing,2002,50(2):174-188.
    [174]Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for the nonlineartransformation of means and covariances in linear filters. IEEE Transactions onAutomatic Control,1996,45(3):477-482.
    [175]Julier S J, Uhlmann J K, Durrant-Whyte H F. New approach for filtering nonlinearsystems. Proceedings of the American Control Conference, Seattle, WA,1995:1628-1632.
    [176]Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems.Proceedings of SPIE-The International Society for Optical Engineering, v3087,1997:2-11.
    [177]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation.Proceedings of the IEEE, Sequential State Estimation: From Kalman Filters toParticles Filters,2004,92(3):401-422.
    [178]Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of meansand covariances through nonlinear transformations. Proceedings of the AmericanControl Conference, Anchorage, AK,2002:887-892.
    [179]Julier S J. The spherical simplex unscented transformation. Proceedings of theAmerican Control Conference, Denvor, CO,2003:2430-2434.
    [180]Julier S J. The scaled unscented transformation. Proceedings of the AmericanControl Conference, Anchorage, AK,2002:4555-4559.
    [181]姜雪原.卫星姿态确定及敏感器误差修正的滤波算法研究.哈尔滨:哈尔滨工业大学,2006.
    [182]徐佳鹤.基于UKF的滤波算法设计分析与应用.沈阳:东北大学,2008.
    [183]Van Der Merwe R, Wan E A. The square-root unscented Kalman filter for state andparameter estimation. ICASSP, IEEE International Conference on Acoustics, Speechand Signal Processing-Proceedings, Salt Lake, UT,2001:3461-3464.
    [184]Choukroun D, Bar-Itzhack I Y, Oshman Y. Novel quaternion Kalman filter. IEEETransactions on Aerospace and Electronic Systems,2006,42(1):174-190.
    [185]Choukroun D, Weiss H, Bar-Itzhack I Y, et al. Kalman filter for matrix estimation.IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):147-159.
    [186]Choukroun D, Weiss H, Bar-Itzhack I Y, et al. Direction cosine matrix estimationfrom vector observations using a matrix kalman filter. IEEE Transactions onAerospace and Electronic Systems,2010,46(1):61-79.
    [187]Choukroun D, Weiss H, Bar-Itzhack I Y, et al. Quaternion estimation from vectorobservations using a matrix Kalman filter. IEEE Transactions on Aerospace andElectronic Systems,2012,48(4):3133-3158.
    [188]Markley F L. Attitude representations for Kalman Filtering. Advances in theAstronautical Sciences,2002,109-I:133-151.
    [189]Markley F L. Attitude error representations for Kalman filtering. Journal ofGuidance, Control, and Dynamics,2003,26(2):311-317.
    [190]Markley F L. Attitude estimation or quaternion estimation? Advances in theAstronautical Sciences,2003,115:113-127.
    [191]Shuster M D. Constraint in attitude estimation Part I: constrained estimation.Journal of the Astronautical Sciences,2003,51(1):51-74.
    [192]Shuster M D. Constraint in attitude estimation Part II: unconstrained estimation.Journal of the Astronautical Sciences,2003,51(1):75-101.
    [193]Pittelkau M E. An analysis of the quaternion attitude determination filter. Journalof the Astronautical Sciences,2003,51(1):103-120.
    [194]Walter T H. A comparison of complementary and Kalman filtering. IEEETransactions on Aerospace and Electronic Systems,1975, AES-11(3):321-325.
    [195]Hong Sung Kyung. Fuzzy logic based closed-loop strapdown attitude system forunmanned aerial vehicle (UAV). Sensors and Actuators, A: Physical,2003,107(2):109-118.
    [196]Vasconcelos J F, Silvestre C, Oliveira P, et al. Discrete time-varying attitudecomplementary filter. Proceedings of the American Control Conference, St. Louis,MO,2009:4056-4061.
    [197]Vasconcelos J F, Cardeira B, Silvestre C, et al. Discrete-time complementaryfilters for attitude and position estimation: Design, analysis and experimentalvalidation. IEEE Transactions on Control Systems Technology,2011,19(1):181-198.
    [198]Euston M, Coote P, Mahony R, et al. A complementary filter for attitudeestimation of a fixed-wing UAV.
    [199]Calusdian J, Yun Xiaoping, Bachmann E. Adaptive-gain complementary filter ofinertial and magnetic data for orientation estimation. Proceedings-IEEEInternational Conference on Robotics and Automation, Shanghai, China,2011:1916-1922.
    [200]Kubelka V, Reinstein M. Complementary filtering approach to orientationestimation using inertial sensors only. Proceedings-IEEE International Conferenceon Robotics and Automation, Saint Paul, Minnesota,2012:599-605.
    [201]Mahony R, Hamel T, Pflimlin J M. Nonlinear complementary filters on the specialorthogonal group. IEEE Transactions on Automatic Control,2008,53(5):1203-1218.
    [202]Mahony R, Euston M, Kim J, et al. A non-linear observer for attitude estimation ofa fixed-wing unmanned aerial vehicle without GPS measurements. Transactions ofthe Institute of Measurement and Control,2011,33(6):699-717.
    [203]Jensen K J. Generalized nonlinear complementary attitude filter. Journal ofGuidance, Control, and Dynamics,2011,34(5):1588-1592.
    [204]Crassidis J L, Markley F L. Unscented filtering for spacecraft attitude estimation.Journal of Guidance, Control, and Dynamics,2003,26(4):536-542.
    [205]Batista P, Silvestre C, Oliveira P. Sensor-based complementary globallyasymptotically stable filters for attitude estimation. Proceedings of the IEEEConference on Decision and Control, Shanghai, China,2009:7563-7568.
    [206]Batista P, Silvestre C, Oliveira P. Sensor-based globally asymptotically stablefilters for attitude estimation: Analysis, design, and performance evaluation. IEEETransactions on Automatic Control,2012,57(8):2095-2100.
    [207]Batista P, Silvestre C, Olivera P. Vector-based attitude filter for space navigation.Journal of Intelligent and Robotic Systems: Theory and Applications,2011,64(2):221-243.
    [208]万德钧,房建成.惯性导航初始对准.南京:东南大学出版社,1998.
    [209]胡包钢.科学计算自由软件——SCILAB教程.北京:清华大学出版社,2003.
    [210]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998.
    [211]周战馨,高亚楠,陈家斌.惯导初对准中的平方根无轨迹卡尔曼滤波.北京理工大学学报,2005,25(11):941-943,1002.
    [212]郭文艳,韩崇昭,连峰.基于平方根UKF的多传感器融合跟踪.系统仿真学报,2008,20(12):3237-3240.
    [213]成兰,谢恺.迭代平方根UKF.信息与控制,2008,37(4):439-444.
    [214]李丹,刘建业,熊智,等.基于最小偏度采样的卫星自主导航SRUKF算法.南京航空航天大学学报,2009,41(1):54-58.
    [215]Potter J E, Stern R G. Statistical filtering of space navigation measurements. Proc.1963AIAA Guidance and Control Conf., Cambridge, MA,1963.
    [216]Carlson N A. Fast triangular formulation of the square root filter. AIAA Journal,1973,11(9):1259-1265.
    [217]Carlson N A. Federated square root filter for decentralized parallel processors.IEEE Transactions on Aerospace and Electronic Systems,1990,26(3):517-525.
    [218]Bierman G J. A comparison of discrete linear filtering algorithms. IEEETransactions on Aerospace and Electronic Systems,1973, AES-9(1):28-37.
    [219]Bierman G J. Sequential square root filtering and smoothing of discrete linearsystems. Automatica,1974,10(2):147-158.
    [220]Bieman G J. On the application of discrete square-root information filtering.International Journal of Control,1974,20(3):465-477.
    [221]Thornton C L, Finley S G. Square-root algorithm for evaluating mismodelledprocess noise. Journal of Spacecraft and Rockets,1974,11(4):223-230.
    [222]Grewal M S, Andrews A P. Kalman Filtering: Theory and Practice UsingMATLAB (2nd Ed). John Wiley,2001.
    [223]Bojanczyk A W, Brent R P, Van Dooren P, et al. A note on downdating theCholesky factorization. SIAM Journal on Scientific and Statistical Computing,1987,8(3):210-221.
    [224]Wahba G. Problem65-1: A least squares estimate of spacecraft attitude. SIAMReview,1965,7(3):409.
    [225]Farrell J L, Stuelpnagel J C. A least squares estimate of spacecraft attitude. SIAMReview,1966,8(3):384-386.
    [226]Davenport P B. Attitude Determination and Sensor Alignment via Weighted LeastSquares Affine Transformations. NASA X-514-71-32,1971.
    [227]Shuster M D, Oh S D. Three-axis attitude determination from vector observations.Journal of Guidance and Control,1981,4(1):70-77.
    [228]Markley F L. Attitude determination using vector observations and the singularvalue decomposition. Journal of the Astronautical Sciences,1988,36(3):245-258.
    [229]Markley F L. Attitude determination using vector observations: a fast optimalmatrix algorithm. Journal of the Astronautical Sciences,1993,41(2):261-280.
    [230]Mortari D. ESOQ: A closed-form solution to the Wahba problem. Journal of theAstronautical Sciences,1997,45(2):195-204.
    [231]Mortari D. Second estimator of the optimal quaternion. Journal of Guidance,Control, and Dynamics,2000,23(5):885-888.
    [232]Black H D. A passive system for determining the attitude of a satellite. AIAAJournal,1964,2(7):1350-1351.
    [233]Lerner G M. Three-axis attitude determination. Spacecraft Attitude Determinationand Control, Dordrecht, Holland,1978:420-428.
    [234]Bar-Itzhack I Y, Harman R R. Optimized TRIAD algorithm for attitudedetermination. Journal of Guidance, Control, and Dynamics,1997,20(1):208-211.
    [235]Shuster M D. The optimization of TRIAD. Journal of the Astronautical Sciences,2007,55(2):245-257.
    [236]Shuster M D. The TRIAD algorithm as maximum likelihood estimation. Journalof the Astronautical Sciences,2006,54(1):113-123.
    [237]Tanygin S, Shuster M D. The many TRIAD algorithms. Advances in theAstronautical Sciences, Vol.127, AAS/AIAA Space Flight Mechanics Meeting,Sedona, Arizona,2007:81-99.
    [238]Volder J E. The CORDIC trigonometric computing technique. IRE Transactionson Electronic Computers,1959, EC-8(3):330-334.
    [239]Volder J E. The CORDIC computing technique. Proceedings of the Western JointComputer Conference, ACM,1959:257-261.
    [240]Volder J E. The Birth of CORDIC. Journal of VLSI Signal Processing Systems forSignal, Image, and Video Technology,2000,25(2):101-105.
    [241]Walther J S. A unified algorithm for elementary functions. Proceeding of SpringJoint Computer Conference, AFIPS,1971:379-385.
    [242]Andraka R. A survey of CORDIC algorithm for FPGA-based computers.Proceedings of the1998ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays, ACM,1998:191-200.
    [243]宋磊,任新,邹斌.导航专用处理器的研究.哈尔滨工业大学学报,1994,26(2):124-128.
    [244]崔晓松,胡建萍,李陬.CORDIC算法在导航解算系统中的应用.杭州电子科技大学学报,2007,27(6):5-8.
    [245]曾建辉,初德进,贾桂丽.CORDIC算法在捷联导航系统姿态解算中的应用.应用科技,2008,35(4):42-44.
    [246]许德新,阙兴涛,夏全喜.捷联式导航计算机的最优NiosⅡ构建.电子技术应用,2009(5):159-162.
    [247]冯文光,刘诗斌.改进的MVR-CORDIC算法在磁航向测量中的应用.测控技术,2009,28(6):40-42,46.
    [248]黄翌,杨志谦,郭立俊.CORDIC算法在气球载雷达系留姿态处理中的应用.合肥工业大学学报(自然科学版),2010,33(11):1737-1739.
    [249]Bhuria S, Muralidhar P. FPGA implementation of sine and cosine value generatorsusing Cordic algorithm for satellite attitude determination and calculators.2010International Conference on Power, Control and Embedded Systems (ICPCES2010), Allahabad, India,2010.
    [250]Laulainen E, Koskinen L, Kosunen M, et al. Compass tilt compensation algorithmusing CORDIC. IEEE International Symposium on Circuits and Systems,2008,Seattle, WA,2008:1188-1191.
    [251]李翔,李智.CORDIC算法在三轴电子罗盘中的应用.电子技术应用,2010(6):144-147.
    [252]Hu Yu Hen. The quantization effects of the CORDIC algorithm. IEEETransactions on Signal Processing,1992,40(4):834-844.
    [253]Kota K, Cavallaro J R. Numerical accuracy and hardware tradeoffs for CORDICarithmetic special-purpose processors. IEEE Transactions on Computers,1993,42(7):769-779.
    [254]Antelo E, Bruguera J D, Lang T, et al. Error analysis and reduction for anglecalculation using the CORDIC algorithm. IEEE Transactions on Computers,1997,46(11):1264-1271.
    [255]Sang Yoon Park, Nam Ik Cho. Fixed-point error analysis of CORDIC processorbased on the variance propagation. IEEE Transactions on Circuits and Systems-I,2004,51(3):573-584.
    [256]Sung Tze-yun. Numerical accuracy and hardware trade-offs for fixed-pointCORDIC processor for digital signal processing system. Proceedings of the7thWSEAS International Conference on Multimedia Systems and Signal Processing,Hangzhou, China,2007:106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700