用户名: 密码: 验证码:
PDGF信号在新生小鼠心脏再生过程中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性心肌梗死可导致心肌细胞在短时间内大量丢失,并最终导致心脏功能减退,乃至心力衰竭的发生。以快速补给心肌细胞为目标的心血管再生医学一直以来都是医学界关注的热点。有研究显示,斑马鱼和蝾螈等低等脊椎动物的心脏切除15-20%心室后能够实现自我修复和完美再生。在此基础上,最近的研究提示,出生1天的新生小鼠心尖切除后也表现与斑马鱼类似的心脏再生现象,但出生后7天小鼠心尖切除后不能再生,转而疤痕修复,提示哺乳动物的心肌在出生后早期也具有增殖能力,但其增殖能力迅速丧失使其在成年期不能完全应对心脏的损伤。揭示调控心脏再生过程中的关键分子机制,对于开辟促进心肌再生的有效手段具有重要的理论价值。
     有报道指出,斑马鱼心脏损伤后再生过程中,血小板源性生长因子(Platelet derived growth factor, PDGF)信号对心肌细胞增殖发挥了重要作用。最新的研究则显示,小鼠胰腺再生过程中,PDGF信号通过Ezh2调控胰腺β细胞增殖。鉴于PDGF信号在小鼠胰腺再生和斑马鱼心脏再生中的作用,我们推测该信号在新生小鼠心尖切除损伤后心脏再生过程中可能发挥了重要作用。为了验证这一假设,我们在动物实验水平检测PDGF信号与新生小鼠的心脏再生的关系;继而在细胞水平进一步探讨PDGF信号促进心肌细胞增殖的具体机制、关键分子和通路。
     主要的研究结果如下:
     第—部分:PDGF信号相关分子在出生后小鼠心脏发育过程中的表达变化
     目的:检测PDGF相关分子在出生后小鼠心脏发育过程中的表达变化。方法:Real time PCR检测小鼠出生后心脏发育过程中PDGF相关基因和Ezh2相关基因的表达变化,Western blot实验检测PDGF受体(Platelet Derived Growth FactorReceptor, PDGFR)和Ezh2的蛋白水平变化,免疫荧光染色高内涵扫描检测小鼠出生后心脏增殖能力的变化。
     结果:小鼠出生后心脏发育过程中PDGFA和PDGFB的表达量在4-7天达到高峰,之后逐渐下降,PDGF受体β(Platelet Derived Growth Factor Receptor beta, PDGFRB)的表达量在出生后逐渐下降。Ezh2的表达量在出生后4天达到高峰,之后逐渐下降,至成年期不表达。Suz12和Eed的表达量变化趋势与Ezh2相似。细胞周期抑制因子p16和p19在出生后表达升高,而CDKN2B在出生后表达量逐渐降低。
     结论:小鼠出生后心脏发育过程中,在出生4天出现增殖高峰,出生7天后增殖能力急剧下降。小鼠出生后PDGF相关分子和Ezh2相关分子的表达量变化与其增殖能力的变化相一致,可能与增殖能力的调控相关,但其确切的关系需要进一步实验证实。
     第二部分:PDGF信号相关分子在新生小鼠心脏再生过程中的表达变化
     目的:检测PDGF信号是否参与新生小鼠心脏再生的过程。
     方法:构建新生小鼠心尖切除术后心脏再生模型,real time PCR检测新生小鼠心脏再生过程中PDGF相关基因的表达变化,免疫组化和免疫荧光染色检测小鼠心脏再生过程中PDGFRBEzh2的分布。
     结果:新生小鼠心尖切除后心脏再生,术后21天心脏超声显示心功能与Sham组相似。与Sham组相比,心尖切除组PDGF信号相关基因PDGFB, PDGFC, PDGFD, PDGFRB都发生了明显的变化,并且其时间点均在术后1天和4天。而免疫组化实验结果显示,PDGFRB在术后7天大量表达于切口处。Ezh2, Suzl2, Eed这些PRC2核心成员在新生小鼠心尖切除后再生过程中的表达发生了明显的变化,主要体现在术后1天,他们的表达量都发生了下降,之后再恢复到正常水平。而免疫荧光染色的研究发现,Ezh2的分布主要集中在再生区域。
     结论:新生小鼠的心脏具有完全再生的能力,PDGF受体及Ezh2的表达在新生小鼠再生过程中发生了规律性变化。
     第三部分:PDGF信号相关分子在心肌细胞中的作用
     目的:在细胞水平探讨PDGF信号和Ezh2对心肌细胞的作用机制。
     方法:标准培养H9C2心肌细胞,给予PDGF-BB刺激后高内涵细胞扫描分析细胞的增殖能力,流式细胞术检测细胞周期,real time PCR检测Ezh2和相关基因的表达变化,Western blot检测Ezh2的表达变化,siRNA沉默Ezh2后流式细胞术检测细胞周期和细胞凋亡,real time PCR检测Ezh2和相关基因的表达变化。siRNA沉默Ezh2并给予PDGF-BB刺激后高内涵细胞扫描分析细胞的增殖能力。Western blot检测相关通路的激活情况,抑制通路后Western blot检测相关蛋白。
     结果:PDGF-BB对H9C2心肌细胞具有明显的促增殖作用,流式细胞术实验显示PDGF-BB能够促进心肌细胞进入细胞周期。我们发现,PDGF-BB对H9C2心肌细胞的促增殖过程中,Ezh2蛋白表达水平升高,CDKN2A的mRNA水平降低。siRNA沉默H9C2心肌细胞中的Ezh2,可导致CDKN2A的mRNA水平升高。流式细胞分析显示沉默Ezh2对细胞周期并没有影响,但细胞凋亡比例增加。高内涵细胞扫描分析显示,沉默Ezh2能阻碍PDGF-BB对H9C2心肌细胞的促增殖作用。在PDGF-BB的刺激作用下,PLCγ通路,PI3K/Akt通路和Erk1/2通路均发生了激活,阻断Erkl/2通路后,Ezh2的水平也发生了下降,而阻断Akt通路后,Ezh2的水平并不受影响。
     结论:PDGF-BB对H9C2心肌细胞具有明显的促增殖作用并能促进Ezh2蛋白的表达。siRNA沉默Ezh2后,H9C2心肌细胞发生了早期凋亡,同时阻碍了PDGF-BB对H9C2心肌细胞的促增殖作用,说明Ezh2在PDGF信号促进心肌细胞增殖过程中起到关键作用。在PDGF-BB的刺激作用下,PLCγ通路,PI3K/Akt通路和Erkl/2通路均发生了激活,而Ezh2受Erkl/2通路调控。Ezh2可能是通过调控CDKN2A的表达,从而影响心肌细胞增殖而参与再生。
Acute myocaridial infarction causes loss of cardiomyocytes in a short time, and induces impaired heart function, even heart failure. Cardiac regenerative medicine targeting the restoration of cardiomyocyte is always the focus of medicine. A series of studies showed that zebrafish and salamanders can perform a wonderful cardiac regeneration after15-20%removal of heart ventricle. Recently a study showed that the neonatal mice can also regenerate the heart after apex resection, which is similar to the phenomenon of zebrafish heart. But the regenerative capacity of the neonatal mouse heart is lost within the first week of postnatal life. It will be important to determine the mechanisms of heart regeneration for enhancing the limited regenerative ability of adult mammal response to the injuries.
     In the process of zebrafish heart regeneration after injury, PDGF signaling plays an important role in replicating the cardiomyocyte. Also, PDGF signaling regulates the pancreatic beta cell proliferation by Ezh2in mice pancreas regeneration. Due to the role of PDGF signaling in mice pancreas regeneration and zebrafish heart regeneration, we hypothesis PDGF signaling may be involved in neonatal mice heart regeneration after apex resection. To test the hypothesis, we determined whether the PDGF signaling is involved in neonatal mice heart regeneration in vivo, and investigate the detailed mechanisms, key molecules and pathways which is involved in promoting cardiomyocyte proliferation by PDGF signaling in vitro.
     The main findings are as follows:
     The first part:The expression changes of PDGF signaling related genes in the postnatal mice heart development
     Objective:To observe the expression of PDGF related genes in the mice heart development after birth.
     Methods:real time-PCR was used to detect the expression of PDGF related genes and Ezh2related genes in the mice heart development after birth. The protein levels of PDGF receptors and Ezh2were detected by Western blot. The mice heart proliferative ability after birth was investigated by high content screening.
     Results:The mice heart maintained the proliferative ability within a week after birth, and the peak appeared at postnatal4days, but the proliferative ability lost after7days postnatally. The expression of PDGFA and PDGFB peaked at4-7days during the postnatal development, and then gradually decreased. The expression of PDGFRB decreased after birth. The expression of Ezh2reached a peak at postnatal4days, and gradually declined to the undetected level in the adulthood. The expression of Suz12and Eed were similar to that of Ezh2. The expressions of cell cycle inhibitor p16and p19were increased after birth, whereas the expression of CDKN2B decreased gradually in the postnatal period.
     Conclusions:During the mice heart postnatal development, the proliferative ability reached a peak at4days after birth, and sharply declined after7days. The trends of PDGF related genes and Ezh2related genes were consistent with that of the proliferative ability, which is associated with the regulation of proliferative ability, but the exact relationship needs further confirmation.
     The second part:The expression changes of PDGF signaling related genes in the neonatal mice heart regeneration
     Objective:To detect whether PDGF signaling is involved in the process of newborn mice myocardial regeneration.
     Methods:The heart regeneration model in newborn mice was constructed. The real time-PCR was used to detect the levels of gene associated with PDGF. The immunohistochemistry and immunofluorescence staining was used to detect the PDGFRB and Ezh2distribution in the process of newborn mice myocardial regeneration.
     Results:The neonatal heart after apex resection was completely regenerated, with the similar results of cardiac function test between apex resection group and sham group. The levels of PDGF associated genes, such as PDGFB, PDGFC, PDGFD and PDGFRB were changed significantly, and the time were1day and4day post surgery. The immunohistochemistry showed the PDGFRB abundantly expressed at the incision in the seven days after surgery. The levels of PRC2core members, such as Ezh2, Suzl2and Eed were changed significantly, and the time is1day post surgery. The immunohistochemistry showed the Ezh2abundantly expressed in the regenerating area.
     Conclusion:The newborn mice have the ability to completely regenerate the heart. The expression of PDGF receptor and Ezh2changed regularly in the regenerative response after apex resection in the newborn.
     The third part:The effect of PDGF related genes on cardiomyocyte
     Objective:To investigate the specific role of PDGF signaling and Ezh2in cardiomyocytes.
     Methods:H9C2cell line was cultured in standard. Cell was stimulated by PDGF-BB following high content cell analysis. Flow cytometry was used to detect the cell cycle phases. Real time-PCR was used to detect the level of Ezh2and relative genes. Western blot was used to detect the change of Ezh2protein. After Ezh2knockdown by siRNA, flow cytometry was used to detect the cell phases and apoptosis.Real time-PCR was used to detect the level of Ezh2and relative genes.
     Results:PDGF-BB had a growth-promoting effect on H9C2cardiomyocytes. Flow cytometry showed H9C2cardiomyocytes reentered the cell cycle under the PDGF-BB stimulation. In the process of H9C2myocardial cell proliferation, the protein level of Ezh2was increased with the declining level of CDKN2A. When Ezh2was knockdown by siRNA, the level of CDKN2A elevated. The cell cycle was not affected by the knockdown of Ezh2, but the apoptosis occurred. Ezh2knockdown eliminated the proliferation effect of PDGF-BB on H9C2myocardial cells. Under the stimulation of PDGF-BB, PLCy pathway, PI3K/Akt pathway and Erkl/2pathway were activated. The level of Ezh2decreased under the blocking of Erkl/2pathway, but the blocking of Akt pathway did not affect the level of Ezh2.
     Conclusion:PDGF-BB had a growth-promoting effect on H9C2cardiomyocytes, and increased the level of Ezh2. After knockdown of Ezh2, H9C2cells showed apoptosis, and affected the proliferation effect of PDGF-BB. Under the stimulation of PDGF-BB, many pathways were activated, but the Ezh2was under the control of Erkl/2pathway. Ezh2performed its function by regulating the level of CDKN2A, which could be involved in heart regeneration.
引文
[1]Thygesen K, Alpert J S, White H D. Universal definition of myocardial infarction[J]. J Am Coll Cardiol,2007,50(22):2173-2195.
    [2]Soonpaa M H, Field L J. Survey of studies examining mammalian cardiomyocyte DNA synthesis[J]. Circ Res,1998,83(1):15-26.
    [3]Porrello E R, Mahmoud A I, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science,2011,331(6020):1078-1080.
    [4]Bergmann O, Bhardwaj R D, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science,2009,324(5923):98-102.
    [5]Laflamme M A, Murry C E. Heart regeneration[J]. Nature,2011,473(7347): 326-335.
    [6]Ieda M, Fu J D, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell,2010,142(3):375-386.
    [7]Song K, Nam Y J, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors[J]. Nature,2012,485(7400):599-604.
    [8]Soonpaa M H, Kim K K, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development[J]. Am J Physiol,1996,271(5 Pt 2): H2183-H2189.
    [9]Paradis A N, Gay M S, Zhang L. Binucleation of cardiomyocytes:the transition from a proliferative to a terminally differentiated state[J]. Drug Discov Today,2013.
    [10]Wamstad J A, Alexander J M, Truty R M, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage[J]. Cell,2012, 151(1):206-220.
    [11]Chen H, Gu X, Liu Y, et al. PDGF signalling controls age-dependent proliferation in pancreatic beta-cells[J]. Nature,2011,478(7369):349-355.
    [12]Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes Dev,2008,22(10):1276-1312.
    [13]Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell, 2010,141(7):1117-1134.
    [14]Tallquist M D, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells[J]. Development,2003,130(3): 507-518.
    [15]Bjarnegard M, Enge M, Norlin J, et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities[J]. Development,2004,131(8):1847-1857.
    [16]Chen H, Gu X, Su I H, et al. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus[J]. Genes Dev,2009,23(8): 975-985.
    [17]Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing[J]. Science,2002,298(5595):1039-1043.
    [18]He A, Ma Q, Cao J, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart[J]. Circ Res,2012,110(3):406-415.
    [19]Chen L, Ma Y, Kim E Y, et al. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival[J]. PLoS One,2012,7(2):e31005.
    [20]Pasumarthi K B, Field L J. Cardiomyocyte cell cycle regulation[J]. Circ Res,2002, 90(10):1044-1054.
    [21]Li F, Wang X, Capasso J M, et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development[J]. J Mol Cell Cardiol,1996, 28(8):1737-1746.
    [22]Walsh S, Ponten A, Fleischmann B K, et al. Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei[J]. Cardiovasc Res, 2010,86(3):365-373.
    [23]Whitfield M L, Sherlock G, Saldanha A J, et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors[J]. Mol Biol Cell, 2002,13(6):1977-2000.
    [24]Glotzer M. The molecular requirements for cytokinesis[J]. Science,2005,307(5716): 1735-1739.
    [25]Kang M J, Koh G Y. Differential and dramatic changes of cyclin-dependent kinase activities in cardiomyocytes during the neonatal period[J]. J Mol Cell Cardiol,1997, 29(7):1767-1777.
    [26]Koh K N, Kang M J, Frith-Terhune A, et al. Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development[J]. J Mol Cell Cardiol,1998,30(3):463-474.
    [27]Ahuja P, Sdek P, Maclellan W R. Cardiac myocyte cell cycle control in development, disease, and regeneration[J]. Physiol Rev,2007,87(2):521-544.
    [28]Chaudhry H W, Dashoush N H, Tang H, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium[J]. J Biol Chem,2004,279(34):35858-35866.
    [29]Di Stefano V, Giacca M, Capogrossi M C, et al. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle[J]. J Biol Chem,2011, 286(10):8644-8654.
    [30]Hotchkiss A, Robinson J, Maclean J, et al. Role of D-type cyclins in heart development and disease[J]. Can J Physiol Pharmacol,2012,90(9):1197-1207.
    [31]Sdek P, Zhao P, Wang Y, et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes[J]. J Cell Biol,2011,194(3): 407-423.
    [32]Ikenishi A, Okayama H, Iwamoto N, et al. Cell cycle regulation in mouse heart during embryonic and postnatal stages[J]. Dev Growth Differ,2012,54(8):731-738.
    [33]Zhang J, Chintalgattu V, Shih T, et al. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes[J]. J Mol Cell Cardiol,2011, 51(3):337-346.
    [34]Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer[J]. DNA Cell Biol,2005,24(2):117-125.
    [35]Shen X, Liu Y, Hsu Y J, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency[J]. Mol Cell,2008,32(4):491-502.
    [36]Zindy F, Quelle D E, Roussel M F, et al. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging[J]. Oncogene,1997,15(2):203-211.
    [37]Bracken A P, Kleine-Kohlbrecher D, Dietrich N, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells[J]. Genes Dev,2007,21(5):525-530.
    [38]Ezhkova E, Pasolli H A, Parker J S, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells[J]. Cell,2009,136(6):1122-1135.
    [1]Taylor J. Third universal definition of myocardial infarction[J]. Eur Heart J,2012, 33(20):2506-2507.
    [2]Bergmann O, Bhardwaj R D, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science,2009,324(5923):98-102.
    [3]Poss K D, Wilson L G, Keating M T. Heart regeneration in zebrafish[J]. Science, 2002,298(5601):2188-2190.
    [4]Porrello E R, Mahmoud A I, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science,2011,331(6020):1078-1080.
    [5]Chen H, Gu X, Liu Y, et al. PDGF signalling controls age-dependent proliferation in pancreatic beta-cells[J]. Nature,2011,478(7369):349-355.
    [6]Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature,2010,464(7288):606-609.
    [7]Kikuchi K, Gupta V, Wang J, et al. tcf21+epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration[J]. Development,2011, 138(14):2895-2902.
    [8]Kikuchi K, Holdway J E, Major R J, et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration[J]. Dev Cell,2011,20(3):397-404.
    [9]Kikuchi K, Holdway J E, Werdich A A, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes[J]. Nature,2010,464(7288):601-605.
    [10]Kikuchi K, Poss K D. Cardiac regenerative capacity and mechanisms[J]. Annu Rev Cell Dev Biol,2012,28:719-741.
    [11]Porrello E R, Johnson B A, Aurora A B, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes[J]. Circ Res,2011,109(6):670-679.
    [12]Lien C L, Schebesta M, Makino S, et al. Gene expression analysis of zebrafish heart regeneration[J]. PLoS Biol,2006,4(8):e260.
    [13]Lewis E B. A gene complex controlling segmentation in Drosophila[J]. Nature, 1978,276(5688):565-570.
    [14]Schwartz Y B, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes[J]. Nat Rev Genet,2007,8(1):9-22.
    [15]Wamstad J A, Alexander J M, Truty R M, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage[J]. Cell,2012, 151(1):206-220.
    [16]Levine S S, King I F, Kingston R E. Division of labor in polycomb group repression[J]. Trends Biochem Sci,2004,29(9):478-485.
    [17]Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing[J]. Science,2002,298(5595):1039-1043.
    [18]Tie F, Stratton C A, Kurzhals R L, et al. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27[J]. Mol Cell Biol,2007,27(6):2014-2026.
    [19]Pasini D, Bracken A P, Jensen M R, et al. Suzl2 is essential for mouse development and for EZH2 histone methyltransferase activity[J]. EMBO J,2004,23(20):4061-4071.
    [1]Kikuchi K, Poss K D. Cardiac regenerative capacity and mechanisms[J]. Annu Rev Cell Dev Biol,2012,28:719-741.
    [2]Becker T, Wullimann M F, Becker C G, et al. Axonal regrowth after spinal cord transection in adult zebrafish[J]. J Comp Neurol,1997,377(4):577-595.
    [3]Kroehne V, Freudenreich D, Hans S, et al. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors [J]. Development,2011,138(22): 4831-4841.
    [4]Poss K D, Wilson L G, Keating M T. Heart regeneration in zebrafish[J]. Science, 2002,298(5601):2188-2190.
    [5]Vihtelic T S, Hyde D R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina[J]. J Neurobiol,2000,44(3):289-307.
    [6]Poss K D, Keating M T, Nechiporuk A. Tales of regeneration in zebrafish[J]. Dev Dyn,2003,226(2):202-210.
    [7]Poss K D. Getting to the heart of regeneration in zebrafish[J]. Semin Cell Dev Biol, 2007,18(1):36-45.
    [8]Porrello E R, Mahmoud A I, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science,2011,331(6020):1078-1080.
    [9]Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes Dev,2008,22(10):1276-1312.
    [10]Tallquist M D, Soriano P. Cell autonomous requirement for PDGFRalpha in populations of cranial and cardiac neural crest cells[J]. Development,2003,130(3): 507-518.
    [11]Bjarnegard M, Enge M, Norlin J, et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities[J]. Development,2004,131(8):1847-1857.
    [12]Joo E, Tsang C W, Trimble W S. Septins:traffic control at the cytokinesis intersection[J]. Traffic,2005,6(8):626-634.
    [13]Demarini D J, Adams A E, Fares H, et al. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall[J]. J Cell Biol,1997,139(1):75-93.
    [14]Hartwell L H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis [J]. Exp Cell Res,1971,69(2):265-276.
    [15]Kinoshita M, Noda M. Roles of septins in the mammalian cytokinesis machinery[J]. Cell Struct Funct,2001,26(6):667-670.
    [16]Neufeld T P, Rubin G M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins[J]. Cell,1994, 77(3):371-379.
    [17]Erozhina I L. [The proliferation and DNA synthesis during early stages of myocardial development][J]. Tsitologiia,1968,10(2):162-172.
    [18]Erokhina E L. [Proliferation dynamics of cellular elements in the differentiating mouse myocardium][J]. Tsitologiia,1968,10(11):1391-1409.
    [19]Christoffels V M, Habets P E, Franco D, et al. Chamber formation and morphogenesis in the developing mammalian heart[J]. Dev Biol,2000,223(2):266-278.
    [20]Li F, Wang X, Capasso J M, et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development[J]. J Mol Cell Cardiol,1996, 28(8):1737-1746.
    [21]Soonpaa M H, Field L J. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts[J]. Am J Physiol,1997,272(1 Pt 2):H220-H226.
    [22]Soonpaa M H, Kim K K, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development[J]. Am J Physiol,1996,271(5 Pt 2): H2183-H2189.
    [23]Lewis E B. A gene complex controlling segmentation in Drosophila[J]. Nature, 1978,276(5688):565-570.
    [24]Schwartz Y B, Pirrotta V. A new world of Polycombs:unexpected partnerships and emerging functions[J]. Nat Rev Genet,2013,14(12):853-864.
    [25]Wamstad J A, Alexander J M, Truty R M, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage[J]. Cell,2012, 151(1):206-220.
    [26]Levine S S, King I F, Kingston R E. Division of labor in polycomb group repression[J]. Trends Biochem Sci,2004,29(9):478-485.
    [27]Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing[J]. Science,2002,298(5595):1039-1043.
    [28]Tie F, Prasad-Sinha J, Birve A, et al. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3[J]. Mol Cell Biol,2003,23(9): 3352-3362.
    [29]Tie F, Stratton C A, Kurzhals R L, et al. The N terminus of Drosophila ESC binds directly to histone H3 and is required for E(Z)-dependent trimethylation of H3 lysine 27[J]. Mol Cell Biol,2007,27(6):2014-2026.
    [30]Pasini D, Bracken A P, Jensen M R, et al. Suzl2 is essential for mouse development and for EZH2 histone methyltransferase activity[J]. EMBO J,2004,23(20):4061-4071.
    [31]Vincent S D, Buckingham M E. How to make a heart:the origin and regulation of cardiac progenitor cells[J]. Curr Top Dev Biol,2010,90:1-41.
    [32]Bruneau B G. Transcriptional regulation of vertebrate cardiac morphogenesis[J]. Circ Res,2002,90(5):509-519.
    [33]Jacobs J J, van Lohuizen M. Polycomb repression:from cellular memory to cellular proliferation and cancer[J]. Biochim Biophys Acta,2002,1602(2):151-161.
    [34]Mallo M, Wellik D M, Deschamps J. Hox genes and regional patterning of the vertebrate body plan[J]. Dev Biol,2010,344(1):7-15.
    [35]Gould A. Functions of mammalian Polycomb group and trithorax group related genes[J]. Curr Opin Genet Dev,1997,7(4):488-494.
    [36]Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer[J]. DNA Cell Biol,2005,24(2):117-125.
    [37]Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell, 2010,141(7):1117-1134.
    [1]Roger V L, Go A S, Lloyd-Jones D M, et al. Heart disease and stroke statistics--2012 update:a report from the American Heart Association[J]. Circulation, 2012,125(1):e2-e220.
    [2]He J, Gu D, Wu X, et al. Major causes of death among men and women in China[J]. N Engl J Med,2005,353(11):1124-1134.
    [3]Fajadet J, Chieffo A. Current management of left main coronary artery disease[J]. Eur Heart J,2012,33(1):36-50.
    [4]Fischer M, Mayer B, Baessler A, et al. Familial aggregation of left main coronary artery disease and future risk of coronary events in asymptomatic siblings of affected patients[J]. Eur Heart J,2007,28(20):2432-2437.
    [5]Fischer M, Broeckel U, Holmer S, et al. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction[J]. Circulation,2005, 111(7):855-862.
    [6]Kolovou G, Vasiliadis I, Kolovou V, et al. The role of common variants of the cholesteryl ester transfer protein gene in left main coronary artery disease [J]. Lipids Health Dis,2011,10:156.
    [7]Ross R. Atherosclerosis--an inflammatory disease[J]. N Engl J Med,1999,340(2): 115-126.
    [8]Dinarello C A. The interleukin-1 family:10 years of discovery[J]. FASEB J,1994, 8(15):1314-1325.
    [9]Boekholdt S M, Stroes E S. The interleukin-6 pathway and atherosclerosis[J]. Lancet,2012,379(9822):1176-1178.
    [10]Mihara M, Hashizume M, Yoshida H, et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions [J]. Clin Sci (Lond),2012,122(4):143-159.
    [11]Vogiatzi K, Apostolakis S, Voudris V, et al. Interleukin 8 and susceptibility to coronary artery disease:a population genetics perspective [J]. J Clin Immunol,2008, 28(4):329-335.
    [12]Fichtlscherer S, Breuer S, Heeschen C, et al. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease[J]. J Am Coll Cardiol,2004,44(1):44-49.
    [13]Harismendy O, Notani D, Song X, et al.9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response[J]. Nature,2011, 470(7333):264-268.
    [14]Mcpherson R, Davies R W. Inflammation and coronary artery disease:insights from genetic studies[J]. Can J Cardiol,2012,28(6):662-666.
    [15]Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease[J]. Nat Genet,2013,45(1):25-33.
    [16]Patel M R, Dehmer G J, Hirshfeld J W, et al. ACCF/SCAI/STS/AATS/AHA/ASNC/HFSA/SCCT 2012 Appropriate use criteria for coronary revascularization focused update:a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography[J]. J Am Coll Cardiol,2012,59(9):857-881.
    [17]Gibbons G H, Liew C C, Goodarzi M O, et al. Genetic markers:progress and potential for cardiovascular disease[J]. Circulation,2004,109(25 Suppl 1):V47-V58.
    [18]Marenberg M E, Risch N, Berkman L F, et al. Genetic susceptibility to death from coronary heart disease in a study of twins[J]. N Engl J Med,1994,330(15):1041-1046.
    [19]Myers R H, Kiely D K, Cupples L A, et al. Parental history is an independent risk factor for coronary artery disease:the Framingham Study[J]. Am Heart J,1990,120(4): 963-969.
    [20]Murabito J M, Pencina M J, Nam B H, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults[J]. JAMA,2005,294(24): 3117-3123.
    [21]Mayer B, Erdmann J, Schunkert H. Genetics and heritability of coronary artery disease and myocardial infarction[J]. Clin Res Cardiol,2007,96(1):1-7.
    [22]Schunkert H, Erdmann J, Samani N J. Genetics of myocardial infarction:a progress report[J]. Eur Heart J,2010,31(8):918-925.
    [23]Kwon J M, Goate A M. The candidate gene approach[J]. Alcohol Res Health,2000, 24(3):164-168.
    [24]Pranavchand R, Reddy B M. Current status of understanding of the genetic etiology of coronary heart disease[J]. J Postgrad Med,2013,59(1):30-41.
    [25]Capodanno D, Di Salvo M E, Seminara D, et al. Epidemiology and clinical impact of different anatomical phenotypes of the left main coronary artery[J]. Heart Vessels, 2011,26(2):138-144.
    [26]Iwasaki K, Matsumoto T, Aono H, et al. Distribution of coronary atherosclerosis in patients with coronary artery disease[J]. Heart Vessels,2010,25(1):14-18.
    [27]Zhang P L, Levy A M, Ben-Simchon L, et al. Induction of neuronal and myelin-related gene expression by IL-6-receptor/IL-6:a study on embryonic dorsal root ganglia cells and isolated Schwann cells[J]. Exp Neurol,2007,208(2):285-296.
    [28]Soygur H, Palaoglu O, Akarsu E S, et al. Interleukin-6 levels and HP A axis activation in breast cancer patients with major depressive disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry,2007,31(6):1242-1247.
    [29]Naya M, Tsukamoto T, Morita K, et al. Plasma interleukin-6 and tumor necrosis factor-alpha can predict coronary endothelial dysfunction in hypertensive patients[J]. Hypertens Res,2007,30(6):541-548.
    [30]Sanz E, Hofer M J, Unzeta M, et al. Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain[J]. Glia,2008,56(2):190-199.
    [31]Finkel M S, Oddis C V, Jacob T D, et al. Negative inotropic effects of cytokines on the heart mediated by nitric oxide[J]. Science,1992,257(5068):387-389.
    [32]Ono K, Matsumori A, Shioi T, et al. Cytokine gene expression after myocardial infarction in rat hearts:possible implication in left ventricular remodeling[J]. Circulation, 1998,98(2):149-156.
    [33]Seino Y, Ikeda U, Ikeda M, et al. Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions[J]. Cytokine,1994,6(1):87-91.
    [34]Szekanecz Z, Kerekes G, Der H, et al. Accelerated atherosclerosis in rheumatoid arthritis[J]. Ann N Y Acad Sci,2007,1108:349-358.
    [35]Petrovay F, Heltai K, Kis Z, et al. Chronic infections and histamine, CRP and IL-6 levels after percutaneous transluminal coronary angioplasty[J]. Inflamm Res,2007,56(9): 362-367.
    [36]Shu J, Ren N, Du JB, et al. Increased levels of interleukin-6 and matrix metalloproteinase-9 are of cardiac origin in acute coronary syndrome[J]. Scand Cardiovasc J,2007,41(3):149-154.
    [37]Kaneko K, Kanda T, Yokoyama T, et al. Expression of interleukin-6 in the ventricles and coronary arteries of patients with myocardial infarction[J]. Res Commun Mol Pathol Pharmacol,1997,97(1):3-12.
    [38]Nossuli T O, Lakshminarayanan V, Baumgarten G, et al. A chronic mouse model of myocardial ischemia-reperfusion:essential in cytokine studies[J]. Am J Physiol Heart Circ Physiol,2000,278(4):H1049-H1055.
    [39]Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure[J]. J Am Coll Cardiol,1998,31(2):391-398.
    [40]Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis[J]. Basic Res Cardiol,2007,102(4):279-297.
    [41]Suzuki H, Sato R, Sato T, et al. Time-course of changes in the levels of interleukin 6 in acutely decompensated heart failure[J]. Int J Cardiol,2005,100(3):415-420.
    [42]Orus J, Roig E, Perez-Villa F, et al. Prognostic value of serum cytokines in patients with congestive heart failure[J]. J Heart Lung Transplant,2000,19(5):419-425.
    [43]Papanicolaou D A, Wilder R L, Manolagas S C, et al. The pathophysiologic roles of interleukin-6 in human disease[J]. Ann Intern Med,1998,128(2):127-137.
    [44]Jiang C Q, Lam T H, Liu B, et al. Interleukin-6 receptor gene polymorphism modulates interleukin-6 levels and the metabolic syndrome:GBCS-CVD[J]. Obesity (Silver Spring),2010,18(10):1969-1974.
    [45]Hamid Y H, Urhammer S A, Jensen D P, et al. Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites[J]. Diabetes,2004,53(12): 3342-3345.
    [46]Schnabel R B, Kerr K F, Lubitz S A, et al. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation:the National Heart, Lung, and Blood Institute's Candidate Gene Association Resource (CARe) project[J]. Circ Cardiovasc Genet,2011,4(5):557-564.
    [47]Sarwar N, Butterworth A S, Freitag D F, et al. Interleukin-6 receptor pathways in coronary heart disease:a collaborative meta-analysis of 82 studies[J]. Lancet,2012, 379(9822):1205-1213.
    [48]Hingorani A D, Casas J P. The interleukin-6 receptor as a target for prevention of coronary heart disease:a mendelian randomisation analysis[J]. Lancet,2012, 379(9822):1214-1224.
    [49]Weber C, Noels H. Atherosclerosis:current pathogenesis and therapeutic options[J]. Nat Med,2011,17(11):1410-1422.
    [50]Sims J E, Nicklin M J, Bazan J F, et al. A new nomenclature for IL-1-family genes[J]. Trends Immunol,2001,22(10):536-537.
    [51]Nicklin M J, Barton J L, Nguyen M, et al. A sequence-based map of the nine genes of the human interleukin-1 cluster[J]. Genomics,2002,79(5):718-725.
    [52]Andreotti F, Porto I, Crea F, et al. Inflammatory gene polymorphisms and ischaemic heart disease:review of population association studies[J]. Heart,2002,87(2):107-112.
    [53]Kim H J, Kim M Y, Hwang J S, et al. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra[J]. Cell Mol Life Sci,2010,67(12):2119-2130.
    [54]Salvati A L, Lahm A, Paonessa G, et al. Interleukin-6 (IL-6) antagonism by soluble IL-6 receptor alpha mutated in the predicted gp130-binding interface[J]. J Biol Chem, 1995,270(20):12242-12249.
    [55]Memon R A, Feingold K R, Moser A H, et al. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines[J]. Am J Physiol,1998,274(2 Pt 1):E210-E217.
    [56]Zhou L, Cai J, Liu G, et al. Associations between interleukin-1 gene polymorphisms and coronary heart disease risk:a meta-analysis[J]. PLoS One,2012,7(9):e45641.
    [57]Boisvert W A, Curtiss L K, Terkeltaub R A. Interleukin-8 and its receptor CXCR2 in atherosclerosis[J]. Immunol Res,2000,21(2-3):129-137.
    [58]Hacking D, Knight J C, Rockett K, et al. Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease-susceptibility[J]. Genes Immun,2004,5(4):274-282.
    [59]Ohyauchi M, Imatani A, Yonechi M, et al. The polymorphism interleukin 8-251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population[J]. Gut,2005,54(3):330-335.
    [60]Monraats P S, Kurreeman F A, Pons D, et al. Interleukin 10:a new risk marker for the development of restenosis after percutaneous coronary intervention[J]. Genes Immun, 2007,8(1):44-50.
    [61]Martinez-Rios M A, Pena-Duque M A, Fragoso J M, et al. Tumor necrosis factor alpha and interleukin 10 promoter polymorphisms in Mexican patients with restenosis after coronary stenting[J]. Biochem Genet,2009,47(9-10):707-716.
    [62]Wang Y, Zheng J, Liu P, et al. Association between the Interleukin 10-1082G>A polymorphism and coronary heart disease risk in a Caucasian population:a meta-analysis[J]. Int J Immunogenet,2012,39(2):144-150.
    [63]Yu G I, Cho H C, Cho Y K, et al. Association of promoter region single nucleotide polymorphisms at positions -819C/T and-592C/A of interleukin 10 gene with ischemic heart disease[J]. Inflamm Res,2012,61(8):899-905.
    [1]Rumyantsev P P. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration[J]. Int Rev Cytol,1977,51:186-273.
    [2]Laflamme M A, Murry C E. Heart regeneration[J]. Nature,2011,473(7347):326-335.
    [3]Soonpaa M H, Field L J. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts[J]. Am J Physiol,1997,272(1 Pt 2):H220-H226.
    [4]Bergmann O, Bhardwaj R D, Bernard S, et al. Evidence for cardiomyocyte renewal in humans[J]. Science,2009,324(5923):98-102.
    [5]Kajstura J, Gurusamy N, Ogorek B, et al. Myocyte turnover in the aging human heart[J]. Circ Res,2010,107(11):1374-1386.
    [6]Kubin T, Poling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling[J]. Cell Stem Cell,2011,9(5):420-432.
    [7]Brockes J P, Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine[J]. Science,2005,310(5756):1919-1923.
    [8]Eguchi G. Cellular and molecular background of wolffian lens regeneration[J]. Cell Differ Dev,1988,25 Suppl:147-158.
    [9]Ghosh S, Thorogood P, Ferretti P. Regenerative capability of upper and lower jaws in the newt[J]. Int J Dev Biol,1994,38(3):479-490.
    [10]Minelli G, Franceschini V, Del G P, et al. Newly-formed neurons in the regenerating optic tectum of Triturus cristatus carnifex[J]. Basic Appl Histochem,1987,31(1):43-52.
    [11]Kikuchi K, Poss K D. Cardiac regenerative capacity and mechanisms[J]. Annu Rev Cell Dev Biol,2012,28:719-741.
    [12]Becker T, Wullimann M F, Becker C G, et al. Axonal regrowth after spinal cord transection in adult zebrafish[J]. J Comp Neurol,1997,377(4):577-595.
    [13]Kroehne V, Freudenreich D, Hans S, et al. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors [J]. Development,2011,138(22):4831-4841.
    [14]Poss K D, Keating M T, Nechiporuk A. Tales of regeneration in zebrafish[J]. Dev Dyn,2003,226(2):202-210.
    [15]Vihtelic T S, Hyde D R. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina[J]. J Neurobiol,2000,44(3):289-307.
    [16]Poss K D, Wilson L G, Keating M T. Heart regeneration in zebrafish[J]. Science,2002,298(5601):2188-2190.
    [17]Wang J, Panakova D, Kikuchi K, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion[J]. Development,2011,138(16):3421-3430.
    [18]Kikuchi K, Holdway J E, Werdich A A, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes[J]. Nature,2010,464(7288):601-605.
    [19]van den Bos E J, Mees B M, de Waard M C, et al. A novel model of cryoinjury-induced myocardial infarction in the mouse:a comparison with coronary artery ligation[J]. Am J Physiol Heart Circ Physiol,2005,289(3):H1291-H1300.
    [20]Chablais F, Veit J, Rainer G, et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction[J]. BMC Dev Biol,2011,11:21.
    [21]Gonzalez-Rosa J M, Martin V, Peralta M, et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish[J]. Development,2011,138(9):1663-1674.
    [22]Schnabel K, Wu C C, Kurth T, et al. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation[J]. PLoS One,2011,6(4).e18503.
    [23]Lafontant P J, Burns A R, Grivas J A, et al. The giant danio (D. aequipinnatus) as a model of cardiac remodeling and regeneration[J]. Anat Rec (Hoboken),2012,295(2):234-248.
    [24]Lepilina A, Coon A N, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration[J]. Cell,2006,127(3):607-619.
    [25]Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature,2010,464(7288):606-609.
    [26]Kikuchi K, Gupta V, Wang J, et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration[J]. Developmenta,2011,138(14):2895-2902.
    [27]Gupta V, Poss K D. Clonally dominant cardiomyocytes direct heart morphogenesis[J]. Nature,2012,484(7395):479-484.
    [28]Drenckhahn J D, Schwarz Q P, Gray S, et al. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development[J]. Dev Cell,2008,15(4):521-533.
    [29]Li F, Wang X, Capasso J M, et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development[J]. J Mol Cell Cardiol,1996.28(8):1737-1746.
    [30]Soonpaa M H, Kim K K, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development[J]. Am J Physiol,1996,271(5 Pt 2):H2183-H2189.
    [31]Walsh S, Ponten A, Fleischmann B K, et al. Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei[J]. Cardiovasc Res,2010,86(3):365-373.
    [32]Botting K J, Wang K C, Padhee M, et al. Early origins of heart disease:low birth weight and determinants of cardiomyocyte endowment[J]. Clin Exp Pharmacol Physiol,2012,39(9):814-823.
    [33]Poss K D. Getting to the heart of regeneration in zebrafish[J]. Semin Cell Dev Biol,2007,18(1):36-45.
    [34]Porrello E R, Mahmoud A I, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart[J]. Science,2011,331(6020):1078-1080.
    [35]Porrello E R, Johnson B A, Aurora A B, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes[J]. Circ Res,2011,109(6):670-679.
    [36]Ieda M, Tsuchihashi T, Ivey K N, et al. Cardiac fibroblasts regulate myocardial proliferation through betal integrin signaling[J]. Dev Cell,2009,16(2):233-244.
    [37]Kikuchi K, Holdway J E, Major R J, et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration[J]. Dev Cell,2011,20(3):397-404.
    [38]Laube F, Heister M, Scholz C, et al. Re-programming of newt cardiomyocytes is induced by tissue regeneration[J]. J Cell Sci,2006,119(Pt 22):4719-4729.
    [39]Buckingham M E, Meilhac S M. Tracing cells for tracking cell lineage and clonal behavior[J]. Dev Cell,2011,21(3):394-409.
    [40]Dispersyn G D, Mesotten L, Meuris B, et al. Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones [J]. Eur Heart J,2002,23(11):849-857.
    [41]Driesen R B, Verheyen F K, Debie W, et al. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies[J]. J Cell Mol Med,2009,13(5):896-908.
    [42]Sharov V G, Sabbah H N, Ali A S, et al. Abnormalities of cardiocytes in regions bordering fibrous scars of dogs with heart failure[J]. Int J Cardiol,1997,60(3):273-279.
    [43]Heinrich P C, Behrmann I, Haan S, et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation[J]. Biochem J,2003,374(Pt 1):1-20.
    [44]Tanaka M, Miyajima A. Oncostatin M, a multifunctional cytokine[J]. Rev Physiol Biochem Pharmacol,2003,149:39-52.
    [45]Kragl M, Knapp D, Nacu E, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration [J]. Nature,2009,460(7251):60-65.
    [46]Rinkevich B. Cell cultures from marine invertebrates:new insights for capturing endless stemness[J]. Mar Biotechnol (NY),2011,13(3):345-354.
    [47]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium[J]. Nature,2001,410(6829):701-705.
    [48]Toma C, Pittenger M F, Cahill K S, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart[J]. Circulation,2002,105(1):93-98.
    [49]Balsam L B, Wagers A J, Christensen J L, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium [J]. Nature,2004,428(6983):668-673.
    [50]Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair[J]. Proc Natl Acad Sci U S A,2007,104(5):1643-1648.
    [51]Murry C E, Soonpaa M H, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts[J]. Nature,2004,428(6983):664-668.
    [52]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.
    [53]Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature,2008,455(7213):627-632.
    [54]Ambasudhan R, Talantova M, Coleman R, et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions [J]. Cell Stem Cell,2011,9(2):113-118.
    [55]Caiazzo M, Dell'Anno M T, Dvoretskova E, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts [J]. Nature,2011,476(7359):224-227.
    [56]Kim J, Su S C, Wang H, et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts[J]. Cell Stem Cell,2011,9(5):413-419.
    [57]Son E Y, Ichida J K, Wainger B J, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons[J]. Cell Stem Cell,2011,9(3):205-218.
    [58]Vierbuchen T, Ostermeier A, Pang Z P, et al. Direct conversion of fibroblasts to functional neurons by defined factors[J]. Nature,2010,463(7284):1035-1041.
    [59]Takeuchi J K, Bruneau B G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors[J]. Nature,2009,459(7247):708-711.
    [60]Ieda M, Fu J D, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors[J]. Cell,2010,142(3):375-386.
    [61]Qian L, Huang Y, Spencer C I, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes [J]. Nature,2012,485(7400):593-598.
    [62]Song K, Nam Y J, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors[J]. Nature,2012,485(7400):599-604.
    [63]Jayawardena T M, Egemnazarov B, Finch E A, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes[J]. Circ Res,2012,110(11):1465-1473.
    [64]Kattman S J, Witty A D, Gagliardi M, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines[J]. Cell Stem Cell,2011,8(2):228-240.
    [65]Yang L, Soonpaa M H, Adler E D, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J]. Nature,2008,453(7194):524-528.
    [66]Flink I L. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum:confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei[J]. Anat Embryol (Berl),2002,205(3):235-244.
    [67]Wills A A, Holdway J E, Major R J, et al. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish[J]. Development,2008,135(1):183-192.
    [68]Blau H M, Pomerantz J H. Re"volutionary" regenerative medicine[J]. JAMA,2011,305(1):87-88.
    [69]Ahuja P, Sdek P, Maclellan W R. Cardiac myocyte cell cycle control in development, disease, and regeneration[J]. Physiol Rev,2007,87(2):521-544.
    [70]Di Stefano V, Giacca M, Capogrossi M C, et al. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle[J]. J Biol Chem,2011,286(10):8644-8654.
    [71]Engel F B, Hsieh P C, Lee R T, et al. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction[J]. Proc Natl Acad Sci U S A,2006,103(42):15546-15551.
    [72]Engel F B, Schebesta M, Duong M T, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes [J]. Genes Dev,2005,19(10):1175-1187.
    [73]Kuhn B, Del M F, Hajjar R J, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair[J]. Nat Med,2007,13(8):962-969.
    [74]Bersell K, Arab S, Haring B, et al. Neuregulinl/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury[J]. Cell,2009,138(2):257-270.
    [75]Chaudhry H W, Dashoush N H, Tang H, et al. Cyclin A2 mediates cardiomyocyte mitosis in the postmitotic myocardium[J]. J Biol Chem,2004,279(34):35858-35866.
    [76]Pasumarthi K B, Nakajima H, Nakajima H O, et al. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice[J]. Circ Res,2005,96(1):110-118.
    [77]Delgado-Olguin P, Huang Y, Li X, et al. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeo stasis [J]. Nat Genet,2012,44(3):343-347.
    [78]Sdek P, Zhao P, Wang Y, et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes[J]. J Cell Biol,2011,194(3):407-423.
    [79]Small E M, Olson E N. Pervasive roles of microRNAs in cardiovascular biology[J]. Nature,2011,469(7330):336-342.
    [80]Finnerty J R, Wang W X, Hebert S S, et al. The miR-15/107 group of microRNA genes:evolutionary biology, cellular functions, and roles in human diseases[J]. J Mol Biol,2010,402(3):491-509.
    [81]Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities [J]. Nat Med,2008,14(11):1271-1277.
    [82]Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A,2002,99(24):15524-15529.
    [83]Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes[J]. Nucleic Acids Res,2008,36(16):5391-5404.
    [84]Hullinger T G, Montgomery R L, Seto A G, et al. Inhibition of miR-15 protects against cardiac ischemic injury[J]. Circ Res,2012,110(1):71-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700