用户名: 密码: 验证码:
基于单目视觉的弱约束三维表面重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维重建是计算机视觉领域的经典问题,其中基于单目相机的三维重建技术较其他技术更易被用户采用,采集数据时更方便。鉴于单目相机应用的普遍性和采集数据时的方便性,本文只研究单目视点下的三维表面重建技术。
     传统的基于单目视觉的三维表面重建存在较多的约束条件,特别是对光照环境的约束。这种约束条件会导致在进行数据采集时光源配置困难,配置的仪器设备价格较高。本文研究如何找到一种约束条件少,设备代价低,自然光或者复杂光环境下三维表面重建的解决方案;解决因遮挡,交互反射,阴影等因素引起的三维重建误差问题,准确且有效的恢复出物体的表面高度。本文主要工作和创新点包括:
     (1)综述了基于单目视觉的几种主流算法,这些算法是近几年基于单目视觉的具有代表性的算法,反映了近10年内基于单目视觉的最新技术,在单目视觉的三维重建中各有优势。本文基于这些算法对单目视点下的三维表面重建做了相应的改进。
     (2)介绍了几种常用的光照模型,并分析了不同光照模型的原理和特点。在各种光环境下拍摄了输入图像,基于不同的光照模型对输入图像进行了重绘和误差分析,分析结果表明球谐模型是对各种光环境较鲁棒的光照模型。
     (3)提出了基于参照物的非校准PMS三维表面重建算法,该方法将已知的参照物与目标物体放在同一场景中,并采集多幅输入图像。基于参照物可对输入图像的光照矩阵进行估计,可快速有效的估算出目标物体的三维形状。
     (4)将经典的PMS方法和光源参数估算方法合并,提出了一种快速估算人脸表面法向量的未校准PMS算法。通过在YaleB和BU3D数据库上的实验和分析,验证了人脸快速算法的有效性。
     (5)重新定义了基于耦合统计模型的框架,在此框架的基础上,可实现与训练库中光环境不同的单幅输入人脸的三维重建,对具有不同阴影效果的输入图像的重建结果鲁棒性较高。
     (6)提出基于拼接优化的单幅纹理三维重建算法。对岩石纹理进行了测试并与传统的SFS算法进行了对比,实验表明本文的算法对单幅输入图像的欠约束三维重建更有效。
     基于相机拍摄到的物体的图像,对目标物体进行三维重建,可将物体或者场景的三维形状准确的描述出来,去除由于环境的变化或者视角的偏差引起的对物体外观的理解错误,对于煤炭,钻井,勘探,考古等应用领域具有重要的应用前景。
Three-dimention reconstruction is a classical problem in computer vision. Due tothe general and convenient application of the monocular camera, we only focus on3Dsurface reconstruction based on monocular vision technique in this paper.
     There are many constraints in the classical3D reconstruction based on monocularvision technology, especially for the constraints of lighting conditions, which willgenerate the difficulty in configuration of light sources and equipments. In this paper,we mainly focus on reducing these constraints, and making3D surface reconstructionbased on monocular vision more robust under the complex lighting conditions.Moreover the interactive reflection and shadow in3D reconstruction will also bediscussed. The main work and innovation points include:
     (1) The main algorithms based on monocular vision have been introduced, whichare the typical methods and have reflected the newest technology in the research ofmonocular vision. In this paper, we present our new method based on the ideas ofthese algorithms.
     (2) We discuss the commonly used lighting models and analyze theircharacteristics. By using these lighting models, the input images have been renderedunder various kinds of lighting conditions. Through analyzing the rendering error, themost robust lighting model has been selected to simulate the lighting condition of theinput image.
     (3) An uncalibrated PMS algorithm based on the reference object has beenproposed. Firstly, the target object and the reference object are put in the same scene,and the multiple images will be captured by making different lighting conditions.Then using the reference object, the lighting matrix will be estimated and the shape ofthe target object will be reconstructed quickly.
     (4) A fast uncalibrated PMS algorithm for estimating human surface normal hasbeen proposed by merging the classical PMS and the method of estimating lightingparameters. The effectiveness of this algorithm has been verified by the experimentsin the YaleB and BU3D databases.
     (5) A new framework of3D face reconstruction has been propsed based on a coupled statistical model. The3D shape can be estimated from a face image, whichhas the different lighting condition with the images in training set. The reconstructedresults are more accurate than the state of the art method.
     (6) An effective method has been presented for the same kind of objects. Thestitching and optimization has been used in the proposed method. An input rocktexture has been tested and compared with the method of SFS. The experimetnsverified the more effective of our proposed method than that of SFS.
     We can reconstruct the3D shape of the object from the captured images bymonocular camera. Then the intrinsic features of the object will be restored and not beaffected by the change of vision angle or the lighting conditons, which has animportant application prospection for coal, drilling, exploration and archaeology etc.
引文
[1] Bakshi S, Yang Y H. Shape from shading for non-Lambertian surfaces[C]. IEEE InternationalConference,1994,2:130-134.
    [2] Bruckstein A M. On Shape from shading[J]. Computer Vision, Graphics, and Image Processing,1988,44(2):139-154.
    [3] Tankus A, Sochen N, Yeshurun Y. A new perspective on shape from shading[C]. ComputerVision,2003:862-869.
    [4] Kimmel R, Sethian J A. Optimal algorithm for shape from shading and path planning[J].Journal of Mathematical Imaging and Vision,2001,14(3):237-244.
    [5] Woodham R J. Photometric Method for determining surface orientation from multiple images[J]. Optical engineering,1980,19(1):191139-191139.
    [6] Lanman D, Taubin G. Build your own3D scanner:3D photography for beginners[C]. ACMSIGGRAPH2009Courses. ACM,2009:8.
    [7] Lanman D, Crispell D, Taubin G. Surround structured lighting for full object scanning[C].3-DDigital Imaging and Modeling,2007:107-116.
    [8] Nehab D, Rusinkiewicz S, Davis J, et al. Efficiently combining positions and normals forprecise3D Geometry[C]. ACM Transactions on Graphics (TOG),2005,24(3):536-543.
    [9] Higo T, Matsushita Y, Joshi N, et al. A hand-held photometric stereo camera for3-d modeling[C].12th International Conference on IEEE Computer Vision,2009:1234-1241.
    [10] Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps[C].Proceedings of the28th Annual Conference on Computer Graphics and Interactive Techniques,2001:497-500.
    [11] Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance: determin-ing the illumination from images of a convex Lambertian object[J]. JOSA A,2001,18(10):2448-2459.
    [12] Johnson M K, Adelson E H. Shape estimation in natural illumination[C]. Computer Visionand Pattern Recognition,2011:2553-2560.
    [13] Ray R, Birk J, Kelley R B. Error analysis of surface normals determined by radiometry[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1983(6):631-645.
    [14] Jiang X Y, Bunke H. On error analysis for surface normals determined by photometric stereo[J]. Signal Processing,1991,23(3):221-226.
    [15] Lee K M, Kuo C C J. Surface reconstruction from photometric stereo images[J]. JOSA A,1993,10(5):855-868.
    [16] Spence A D, Chantler M J. Optimal illumination for three-image photometric stereo acqui-sition of texture[C]. Proceedings of the3rd International Workshop on Texture Analysis andSynthesis,2003:89-94.
    [17] Drbohlav O. Towards uncalibrated photometric stereo for non-Lambertian surfaces[D]. CzechTechnical University,2003.
    [18] Basri R, Jacobs D, Kemelmacher I. Photometric stereo with general, unknown lighting[J].International Journal of Computer Vision,2007,72(3):239-257.
    [19] Chen C P, Chen C S. The4-source photometric stereo under general unknown lighting[M].Computer Vision ECCV2006. Springer Berlin Heidelberg,2006:72-83.
    [20] Kemelmacher-Shlizerman I, Basri R.3d face reconstruction from a single image using asingle reference face shape[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2011,33(2):394-405.
    [21] Woodham R J. Gradient and curvature from the photometric-stereo method, including localconfidence estimation[J]. JOSA A,1994,11(11):3050-3068.
    [22] Hertzmann A, Seitz S M. Example-based photometric stereo: Shape reconstruction withgeneral, varying brdfs[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2005,27(8):1254-1264.
    [23] Castelán M, Puerto-Souza G A, Van Horebeek J. Using subspace multiple linear regressionfor3d face shape prediction from a single image[M]. Advances in Visual Computing. SpringerBerlin Heidelberg,2009:662-673.
    [24] Li A, Shan S, Chen X, et al. Recovering3D facial shape via coupled2D/3D space learning
    [C]. Automatic Face and Gesture Recognition,2008:1-6.
    [25] Castelan M, Smith W A P, Hancock E R. A coupled statistical model for face shape recoveryfrom brightness images[J]. IEEE Transactions on Image Processing,2007,16(4):1139-1151.
    [26] Belhumeur P N, Kriegman D J, Yuille A L. The bas-relief ambiguity[J]. International Journalof Computer Vision,1999,35(1):33-44.
    [27] Nicodemus F E. Directional reflectance and emissivity of an opaque surface[J]. AppliedOptics,1965,4(7):767-773.
    [28] United States. National Bureau of Standards, Nicodemus F E. Geometrical considerations andnomenclature for reflectance[M]. Washington, D. C: US Department of Commerce, NationalBureau of Standards,1977.
    [29] Lambert J H. JH Lambert. Photometria, sive de Mensura et gradibus luminis, colorum etumbrae[M]. sumptibus viduae E. Klett,1760.
    [30] Phong B T. Illumination for computer generated pictures[J]. Communications of the ACM,1975,18(6):311-317.
    [31] Blinn J F. Models of light reflection for computer synthesized pictures[C]. ACM SIGGRAPHComputer Graphics. ACM,1977,11(2):192-198.
    [32] Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactionson Graphics (TOG),1982,1(1):7-24.
    [33] Lazányi I, Szirmay-Kalos L. Fresnel Term Approximations for Metals[C]. WSCG (ShortPapers).2005:77-80.
    [34] Ward G J. Measuring and modeling anisotropic reflection[C]. ACM SIGGRAPH ComputerGraphics. ACM,1992,26(2):265-272.
    [35] Oren M, Nayar S K. Generalization of Lambert's reflectance model[C].Proceedings of the21st annual conference on Computer graphics and interactive techniques. ACM,1994:239-246.
    [36] Strauss P S. A realistic lighting model for computer animators[J]. Computer Graphics andApplications, IEEE,1990,10(6):56-64.
    [37] Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps
    [C].Proceedings of the28th annual conference on Computer graphics and interactivetechniques. ACM,2001:497-500.
    [38] Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance:determining the illumination from images of a convex Lambertian object[J]. JOSA A,2001,18(10):2448-2459.
    [39] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: Illumination conemodels for face recognition under variable lighting and pose[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2001,23(6):643-660.
    [40] McGunnigle G, Dong J. Augmenting photometric stereo with coaxial illumination[J].Computer Vision, IET,2011,5(1):33-49.
    [41] Woodham R J, Iwahori Y, Barman R A, et al. Photometric stereo: Lambertian reflectance andlight sources with unknown direction and strength[M]. University of British Columbia,Department of Computer Science,1991.
    [42] Hayakawa H. Photometric stereo under a light source with arbitrary motion[J]. JOSA A,1994,11(11):3079-3089.
    [43] Epstein R, Hallinan P W, Yuille A L.5±2eigenimages suffice: An empirical investigation oflow-dimensional lighting models[C]. Proceedings of the Workshop on. IEEE Physics-BasedModeling in Computer Vision,1995:108.
    [44] Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical engineering,1980,19(1):191139-191139-.
    [45] Koenderink J J, Van Doorn A J. The generic bilinear calibration-estimation problem[J].International Journal of Computer Vision,1997,23(3):217-234.
    [46] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference anddiffraction of light[M]. CUP Archive,1999.
    [47] Yuille A, Snow D. Shape and albedo from multiple images using integrability[C]. ComputerVision and Pattern Recognition,1997:158-164.
    [48] Alldrin N G, Mallick S P, Kriegman D J. Resolving the generalized bas-relief ambiguity byentropy minimization[C]. Computer Vision and Pattern Recognition,2007:1-7.
    [49] Brown P N, Saad Y. Hybrid Krylov methods for nonlinear systems of equations[J]. SIAMJournal on Scientific and Statistical Computing,1990,11(3):450-481.
    [50] Agrawal A, Chellappa R, Raskar R. An algebraic approach to surface reconstruction fromgradient fields[C]. Computer Vision,2005,1:174-181.
    [51] Pharr M, Humphreys G. Physically based rendering: From theory to implementation [M].Morgan Kaufmann,2010.
    [52] Haralock R M, Shapiro L G. Computer and robot vision[M]. Addison-Wesley LongmanPublishing Co., Inc.,1991.
    [53] Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: Illumination conemodels for face recognition under variable lighting and pose[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2001,23(6):643-660.
    [54] Yin L, Wei X, Sun Y, et al. A3D facial expression database for facial behavior research[C].Automatic face and gesture recognition,2006:211-216.
    [55] Black M J, Anandan P. The robust estimation of multiple motions: Parametric andpiecewise-smooth flow fields[J]. Computer vision and image understanding,1996,63(1):75-104.
    [56] Zhang R, Tsai P S, Cryer J E, et al. Shape-from-shading: a survey[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,1999,21(8):690-706.
    [57] Prados E, Faugeras O. Shape from shading[M]. Handbook of mathematical models incomputer vision. Springer US,2006:375-388.
    [58] Koenderink J J, Van Doorn A J, Kappers A M L. Surface perception in picture[J]. Perception&Psychophysics,1992,52(5):487-496.
    [59] Koenderink J J, Van Doorn A J, Christou C, et al. Perturbation study of shading in pictures[J].PERCEPTION-LONDON,1996,25:1009-1026.
    [60] Cootes T F, Edwards G J, Taylor C J. Active appearance models[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2001,23(6):681-685.
    [61] Turk M A, Pentland A P. Face recognition using eigenfaces[C]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1990,12(1):103-108.
    [63] Turk M A, Pentland A P. Face recognition using eigenfaces[C]. Computer Vision and PatternRecognition,1991:586-591.
    [64] Sirovich L, Everson R. Management and analysis of large scientific datasets[J]. Theinternational journal of supercomputer applications,1992,6(1):50-68.
    [65] Drbohlav O, Chantler M. On optimal light configurations in photometric stereo[C].International Conference on. IEEE ICCV,2005,2:1707-1712.
    [66] Basri R, Jacobs D W. Lambertian reflectance and linear subspaces[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2003,25(2):218-233.
    [67] Horn B K P, Woodham R J, Silverwilliam M. Determining shape and reflectance usingmultiple images[J].1978.
    [68] Shashua A. On photometric issues in3D visual recognition from a single2D image[J].International Journal of Computer Vision,1997,21(1-2):99-122.
    [69] Moses Y. Face recognition: generalization to novel images[M].1993.
    [70] Frolova D, Simakov D, Basri R. Accuracy of spherical harmonic approximations for imagesof lambertian objects under far and near lighting[M]. Computer Vision-ECCV. Springer BerlinHeidelberg,2004:574-587.
    [71] Coleman Jr E, Jain R. Obtaining3-dimensional shape of textured and specular surfaces usingfour-source photometry[J]. Computer Graphics and Image Processing,1982,18(4):309-328.
    [72] Georghiades A S. Recovering3-D shape and reflectance from a small number of photographs
    [C]. Proceedings of the14th Eurographics workshop on Rendering. Eurographics Association,2003:230-240.
    [73] Ikeuchi K. Determining surface orientations of specular surfaces by using the photometricstereo method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1981(6):661-669.
    [74] Nayar S K, Ikeuchi K, Kanade T. Determining shape and reflectance of hybrid surfaces byphotometric sampling[J]. IEEE Transactions on Robotics and Automation,1990,6(4):418-431.
    [75] Metaxas D, Terzopoulos D. Shape and nonrigid motion estimation through physics-basedsynthesis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(6):580-591.
    [76] Dana K J, Van Ginneken B, Nayar S K, et al. Reflectance and texture of real-world surfaces[J]. ACM Transactions on Graphics (TOG),1999,18(1):1-34.
    [77] Zickler T E, Ho J, Kriegman D J, et al. Binocular helmholtz stereopsis[C]. Computer Vision,2003. Proceedings. Ninth IEEE International Conference on. IEEE,2003:1411-1417.
    [78] Tu P, Mendon a P R S. Surface reconstruction via Helmholtz reciprocity with a single imagepair[C]. Computer Society Conference on. IEEE,2003,1: I-541-I-547vol.1.
    [79] Zickler T E, Belhumeur P N, Kriegman D J. Helmholtz stereopsis: Exploiting reciprocity forsurface reconstruction[J]. International Journal of Computer Vision,2002,49(2-3):215-227.
    [80] Zickler T E, Belhumeur P N, Kriegman D J. Toward a stratification of Helmholtz stereopsis
    [C]. Computer Vision and Pattern Recognition,2003,1: I-548-I-555vol.1.
    [81] Lensch H, Kautz J, Goesele M, et al. Image-based reconstruction of spatial appearance andgeometric detail[J]. ACM Transactions on Graphics (TOG),2003,22(2):234-257.
    [82] Matusik W, Pfister H, Brand M, et al. Efficient isotropic BRDF measurement[C].Proceedingsof the14th Eurographics workshop on Rendering. Eurographics Association,2003:241-247.
    [83] Ramamoorthi R, Hanrahan P. Frequency space environment map rendering[C].ACMTransactions on Graphics (TOG). ACM,2002,21(3):517-526.
    [84] Wood D N, Azuma D I, Aldinger K, et al. Surface light fields for3D photography[C].Proceedings of the27th annual conference on Computer graphics and interactive techniques.ACM Press/Addison-Wesley Publishing Co,2000:287-296.
    [85]张屹凌.基于光度立体算法的图像建模系统的设计及实现[D].浙江大学,2006.
    [86]韦巍,王国荣,姜立军.医学X射线图像三维重建技术[J].北京生物医学工程,2004,23(3):236-238.
    [87]柴秀娟,山世光,卿来云,等.基于3D人脸重建的光照,姿态不变人脸识别[J].软件学报,2006,17(3):525-534.
    [88]郑作勇.基于图像的带高光物体的形状和反射属性建模技术研究[D].上海交通大学,2009.
    [89]解添鑫.传送带工件三维轮廓检测系统设计[D].哈尔滨工业大学,2009.
    [90]徐镇强.由单幅图像恢复三维形状的算法与应用研究[D].西安电子科技大学,2008.
    [91]周铁平.基于特征基元的三维信息重构方法研究[D].陕西:西北工业大学,2006.
    [92]赵辉煌. SMT焊点图像处理及焊点三维质量信息提取技术研究[D].西安电子科技大学,2010.
    [93]高飞.基于多视几何的三维脚型测量技术与系统[D].浙江大学,2010.
    [94]高宁.光学三坐标系统标定的研究[D].哈尔滨工业大学,2009.
    [95]卿来云,山世光,陈熙霖,等.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768.
    [96]山世光.人脸识别中若干关键问题的研究[J].博士学位论文,中国科学院计算技术研究所,2004.
    [97] Losasso F. Surface reflection models[J]. NVIDIA Corporation,2004.
    [98] Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactionson Graphics (TOG),1982,1(1):7-24.
    [99] Blinn J F. Models of light reflection for computer synthesized pictures[C]. ACM SIGGRAPHComputer Graphics. ACM,1977,11(2):192-198.
    [100] Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactionson Graphics (TOG),1982,1(1):7-24.
    [101] Torrance K E, Sparrow E M. Theory for off-specular reflection from roughened surfaces[J].JOSA,1967,57(9):1105-1112.
    [102] Lambert J. Photometria[J]. The simplest model, formulated by Lambert in,1760.
    [103] Koh K, Kim S J, Boyd S P. An Interior-Point Method for Large-Scale l1-RegularizedLogistic Regression [J]. Journal of Machine learning research,2007,8(8):1519-1555.
    [104] Hernández C, Vogiatzis G, Brostow G J, et al. Non-rigid photometric stereo with coloredlights[C]. ICCV,11th International Conference on. IEEE,2007:1-8.
    [105] Christensen P H, Shapiro L G. Three-dimensional shape from color photometric stereo[J].International Journal of Computer Vision,1994,13(2):213-227.
    [106] Sun J, Smith M, Smith L, et al. Reflectance of human skin using colour photometric stereo:with particular application to pigmented lesion analysis[J]. skin research and technology,2008,14(2):173-179.
    [107]郑国强,鲍海,陈树勇.基于近似线性规划的风电场穿透功率极限优化的改进算法[J].中国电机工程学报,2004,24(10):68-71.
    [108] Smirnova A, Renaut R A, Khan T. Convergence and application of a modified iterativelyregularized Gauss–Newton algorithm[J]. Inverse problems,2007,23(4):1547.
    [109] MoréJ J. The Levenberg-Marquardt algorithm: implementation and theory[M]. Numericalanalysis. Springer Berlin Heidelberg,1978:105-116.
    [110] Chen H S, Stadtherr M A. A modification of Powell's dogleg method for solving systems ofnonlinear equations[J]. Computers&Chemical Engineering,1981,5(3):143-150.
    [111] Efros A A, Freeman W T. Image quilting for texture synthesis and transfer[C].Proceedings ofthe28th annual conference on Computer graphics and interactive techniques. ACM,2001:341-346.
    [112] Daniel Pineo and Colin Ware, Data visualization optimization via computational modelingof perception[J].2012, IEEE Transactions on Visualization and Computer Graphics,18(2),309-320.
    [113] Ping-Sing T, Shah M. Shape from shading using linear approximation[J]. Image and VisionComputing,1994,12(8):487-498.
    [114] Song M, Tao D, Huang X, et al. Three-dimensional face reconstruction from a single imageby a coupled RBF network[J]. Image Processing, IEEE Transactions on,2012,21(5):2887-2897.
    [115] Koenderink J J, Pont S C. Irradiation direction from texture[J]. JOSA A,2003,20(10):1875-1882.
    [116] VarmaM, Zisserman A. Estimating illumination direction from textured images[C].Computer Vision and Pattern Recognition,2004. CVPR2004. Proceedings of the2004IEEE Computer Society Conference on. IEEE,2004,1: I-179-I-186.
    [117] Chantler M J, McGunnigle G. The response of texture features to illuminant rotation[C].Pattern Recognition, International Conference on. IEEE Computer Society,2000,3:3955-3955.
    [118] Chantler M, Petrou M, Penirsche A, et al. Classifying surface texture whilesimultaneously estimating illumination direction[J]. International Journal of Computer Vision,2005,62(1-2):83-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700