用户名: 密码: 验证码:
尿酸调控脂肪组织RAS及其与肥胖性高血压的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     高血压病是最常见的肥胖相关性疾病。肥胖性高血压病因十分复杂,迄今尚未完全阐明。高尿酸血症(Hyperuricemia, HUA)是肥胖患者常见的代谢紊乱状态。近年来,有大量研究发现,血尿酸与多种心血管疾病和代谢性疾病密切相关,如高血压病、肥胖、2型糖尿病、代谢综合征等。这些疾病中,血尿酸与高血压发病机制之间的联系引起研究者极大的兴趣。尽管具体的机制尚不清楚,但来自流行病学、临床试验和动物实验的数据表明,高尿酸血症参与了肥胖性高血压的发病。
     文献报道,脂肪组织几乎表达肾素-血管紧张素系统(Renin-angiotensin system,RAS)的全部组分[1]。动物实验的研究数据表明,白色脂肪组织所表达的血管紧张素原(Angiotensinogen, AGT)和血管紧张素Ⅱ(angiotensin Ⅱ, AngⅡ)是循环池RAS的重要来源,在机体血压调控中发挥重要作用[2]。脂肪组织AGT缺乏的小鼠血浆AGT水平更低,收缩压随之降低[3]。研究发现,原发性高血压患者血浆肾素浓度与血尿酸水平明显正相关[4]。然而,血浆AGT浓度与血尿酸之间在肥胖的原发性高血压患者中是否存在关联,目前尚不清楚。
     迄今为止,研究者发现有多种因素与脂肪组织RAS的调控相关[5],包括机体的营养状态、胰岛素、糖皮质激素、游离脂肪酸、雄激素、肿瘤坏死因子α(Tumor necrosisfactor alpha, TNFα)以及环磷腺苷(Cyclic adenosine monophosphate, cAMP)等。体外实验发现,尿酸可以对几种组织RAS发挥调控作用,包括永生化人系膜细胞(Immortalizedhuman mesangial cells, ihMCs)组织RAS[6]、人血管内皮细胞(Human vascular endothelialcells, HVECS)组织RAS[7]、血管平滑肌细胞(Vascular smooth cells, VSMCs)组织RAS[8]。肥胖患者脂肪组织RAS处于过度活跃状态[9]。针对这种有趣的现象,最常见的解释是:与体型正常的个体比较,肥胖患者体内脂肪含量明显增多。研究发现,尿酸与脂肪组织RAS均在肥胖性高血压发病中发挥重要作用,由此推断,尿酸很可能对脂肪组织RAS表达也发挥调控作用。
     众所周知,肥胖性高血压是一种氧化应激相关性心血管疾病[10]。多个研究证实,在一定条件下,尿酸可以诱导氧化应激发生。据报道[11],高浓度尿酸作用于3T3-L1脂肪细胞,可以明显增加细胞内活性氧簇(Reactive oxygen species, ROS)水平。虽然发现尿酸是通过上调NADPH氧化酶(NADPH oxidase, NOX)活性诱导脂肪细胞氧化应激的,然而,研究者并未阐明尿酸增加NOX活性具体的分子机制。
     针对以上问题,本课题尝试通过体外实验和临床研究两个层面进行深入探索。首先,利用3T3-L1脂肪细胞作为实验模型,我们研究尿酸是否可以对脂肪组织RAS发挥调控作用。接下来,我们探讨脂肪组织RAS激活在尿酸诱导的氧化应激发病分子机制中的作用。最后,以324例未治疗的原发性高血压患者为研究对象,我们观察血尿酸与血浆AGT浓度是否存在关联,以及这种关联是否因肥胖状态而存在差异。以上研究将为阐明尿酸参与肥胖相关性心血管疾病(尤其是高血压病)的发病机制提供新的视角。
     方法:
     1.以不同浓度的尿酸(0、1、5、15mg/dl)作用未分化的前脂肪细胞48小时,或以高浓度尿酸(5、15mg/dl)作用于分化第4天的3T3-L1脂肪细胞48小时。实时RT-PCR检测AGT mRNA水平。
     2.不同浓度尿酸(0、1、5、15mg/dl)作用于分化成熟的3T3-L1脂肪细胞48小时,或以15mg/dl尿酸作用于成熟脂肪细胞不同时间(0、24、48、96小时)。部分细胞在15mg/dl尿酸联合2mM probenecid条件下孵育48小时。实时RT-PCR检测脂肪组织RAS基因表达,酶联免疫吸附实验(Enzyme linked immunosorbent assay, ELISA)检测培养液AngⅡ的蛋白表达量。
     3.成熟脂肪细胞在15mg/dl尿酸联合10-4M氯沙坦或10-4M卡托普利条件下孵育48小时。分别以实时RT-PCR和ELISA法检测AGT mRNA水平和AngⅡ的蛋白分泌量。以比色法定量检测NOX的酶活性。
     4.成熟脂肪细胞以高浓度尿酸(5、15mg/dl)干预48小时。另外,部分细胞在15mg/dl尿酸联合RAS抑制剂(10-4M氯沙坦或10-4M卡托普利)条件下孵育,部分细胞在15mg/dl尿酸联合10mM N-乙酰半胱氨酸(N-acetyl-L-cysteine, NAC)或200μMapocynin (一种NOX抑制剂)条件下孵育。荧光探针2',7'-二氯双乙酸盐(2′,7′-dichlorofluorescin diacetate, DCFH-DA)或二氢罗丹明(Dihydrogen rhodamine123, DHR)或NBT法检测细胞内活性氧含量。定性检测采用荧光显微镜,定量检测采用荧光酶标仪。
     5.临床研究共纳入162例未经治疗的肥胖的男性高血压患者,同期纳入162例与之年龄相匹配的男性非肥胖高血压患者。人体学指标由专门护士测量,包括血压、身高、体重、腰围、臀围等。全自动生化分析仪检测空腹血糖、血尿酸、血肌酐和血脂水平。空腹胰岛素(Fasting insulin levels, FINS)水平以放射免疫法检测。稳态模型评估的胰岛素抵抗指数(Homeostasis model assessment of insulin resistance, HOMA-IR)用于衡量机体胰岛素抵抗程度。血浆AGT浓度以ELISA法检测。
     6.肥胖高血压组与非肥胖高血压组组间指标比较采用独立样本t检验或卡方检验。肥胖高血压组与非肥胖高血压组按尿酸三分位数分别再划分为三个亚组,采用单因素ANOVA进行组间比较,采用Bonferrroni’s post hoc检验进行两两比较。尿酸与其他参数的相关性采用偏相关分析(调整年龄、吸烟史、饮酒史)。肥胖高血压人群血尿酸对血浆AGT水平的独立影响以多元回归模型进行分析与评估。统计分析采用SPSS17.0软件,作图采用GraphPad prism5.0软件。
     结果:
     1.不同浓度的尿酸对未分化的前脂肪细胞AGT mRNA表达无明显作用(P>0.05)。然而,高浓度尿酸(5、15mg/dl)可以使分化中的3T3-L1脂肪细胞AGT mRNA表达明显增加(均P<0.05)。
     2.分化成熟的脂肪细胞在生理浓度尿酸(1mg/dl)作用下,AGT mRNA变化不明显(P>0.05),但高浓度尿酸(5、15mg/dl)作用可以使脂肪组织RAS基因表达和AngⅡ蛋白分泌量明显上调(均P<0.05)。15mg/dl尿酸作用于脂肪细胞24小时,AGT mRNA变化不明显(P>0.05);作用48小时或96小时,AGT mRNA表达和AngⅡ蛋白产量明显增加(均P<0.05)。而且,尿酸对脂肪RAS的调控作用具有浓度依赖性和时间依赖性特点。另外,阴离子转运子(Organic anion transporter, OAT)抑制剂probenecid可以明显减弱尿酸对脂肪组织RAS的活化作用。
     3.与单纯高尿酸组(15mg/dl)比较,10-4M氯沙坦或10-4M卡托普利联合高尿酸组AGT mRNA和AngⅡ蛋白水平均明显减少(均P<0.05)。并且,氯沙坦和卡托普利可以使高浓度尿酸激活的NOX酶活性显著下降(均P<0.05)。
     4.高浓度尿酸(5、15mg/dl)使脂肪细胞内ROS水平明显增加(均P<0.05)。RAS抑制剂氯沙坦和卡托普利可以明显减少高浓度尿酸作用下的脂肪细胞内ROS水平(均P<0.05)。而且,抗氧化剂NAC或NOX抑制剂apocynin联合高尿酸培养脂肪细胞,也能降低细胞内ROS水平(均P<0.05)。
     5.肥胖高血压患者腰围、腰臀比和体重指数显著升高。此外,与非肥胖高血压患者比较,肥胖高血压患者饮酒比例增高,甘油三酯、空腹血糖、血尿酸、AGT、FINS、HOMA-IR及收缩压升高(均P﹤0.05)。按尿酸三分位数将患者划分为三个亚组,结果显示,肥胖高血压患者最高尿酸三分位数组(血尿酸435.9~642.2μmol/L)与最低尿酸三分位数组(血尿酸282.7~373.6μmol/L)比较,AGT (P﹤0.001)、FINS (P=0.002)、HOMA-IR(P=0.007)均明显升高。然而,非肥胖高血压患者组按尿酸三分位数划分后,没有发现类似差异(P>0.05)。
     6.调整年龄、吸烟史、饮酒史后,偏相关分析结果显示,肥胖高血压患者血尿酸与AGT(r=0.437, P﹤0.001)、FINS(r=0.245, P=0.002)、HOMA-IR(r=0.237, P=0.003)明显相关。然而,非肥胖高血压患者血尿酸与AGT、FINS以及HOMA-IR无明显相关性(P>0.05)。多元逐步回归分析结果显示,交互变量“肥胖×尿酸”独立影响高血压患者血浆AGT水平(β=0.257, P﹤0.001)。
     结论:
     1.尿酸可以上调分化中和分化成熟的脂肪组织RAS表达,但对未分化的前脂肪细胞无此作用。尿酸必须通过尿酸盐转运子进入脂肪细胞内,才能发挥对脂肪组织RAS的调控作用。
     2.脂肪组织RAS过度激活参与了尿酸诱导的氧化应激发病的分子机制:尿酸上调脂肪组织RAS,增加AngⅡ产生,继而激活NOX活性、增加脂肪细胞内ROS水平,最终诱导氧化应激发生。
     3.高血压患者血尿酸水平与血浆AGT浓度明显正相关,这种关联具有“肥胖依赖性”的特点。此外,肥胖高血压患者血尿酸与空腹胰岛素以及胰岛素抵抗水平密切相关。
Background:
     Hypertension is one of the most common findings in obese patients. Also, elevatedserum uric acid levels usually occur in obesity. In recent years, multiple evidences havedemonstrated that serum uric acid closely correlates with cardiovascular diseases andmetabolic diseases, such as hypertension, obesity, type2diabetes mellitus, and metabolicsyndrome. Among these diseases, the roles of uric acid in the pathogenesis of hypertensionattract more attention. Data from epidemiological studies, clinical trials and animalexperiments have indicated that hyperuricemia (HUA) contributes to the occurrence ofobesity-related hypertension, despite of the unclear underlying mechanisms.
     It is well documented that adipose tissue almost expresses all components of therenin-angiotensin system (RAS)[1]. It was found that angiotensinogen (AGT) andangiotensin Ⅱ(AngⅡ) derived from white adipose tissue contributed to circulation pool ofRAS[2], which in turn had an influence on blood pressure regulation. Mice with deficientAGT in adipose tissue had lower plasma AGT and decreased blood pressure[3]. In someobservational survey, plasma renin was found to be positively related to serum uric acidlevels in hypertensive patients[4]. However, almost no research pays attention to theassociation between plasma AGT concentration and serum uric acid levels in obese patientswith essential hypertension.
     Up to now, many factors were found to be associated with the regulation of adiposetissue RAS[5], including nutrition condition, insulin, glucocorticoid, free fatty acid,androgen, tumor necrosis factor alpha (TNFα), and cyclic adenosine monophosphate(cAMP). Uric acid was reported to exert effect on RAS expression in immortalized humanmesangial cells (ihMCs)[6], human vascular endothelial cells (HVECS)[7]and vascularsmooth cells (VSMCs)[8]. Obesity is characterized by overexpression of adipose tissue RAS[9]. This interesting phenomenon is commonly explained by increased fat mass in obesepatients. However, in view of the roles of both uric acid and adipose tissue RAS in obesity hypertension, it could be postulated that uric acid might also regulate the expression ofadipose tissue RAS.
     It is well known that obesity hypertension is one of oxidative stress-relatedcardiovascular diseases[10]. Experiments in vitro and in vivo have suggested that uric acidcould result in oxidative stress under some conditions. In particular, an increase inintracellular reactive oxygen species (ROS) was reported to be triggered by highconcentrations of uric acid in3T3-L1adipocytes[11]. Unfortunately, the molecular pathwayunderlying is not clear, through which uric acid upregulates NADPH oxidase (NOX)activity and then results in oxidative stress.
     Therefore, in the present study, we tried to solve the problems mentioned above bothin vitro experiments and in population study. First, we observed the effect of uric acid onadipose tissue RAS regulation using3T3-L1adipocytes as an experimental model. Next,we testified the hypothesis that adipose RAS could play a role in uric acid-inducedoxidative stress. Last but not the least, we investigated the association between serum uricacid levels and AGT concentration in untreated patients with obesity hypertension. Thesedata might provide new insights into the mechanism by which uric acid is involved incardiovascular diseases related with obesity, especially hypertension.
     Methods:
     1. The undifferentiated pre-adipocytes were cultured with uric acid (0、1、5、15mg/dl)for48hours. In addition, when the adipocytes were differentiating on the fourth day, uricacid (5、15mg/dl) were added into the medium for48hours. AGT mRNA was detected withreal time RT-PCR.
     2. The differentiated adipocytes were incubated with uric acid at differentconcentrations (0、1、5、15mg/dl) for48hours or with15mg/dl uric acid for differentperiods of time (0、24、48、96hours). In some plates, the adipocytes were cultured in thepresence of15mg/dl uric acid with or without probenecid (2mM) for48hours. The levelsof adipose RAS gene were detected with real time RT-PCR. The production of AngⅡprotein was determined by enzyme linked immunosorbent assay (ELISA).
     3. In the presence of15mg/dl uric acid, the differentiated adipocytes were culturedwith losartan (10-4M) or captopril (10-4M) for48hours. The levels of AGT mRNA andAngⅡ protein were measured by real time RT-PCR and ELISA, respectively. NOX activity was quantitatively detected with colorimetry method.
     4. The differentiated adipocytes were incubated under high concentrations of uricacid (5、15mg/dl) with or without RAS inhibitors (10-4M losartan or10-4M captopril) for48hours. Some plates were treated with10mM N-acetyl-L-cysteine (NAC) or200μMapocynin. The levels of intracellular ROS were detected using fluorescence probe2′,7′-dichlorofluorescin diacetate (DCFH-DA) or DHR (dihydrogen rhodamine123) or NBTassay. The fluorescence microscope was used for qualitative detection. Thefluorescence microplate was used for quantitative detection.
     5.162obese and162non-obese male patients with untreated essential hypertensionwere enrolled in the population study. Anthropometry indexes, including blood pressure,height, weight, waist circumference, and hip circumference, were measured by a speciallyassigned nurse. Biochemical indicators, including blood glucose, serum uric acid, creatinine,and blood lipid, were detected using a fully automatic biochemical analyser. Fasting insulin(FINS) levels were determined by radioimmunoassay method. Homeostasis modelassessment of insulin resistance (HOMA-IR) was used for assessment of insulin resistancestatus. Plasma AGT concentrations were assayed with ELISA method.
     6. Independent-samples t-test or chi-square test was used for comparison ofvariables between obesity hypertension group and non-obesity hypertension group.One-way ANOVA was used for comparing the differences among subgroups dividedaccording to uric acid tertiles. If a difference existed, further analysis was performed withBonferrroni’s post hoc test. The correlation coefficient between serum uric acid and othervariables was calculated with partial correlation analysis after adjustment for age, smokingratio and alcohol assumption ratio. Multiple variables regression analysis was used fordetermining the independent effect of uric acid on AGT levels in obese patients withhypertension. Statistical analysis was performed using SPSS17.0. Illustrations were drawnwith software GraphPad prism5.0.
     Results:
     1. Uric acid at different concentrations had no effect on AGT mRNA expression inundifferentiated3T3-L1adipocytes (P>0.05). However, uric acid, at high concentrations(5、15mg/dl), resulted in an increase in AGT mRNA in differentiating3T3-L1adipocytes(both P<0.05).
     2. At physiological concentration (1mg/dl), uric acid played no role in the expressionof AGT mRNA in differentiated3T3-L1adipocytes (P>0.05). However, highconcentrations of uric acid (5、15mg/dl) significantly upregulated both RAS mRNAexpression and AngⅡ protein production (all P<0.05). AGT mRNA and AngⅡincreasedwhen differentiated adipocytes were cultured with15mg/dl uric acid for48and96hours(all P<0.05), but not for24hour. Moreover, the regulation effect of uric acid on adiposetissue RAS is in a dose-dependent and a time-dependent way. In addition, probenecid, akind of organic anion transporter (OAT) inhibitors, attenuated the effect of uric acid onadipose RAS regulation (P<0.05).
     3. When compared with15mg/dl uric acid, both10-4M losartan and10-4M captoprilblunted the increase in the over expression of AGT mRNA and AngⅡ protein induced byhigh concentration of uric acid (all P<0.05). Furthermore, RAS inhibitors couldsignificantly reduce NOX activity when mature adipocytes were cultured in15mg/dl uricacid (all P<0.05).
     4. The intracellular ROS was significantly increased by high levels of uric acid (5,15mg/dl) in mature3T3-L1adipocytes (all P<0.05). However, when cells at15mg/dl uricacid were treated with RAS inhibitors losartan or captopril simultaneously, an increased inintracellular ROS expression was preventable in differentiated3T3-L1adipocytes (allP<0.05). Moreover, both antioxidant NAC and NOX inhibitor apocynin could ameliorateROS excessive activation in adipocytes (all P<0.05).
     5. In addition to waist circumference, waist-to-hip ratio, weight and body mass index(BMI), there was a significant increase in alcohol consumption ratio, systolic bloodpressure (SBP), triglycerides, fasting blood glucose, serum uric acid, plasma AGT levels,fasting insulin, and HOMA-IR in obese patients compared to non-obese patients (all P﹤0.05). When patients were divided into three subgroups based on uric acid tertiles, it wasdemonstrated that AGT (P﹤0.001), FINS (P=0.002), and HOMA-IR (P=0.007) had amarked increase in the highest tertile (435.9~642.2μmol/L serum uric acid) compared tothe lowest tertile (282.7~373.6μmol/L serum uric acid). However, there was no obviouschange in levels of AGT, FINS, and HOMA-IR among non-obese patients when subdividedaccording to uric acid levels (P>0.05).
     6. After adjustment for age, smoking ratio and alcohol assumption ratio, partial correlation analysis showed that, in obesity group, serum uric acid positively associatedwith AGT, FINS, and HOMA-IR with correlation coefficient0.437(P﹤0.001),0.245(P=0.002), and0.237(P=0.003), respectively. However, AGT, FINS, and HOMA-IR werefound not to be related to serum uric acid levels in non-obese hypertensive patients(P>0.05). Furthermore, multiple variables analysis using stepwise regression modelindicated that obesity×uric acid (standardized coefficient0.257, P﹤0.001) independentlycontributed to plasma AGT levels in untreated hypertensive patients.
     Conclusions:
     1. Uric acid could upregulate adipose tissue RAS expression in differentiating anddifferentiated3T3-L1adipocytes, but not in undifferentiated preadipocytes. Uric acid mustenter into adiposytes via urate transporter to play its role.
     2. Uric acid could upregulate adipose tissue RAS, increase AngⅡproduction, andthen activate NOX, ultimately result in oxidative stress. These findings indicate that overactivation of adipose RAS is implicated in the pathogenesis of uric acid-induced oxidativestress in adipose tissue.
     3. Serum uric acid was found to be positively associated with plasma AGT levels inan obesity-dependent manner in essential untreated hypertensive patients. Also, serum uricacid obviously correlated with the elevated insulin levels and insulin resistance in obesehypertensive patients.
引文
[1] Jing F, Mogi M, Horiuchi M. Role of renin-angiotensin-aldosterone system in adiposetissue dysfunction. Mol Cell Endocrinol,2013,25;378(1-2):23-28.
    [2] Massiéra F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al.Adipose angiotensinogen is involved in adipose tissue growth and blood pressureregulation. FASEB J,2001,15(14):2727-2729.
    [3] Yiannikouris F, Karounos M, Charnigo R, English VL, Rateri DL, Daugherty A, et al.Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogenconcentration and systolic blood pressure in mice. Am J Physiol Regul Integr CompPhysiol,2012,302(2):R244-251.
    [4] Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure ofadolescents with newly diagnosed essential hypertension: a randomized trial. JAMA,2008,300(8):924-32.
    [5] Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system(RAAS) and progression of insulin resistance. Mol Cell Endocrinol,2013,378(1-2):1-14.
    [6] Albertoni G, Maquigussa E, Pessoa E, Barreto JA, Borges F, Schor N. Soluble uricacid increases intracellular calcium through an angiotensin II-dependent mechanismin immortalized human mesangial cells. Exp Biol Med (Maywood),2010,235(7):825-832.
    [7] Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with anactivation of the renin-angiotensin system in human vascular endothelial cells as anovel mechanism of uric acid-induced endothelial dysfunction. J Hypertens,2010,28(6):1234-42.
    [8] Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth musclecell proliferation and oxidative stress via the vascular renin-angiotensin system. JHypertens,2008,26(2):269-75.
    [9] Coelho MS, Lopes KL, Freitas Rde A, de Oliveira-Sales EB, Bergasmaschi CT,Campos RR, et al. High sucrose intake in rats is associated with increased ACE2andangiotensin-(1-7) levels in the adipose tissue. Regul Pept,2010,162(1-3):61-67.
    [10] Aghamohammadzadeh R, Heagerty AM. Obesity-related hypertension: epidemiology,pathophysiology, treatments, and the contribution of perivascular adipose tissue. AnnMed,2012,44Suppl1:S74-84.
    [11] Sautin YY, Nakagawa T, Zharikov S, et al. Adverse effects of the classic antioxidanturic acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am JPhysiol Cell Physiol,2007,293: C584-96.
    [12]中国医师协会心血管内科医师分会.无症状高尿酸血症合并心血管疾病诊治建议中国专家共识.中国临床医生,2011,39(2):73-77.
    [13] Kuroczycka-Saniutycz E, Wasilewska A, Sulik A, Milewski R. Urinaryangiotensinogen as a marker of intrarenal angiotensin II activity in adolescents withprimary hypertension. Pediatr Nephrol,2013,28(7):1113-1119.
    [14] Watanabe S, Kang DH, Feng L, et al. Uric acid, hominoid evolution, and thepathogenesis of salt-sensitivity. Hypertension,2002,40(3):355-60.
    [15] Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renalarteriolopathy in rats by a blood pressure-independent mechanism. Am J PhysiolRenal Physiol,2002,282(6):F991-7.
    [16] Thatcher S, Yiannikouris F, Gupte M, Cassis L. The adipose renin-angiotensin system:role in cardiovascular disease. Mol Cell Endocrinol,2009,302,111-117.
    [17] Kurata A, Nishizawa H, Kihara S, Maeda N, Sonoda M, Okada T, et al. Blockade ofangiotensin II type-1receptor reduces oxidative stress in adipose tissue andameliorates adipocytokine dysregulation. Kidney Int,2006,70:1717-1724.
    [18] Galougahi KK1, Liu CC, Gentile C, Kok C, Nunez A, Garcia A, et al.Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifyingNADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc,2014,22;3(2):e000731.
    [19] Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, et al. Uric acid stimulatesmonocyte chemoattractant protein-1production in vascular smooth muscle cells viamitogen-activated protein kinase and cyclooxygenase-2. Hypertension,2003,41:1287-1293.
    [20] Feig DI, Madero M, Jalal DI, Sanchez-Lozada LG, Johnson RJ. Uric acid and theorigins of hypertension. J Pediatr,2013,162(5):896-902.
    [21] Hung WW, Hsieh TJ, Lin T, Chou PC, Hsiao PJ, Lin KD, et al. Blockade of therenin-angiotensin system ameliorates apelin production in3T3-L1adipocytes.Cardiovasc Drugs Ther,2011,25(1):3-12.
    [22] Glantzounis GK, Tsimoyiannis ES, Kappas AM, Galaris DA. Uric acid and oxidativestress. Curr Pharm Des,2005,11,4145-4151.
    [23] Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidantdefense in humans against oxidant-and radical-caused aging and cancer: a hypothesis.Proc Natl Acad Sci U S A,1981,78(11):6858-6862.
    [24] Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronaryheart disease. Circulation,2007,116:894–900.
    [25] Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as anindependent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: aChinese cohort study. Arthritis Rheum,2009,61:225–232.
    [26] Sánchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, et al.Role of oxidative stress in the renal abnormalities induced by experimentalhyperuricemia. Am J Physiol Renal Physiol,2008,295: F1134-1141.
    [27] Mervaala EM, Cheng ZJ, Tikkanen I, Lapatto R, Nurminen K, Vapaatalo H, et al.Endothelial dysfunction and xanthine oxidoreductase activity in rats with human reninand angiotensinogen genes. Hypertension,2001,37:414-418.
    [28] Garrison RJ, Kannel WB, Stokes J3rd, Castelli WP. Incidence and precursors ofhypertension in young adults: the Framingham Offspring Study. Prev Med,1987,16:235-251.
    [29] Narkiewicz K. Diagnosis and management of hypertension in obesity. Obes Rev,2006,7:155-162.
    [30] Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolicsyndrome, hypertension, kidney injury, and cardiovascular diseases: is it time forreappraisal? Curr Hypertens Rep,2013,15(3):175-181.
    [31] Zhang W, Sun K, Yang Y, Zhang H, Hu FB, Hui R. Plasma uric acid and hypertensionin a Chinese community: prospective study and metaanalysis. Clin Chem,2009,55(11):2026-2034.
    [32] Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid andplasma norepinephrine concentrations predict subsequent weight gain and bloodpressure elevation. Hypertension,2003,42:474-480.
    [33] Jolly SE, Mete M, Wang H, Zhu J, Ebbesson SO, Voruganti VS, et al. Uric acid,hypertension, and chronic kidney disease among Alaska Eskimos: the Genetics ofCoronary Artery Disease in Alaska Natives (GOCADAN) study. J Clin Hypertens(Greenwich),2012,14(2):71-77.
    [34] Loeffler LF, Navas-Acien A, Brady TM, Miller ER3rd, Fadrowski JJ. Uric acid leveland elevated blood pressure in US adolescents: National Health and NutritionExamination Survey,1999-2006. Hypertension,2012,59(4):811-817.
    [35] Kanbay M, Huddam B, Azak A, Solak Y, Kadioglu GK, Kirbas I, et al. A randomizedstudy of allopurinol on endothelial function and estimated glomular filtration rate inasymptomatic hyperuricemic subjects with normal renal function. Clin J Am SocNephrol,2011,6(8):1887-1894.
    [36] Perez-Pozo SE, Schold J, Nakagawa T, Sánchez-Lozada LG, Johnson RJ, Lillo JL.Excessive fructose intake induces the features of metabolic syndrome in healthy adultmen: role of uric acid in the hypertensive response. Int J Obes (Lond),2010,34(3):454-461.
    [37] Soletsky B, Feig D. Uric acid reduction rectifies pre-hypertension in obeseadolescents. Hypertension,2012,60(5):1148-1156.
    [38] Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, et al. Elevateduric acid increases blood pressure in the rat by a novel crystal-independentmechanism. Hypertension,2001,38:1101-1106.
    [39] Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-inducedmetabolic syndrome. Am J Physiol Renal Physiol,2006,290:F625-31.
    [40] Sánchez-Lozada LG, Tapia E, Avila-Casado C, Soto V, Franco M, Santamaría J, et al.Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol,2002,283(5):F1105-1110.
    [41] Feig DI. Uric acid and hypertension. Semin Nephrol,2011,31:441-446.
    [42] Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increasedadipose angiotensinogen gene expression in human obesity. Obesity,2000,8:337-341.
    [43] Qiu L, Cheng XQ, Wu J, Liu JT, Xu T, Ding HT, et al. Prevalence of hyperuricemiaand its related risk factors in healthy adults from Northern and Northeastern Chineseprovinces. BMC Public Health,2013,13:664.
    [44] Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, et al. Xanthineoxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab,2007,5(2):115-28.
    [45] Qui ones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, et al. Effectof insulin on uric acid excretion in humans. Am J Physiol,1995,268(1Pt1):E1-5.
    [46] Jackson EK, Li P. Human leptin has natriuretic activity in the rat. Am J Physiol,1997,1272:333-338.
    [47] Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamaru M, et al. Plasmaangiotensinogen concentrations in obese patients. Am J Hypertens,1997,10(6):629-633.
    [48] Engeli S, B hnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss andthe renin-angiotensin-aldosterone system. Hypertension,2005,45(3):356-62.
    [49] Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA.Activation of the systemic and adipose renin-angiotensin system in rats withdiet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol,2004,287(4):R943-949.
    [50] Schorr U, Blaschke K, Turan S, Distler A, Sharma AM. Relationship betweenangiotensinogen, leptin and blood pressure levels in young normotensive men. JHypertens,1998,16:1475-1480.
    [51] Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, et al.Molecular basis of human hypertension: role of angiotensinogen. Cell,1992,71:169-180.
    [52] Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al.Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension inmale mice. Hypertension,2012,60:1524-1530.
    [53] Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, et al.Transgenic amplification of glucocorticoid action in adipose tissue causes high bloodpressure in mice. J Clin Invest,2003,112:83-90.
    [54] Baldwin W, McRae S, Marek G, Wymer D, Pannu V, Baylis C, et al. Hyperuricemia asa mediator of the proinflammatory endocrine imbalance in the adipose tissue in amurine model of the metabolic syndrome. Diabetes,2011,60:1258-1269.
    [55] Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al.Hyperuricemia induces endothelial dysfunction. Kidney Int,2005,67:1739-1742.
    [56] Mitsuhashi H, Yatsuya H, Matsushita K, Zhang H, Otsuka R, Muramatsu T, et al. Uricacid and left ventricular hypertrophy in Japanese men. Circ J,2009,73:667-672.
    [1] Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines byadipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneousabdominal adipose tissue of obese humans. Endocrinology,2004,145(5):2273–82.
    [2] Katugampola SD, Kuc RE, Maguire JJ, Davenport AP. G-protein-coupled receptors inhuman atherosclerosis: comparison of vasoconstrictors (endothelin and thromboxane)with recently de-orphanized (urotensin-II, apelin and ghrelin) receptors. Clin Sci(Lond),2002,103(Suppl48):171S-175S.
    [3] Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptorexpression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol,2007,292(1):R274-82.
    [4] Oliver JA, Sciacca RR. Local generation of angiotensin II as a mechanism ofregulation of peripheral vascular tone in the rat. J Clin Invest,1984,74(4):1247-1251.
    [5] Umemura S, Nyui N, Tamura K, Hibi K, Yamaguchi S, Nakamaru M, et al. Plasmaangiotensinogen concentrations in obese patients. Am J Hypertens,1997,10(6):629-633.
    [6] Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA.Activation of the systemic and adipose renin-angiotensin system in rats withdiet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol,2004,287(4):R943-49.
    [7] Massiéra F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al.Adipose angiotensinogen is involved in adipose tissue growth and blood pressureregulation. FASEB J,2001,15(14):2727-2729.
    [8] Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al.Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension inmale mice. Hypertension,2012,60(6):1524-1530.
    [9] Lely AT, Krikken JA, Bakker SJ, Boomsma F, Dullaart RP, Wolffenbuttel BH, et al.Low dietary sodium and exogenous angiotensin II infusion decrease plasmaadiponectin concentrations in healthy men. J Clin Endocrinol Metab,2007,92(5):1821-1826.
    [10] Skurk T, van Harmelen V, Blum WF, Hauner H. Angiotensin II promotes leptinproduction in cultured human fat cells by an ERK1/2-dependent pathway. Obes Res,2005,13(6):969-973.
    [11] Kim S, Whelan J, Claycombe K, Reath DB, Moustaid-Moussa N. Angiotensin IIincreases leptin secretion by3T3-L1and human fat cells via a prostaglandinindependent mechanism. J Nutr,2002,132(6):1135-1140.
    [12] Belin de Chantemèle EJ, Mintz JD, Rainey WE, Stepp DW. Impact of leptin-mediatedsympatho-activation on cardiovascular function in obese mice. Hypertension,2011,58(2):271-279.
    [13] Shek EW, Brands MW, Hall JE. Chronic leptin infusion raises arterial pressure.Hypertension,1998,31(1Pt2):409-414.
    [14] Quehenberger P, Exner M, Sunder-Plassmann R, Ruzicka K, Bieglmayer C, Endler G,et al. Leptin induces endothelin-1in endothelial cells in vitro. Circ Res,2002,90(6):711-8.
    [15] Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, et al.Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension,2004,43(6):1318-23.
    [16] Clasen R, Schupp M, Foryst-Ludwig A, Sprang C, Clemenz M, Krikov M, et al.PPARgamma-activating angiotensin type-1receptor blockers induce adiponectin.Hypertension,2005,46(1):137-143.
    [17] Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H, et al. NAD(P)H oxidase-derivedhydrogen peroxide mediates endothelial nitric oxide production in response toangiotensin II. J Biol Chem,2002,277(50):48311-48317.
    [18] de Kloet AD, Krause EG, Kim DH, Sakai RR, Seeley RJ, Woods SC. The effect ofangiotensin-converting enzyme inhibition using captopril on energy balance andglucose homeostasis. Endocrinology,2009,150(9):4114-4123.
    [19] Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA, Cameron-Smith D.Mice lacking angiotensin-converting enzyme have increased energy expenditure, withreduced fat mass and improved glucose clearance. Proc Natl Acad Sci U S A,2008,105(18):6531-6536.
    [20] Stucchi P, Cano V, Ruiz-Gayo M, Fernández-Alfonso MS. Aliskiren reducesbody-weight gain, adiposity and plasma leptin during diet-induced obesity. Br JPharmacol,2009,158(3):771-778.
    [21] Mallamaci F, Zoccali C, Cuzzola F, Tripepi G, Cutrupi S, Parlongo S, et al.Adiponectin in essential hypertension. J Nephrol,2002,15(5):507-11.
    [22] Ohashi K, Ouchi N, Matsuzawa Y. Adiponectin and hypertension. Am J Hypertens,2011,24(3):263-269.
    [23] Fésüs G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, et al. Adiponectinis a novel humoral vasodilator. Cardiovasc Res,2007,75(4):719-727.
    [24] Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectinreplenishment ameliorates obesity-related hypertension. Hypertension,2006,47(6):1108-16.
    [25] Tanida M, Shen J, Horii Y, Matsuda M, Kihara S, Funahashi T, et al. Effects ofadiponectin on the renal sympathetic nerve activity and blood pressure in rats. ExpBiol Med (Maywood),2007,232(3):390-397.
    [26] Cao Y, Tao L, Yuan Y, Jiao X, Lau WB, Wang Y, et al. Endothelial dysfunction inadiponectin deficiency and its mechanisms involved. J Mol Cell Cardiol,2009,46(3):413-419.
    [27] Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, et al.Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension,2003,42(3):231-4.
    [28] Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelialdysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes (Lond),2010,34(1):165-171.
    [29] Shatat IF, Freeman KD, Vuguin PM, Dimartino-Nardi JR, Flynn JT. Relationshipbetween adiponectin and ambulatory blood pressure in obese adolescents. Pediatr Res,2009,65(6):691-695.
    [30] Lambert M, O'Loughlin J, Delvin EE, Levy E, Chiolero A, Paradis G. Associationbetween insulin, leptin, adiponectin and blood pressure in youth. J Hypertens,2009,27(5):1025-1032.
    [31] Kamari Y, Shimoni N, Koren F, Peleg E, Sharabi Y, Grossman E. High-salt dietincreases plasma adiponectin levels independent of blood pressure in hypertensiverats: the role of the renin-angiotensin-aldosterone system. J Hypertens,2010,28(1):95-101.
    [32] Asferg C, M gelvang R, Flyvbjerg A, Frystyk J, Jensen JS, Marott JL, et al. Leptin,not adiponectin, predicts hypertension in the Copenhagen City Heart Study. Am JHypertens,2010,23(3):327-333.
    [33] Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance ofmetabolic homeostasis. Nutr Rev,200,65(6Pt2):S7-12.
    [34] Shankar A, Xiao J. Positive relationship between plasma leptin level and hypertension.Hypertension,2010,56(4):623-628.
    [35] Barba G, Russo O, Siani A, Iacone R, Farinaro E, Gerardi MC, et al. Plasma leptinand blood pressure in men: graded correlation independent of body mass and fatpattern. Obes Res,2003,11(1):160-166.
    [36] Galletti F, D'Elia L, Barba G, Siani A, Cappuccio FP, Farinaro E, et al.High-circulating leptin levels are associated with greater risk of hypertension in menindependently of body mass and insulin resistance: results of an eight-year follow-upstudy. J Clin Endocrinol Metab,2008,93(10):3922-3926.
    [37] Thomopoulos C, Papadopoulos DP, Papazachou O, Bratsas A, Massias S,Anastasiadis G, et al. Free leptin is associated with masked hypertension in nonobesesubjects: a cross-sectional study. Hypertension,2009,53(6):965-972.
    [38] Mark AL, Shaffer RA, Correia ML, Morgan DA, Sigmund CD, Haynes WG.Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agoutiyellow obese mice. J Hypertens,1999,17(12Pt2):1949-1953.
    [39] Frühbeck G. Pivotal role of nitric oxide in the control of blood pressure after leptinadministration. Diabetes.1999,48(4):903-908.
    [40] Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, et al.Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest,2000,105(9):1243-1252.
    [41] Rahmouni K, Morgan DA, Morgan GM, et al. Role of selective leptin resistance indiet-induced obesity-related hypertension. Diabetes,2005,54(7):2012-2018.
    [42] Rahmouni K, Morgan DA. Hypothalamic arcuate nucleus mediates the sympatheticand arterial pressure responses to leptin. Hypertension,2007,49(3):647-652.
    [43] Correia ML, Morgan DA, Sivitz WI, Mark AL, Haynes WG. Leptin acts in the centralnervous system to produce dose-dependent changes in arterial pressure. Hypertension,2001,37(3):936-942.
    [44] Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediatedregional sympathetic nerve activation by leptin. J Clin Invest,1997,100(2):270-278.
    [45] Gardiner SM, Kemp PA, March JE, Bennett T. Regional haemodynamic effects ofrecombinant murine or human leptin in conscious rats. Br J Pharmacol,2000,130(4):805-810.
    [46] Rodríguez A, Fortu o A, Gómez-Ambrosi J, Zalba G, Díez J, Frühbeck G. Theinhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascularsmooth muscle cells is mediated via a nitric oxide-dependent mechanism.Endocrinology,2007,148(1):324-331.
    [47] Zeidan A, Purdham DM, Rajapurohitam V, Javadov S, Chakrabarti S, Karmazyn M.Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II-andendothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. JPharmacol Exp Ther,2005,315(3):1075-1084.
    [48] Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptinregulates proinflammatory immune responses. FASEB J,1998,12(1):57-65.
    [49] Fortu o A, Rodríguez A, Gómez-Ambrosi J, Mu iz P, Salvador J, Díez J, et al. Leptininhibits angiotensin II-induced intracellular calcium increase and vasoconstriction inthe rat aorta. Endocrinology,2002,143(9):3555-3560.
    [50] Momin AU, Melikian N, Shah AM, Grieve DJ, Wheatcroft SB, John L, et al. Leptin isan endothelial-independent vasodilator in humans with coronary artery disease:Evidence for tissue specificity of leptin resistance. Eur Heart J,2006,27(19):2294-2299.
    [51] Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions ofleptin: role of adrenergic activity. Hypertension,2002,39(2Pt2):496-501.
    [52] Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress inhuman endothelial cells. FASEB J,1999,13(10):1231-1238.
    [53] Be towski J, Jamroz-Wi niewska A, Borkowska E, Wójcicka G. Up-regulation ofrenal Na+, K+-ATPase: the possible novel mechanism of leptin-induced hypertension.Pol J Pharmacol,2004,56(2):213-222.
    [54] Mathew B, Patel SB, Reams GP, Freeman RH, Spear RM, Villarreal D.Obesity-hypertension: emerging concepts in pathophysiology and treatment. Am JMed Sci,2007,334(1):23-30.
    [55] Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, et al. Isolation andcharacterization of a new endogenous peptide ligand for the human APJ receptor.Biochem Biophys Res Commun,1998,251(2):471-476.
    [56] Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, et al. Apelin, anewly identified adipokine up-regulated by insulin and obesity. Endocrinology,2005,146(4):1764-1771.
    [57] Cheng X, Cheng XS, Pang CC. Venous dilator impact of apelin, an endogenouspeptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol,2003,470(3):171-175.
    [58] Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, et al. Vasculareffects of apelin in vivo in men. J Am Coll Cardiol,2008,52(11):908-913.
    [59] Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, et al. Theendogenous apelin potently improves cardiac contractility and decreases cardiacloading in vivo. Cardiovasc Res,2005,65(1):73-82.
    [60] Salcedo A, Garijo J, Monge L, Fernández N, Luis García-Villalón A, Sánchez TurriónV, et al. Apelin effects in human splanchnic arteries: role of nitric oxide andprostanoids. Regul Pept,2007,144(1-3):50-55.
    [61] Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP.[Pyr1]apelin-13identified as thepredominant apelin isoform in the human heart: vasoactive mechanisms and inotropicaction in disease. Hypertension,2009,54(3):598-604.
    [62] Hashimoto T, Kihara M, Ishida J, Imai N, Yoshida S, Toya Y, et al. Apelin stimulatesmyosin light chain phosphorylation in vascular smooth muscle cells terioscler.Thromb Vasc Biol,2006,26(6):1267-1272.
    [63] Mitra A, Katovich MJ, Mecca A, Rowland NE. Effects of central and peripheralinjections of apelin on fluid intake and cardiovascular parameters in rats. PhysiolBehav,2006,89(2):221-225.
    [64] Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M. Central andperipheral cardiovascular actions of apelin in conscious rats. Regul Pept,2005,125(1-3):55-59.
    [65] Castan-Laurell I, Boucher J, Dray C, Daviaud D, Guigné C, Valet P. Apelin, a noveladipokine over-produced in obesity: friend or foe? Mol Cell Endocrinol,2005,245(1-2):7-9.
    [66] Azuma K, Katsukawa F, Oguchi S, Murata M, Yamazaki H, Shimada A, et al.Relationship between serum resistin level and adiposity in obese individuals. ObesRes,2003,11(8):997-1001.
    [67] Conneely KN, Silander K, Scott LJ, Mohlke KL, Lazaridis KN, Valle TT, et al.Variation in the resistin gene is associated with obesity and insulin-related phenotypesin Finnish subjects. Diabetologia,2004,47(10):1782-1788.
    [68] Papadopoulos DP, Makris TK, Krespi PG, Poulakou M, Stavroulakis G,Hatzizacharias AN, et al. Adiponectin and resistin plasma concentrations in healthyindividuals with prehypertension. J Clin Hypertens (Greenwich),2005,7(12):729-733.
    [69] Zhang L, Curhan GC, Forman JP. Plasma resistin concentrations relate with risk forhypertension among nondiabetic women. J Am Soc Nephrol,2010,21(7):1185-1191.
    [70] Takata Y, Osawa H, Kurata M, Kurokawa M, Yamauchi J, Ochi M, et al.Hyperresistinemia is related to coexistence of hypertension and type2diabetes.Hypertension,2008,51(2):534-539.
    [71] Osawa H, Ochi M, Tabara Y, Kato K, Yamauchi J, Takata Y, et al. Serum resistin ispositively correlated with the accumulation of metabolic syndrome factors in type2diabetes. Clin Endocrinol (Oxf),2008,69(1):74-80.
    [72] Furuhashi M, Ura N, Higashiura K, Murakami H, Shimamoto K. Circulating resistinconcentrations in essential hypertension. Clin Endocrinol (Oxf),2003,59(4):507-510.
    [73] Dick GM, Katz PS, Farias M3rd, Morris M, James J, Knudson JD, et al. Resistinimpairs endothelium dependent dilation to bradykinin, but not acetylcholine, in thecoronary circulation. Am J Physiol Heart Circ Physiol,2006,291(6):H2997-3002.
    [74] Gentile MT, Vecchione C, Marino G, et al. Resistin impairs insulin-evokedvasodilation. Diabetes,2008,57(3):577-583.
    [75] Tilg H, Moschen AR. Adipocytokines: mediators connecting fat, inflammation andimmunity. Nat Rev Immunol,2006,6(10):772-783.
    [76] Vila E, Salaices M. Cytokines and vascular reactivity in resistance arteries. Am JPhysiol Heart Circ Physiol,2005,288(3):H1016-1021.
    [77] Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, et al. Weight lossregulates inflammation-related genes in white adipose issue of obese subjects. FASEBJ,2004,18(14):1657-1669.
    [78] Mendall MA, Patel P, Asante M, Ballam L, Morris J, Strachan DP, et al. Relationshipof serum cytokine levels to cardiovascular risk factors and coronary heart disease.Heart,1997,78(3):273-277.
    [79] Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptionalregulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducibleenhancers. FASEB J,1995,9(10):899-909.
    [80] Sheu WHH, Lee WJ, Chang RL, Chen YT. Plasma tumor necrosis factor alpha levelsand insulin sensitivity in hypertensive subjects. Clin Exp Hypertens,2000,22(6):595-606.
    [81] Ito H, Ohshima A, Tsuzuki M, Ohto N, Takao K, Hijii C, et al. Association of serumtumour necrosis factor-alpha with serum low-density lipoprotein-cholesterol andblood pressure in apparently healthy Japanese women. Clin Exp Pharmacol Physiol,2001,28(3):188-192.
    [82] Iversen PO, Nicolaysen A, Kvernebo K, Benestad HB, Nicolaysen G. Humancytokines modulate arterial vascular tone via endothelial receptors. Pflugers Arch,1999,439(1-2):93-100.
    [83] Thalmann S, Meier CA. Local adipose tissue depots as cardiovascular risk factors.Cardiovasc Res,2007,75(4):690-701.
    [84] Zhang H, Park Y, Wu J, Chen Xp, Lee S, Yang J, et al. Role of TNF-alpha in vasculardysfunction. Clin Sci (Lond),2009,116(3):219-230.
    [85] Johns DG, Webb RC. TNF-alpha-induced endothelium-independent vasodilation: arole for phospholipase A2-dependent ceramide signaling. Am J Physiol,1998,275(5Pt2):H1592-598.
    [86] Brian JE Jr, Faraci FM. Tumor necrosis factor-alpha-induced dilatation of cerebralarterioles. Stroke,1998,29(2):509-515.
    [87] Shibata M, Parfenova H, Zuckerman SL, Leffler CW. Tumor necrosis factor-alphainduces pial arteriolar dilation in newborn pigs. Brain Res Bull,1996,39(4):241-247.
    [88] Zhang DX, Yi FX, Zou AP, Li PL. Role of ceramide in TNF-alpha-inducedimpairment of endothelium-dependent vasorelaxation in coronary arteries. Am JPhysiol Heart Circ Physiol,2002,283(5):H1785-794.
    [89] Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N, et al. Tumornecrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation,2007,115(2):245-254.
    [90] Brasier AR, Li J, Wimbish KA. Tumor necrosis factor activates angiotensinogen geneexpression by the Rel A transactivator. Hypertension,1996,27(4):1009-1017.
    [91] Gurantz D, Cowling RT, Villarreal FJ, Greenberg BH. Tumor necrosis factor-alphaupregulates angiotensin II type1receptor on cardiac fibroblasts. Circ Res,1999,85(3):272-279.
    [92] Wort SJ, Ito M, Chou PC, Mc Master SK, Badiger R, Jazrawi E, et al. Synergisticinduction of endothelin-1by tumor necrosis factor alpha and interferon gamma is dueto enhanced NF-kappaB binding and histone acetylation at specific kappaB sites. JBiol Chem,2009,284(36):24297-24305.
    [93] Chudek J, Wiecek A. Adipose tissue, inflammation and endothelial dysfunction.Pharmacol Rep,2006,58Suppl:81-88.
    [94] Ridker PM. Clinical application of C-reactive protein for cardiovascular diseasedetection and prevention. Circulation,2003,107(3):363-369
    [95] Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration ofinterleukin-6and the risk of future myocardial infarction among apparently healthymen. Circulation,2000,101(15):1767-1772.
    [96] Langenberg C, Bergstrom J, Scheidt-Nave C, Pfeilschifter J, Barrett-Connor E.Cardiovascular death and the metabolic syndrome: role of adiposity-signalinghormones and inflammatory markers. Diabetes Care,2006,29(6):1363-1369.
    [97] Ohkawa F, Ikeda U, Kawasaki K, Kusano E, Igarashi M, Shimada K. Inhibitory effectof interleukin-6on vascular smooth muscle contraction. Am J Physiol,1994,266(3Pt2):H898-902.
    [98] Minghini A, Britt LD, Hill MA. Interleukin-1and interleukin-6mediated skeletalmuscle arteriolar vasodilation: in vitro versus in vivo studies. Shock,1998,9(3):210-215.
    [99] Lee DL, Sturgis LC, Labazi H, Osborne JB Jr, Fleming C, Pollock JS, et al.Angiotensin II hypertension is attenuated in interleukin-6knockout mice. Am JPhysiol Heart Circ Physiol,2006,290(3):H935-940.
    [100] Orshal JM, Khalil RA. Reduced endothelial NO-cGMP-mediated vascular relaxationand hypertension in IL-6-infused pregnant rats. Hypertension,2004,43(2):434-444.
    [101] Satou R, Gonzalez-Villalobos RA, Miyata K, Ohashi N, Urushihara M, Acres OW, etal. IL-6augments angiotensinogen in primary cultured renal proximal tubular cells.Mol Cell Endocrinol,2009,311(1-2):24-31.
    [102] Vázquez-Oliva G, Fernández-Real JM, Zamora A, Vilaseca M, Badimón L. Loweringof blood pressure leads to decreased circulating interleukin-6in hypertensive subjects.J Hum Hypertens,2005,19(6):457-462.
    [103] Saura M, Zaragoza C, Bao C, Herranz B, Rodriguez-Puyol M, Lowenstein CJ. Stat3mediates interleukin-6[correction of interelukin-6] inhibition of human endothelialnitric-oxide synthase expression. J Biol Chem,2006,281(40):30057-30062.
    [104] Hung MJ, Cherng WJ, Hung MY, Wu HT, Pang JH. Interleukin-6inhibits endothelialnitric oxide synthase activation and increases endothelial nitric oxide synthasebinding to stabilized caveolin-1in human vascular endothelial cells. J Hypertens,2010,28(5):940-951.
    [105] Klouche M, Bhakdi S, Hemmes M, Rose-John S. Novel path to activation of vascularsmooth muscle cells: up-regulation of gp130creates an autocrine activation loop byIL-6and its soluble receptor. J Immunol,1999,163(8):4583-4589.
    [106] Cai RC, Wei L, DI JZ, Yu HY, Bao YQ, Jia WP. Expression of omentin in adiposetissues in obese and type2diabetic patients. Zhonghua Yi Xue Za Zhi,2009,89(6):381-384.
    [107] Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, Frühbeck G,et al. Circulating omentin concentration increases after weight loss. Nutr Metab(Lond),2010,7:27.
    [108] Zhong X, Li X, Liu F, Tan H, Shang D. Omentin inhibits TNF-α-induced expressionof adhesion molecules in endothelial cells via ERK/NF-κB pathway. BiochemBiophys Res Commun,2012,425(2):401-406.
    [109] Yamawaki H, Tsubaki N, Mukohda M, et al. Omentin, a novel adipokine, inducesvasodilation of isolated blood vessels in rat. Biochem Biophys Res Commun,2010,393(4):668-672.
    [110] Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, et al. Identification ofnesfatin-1as a satiety molecule in the hypothalamus. Nature,2006,443(7112):709-712.
    [111] Takemori K, Gao YJ, Ding L, Lu C, Su LY, An WS, et al. Elevated blood pressure intransgenic lipoatrophic mice and altered vascular function. Hypertension,2007,49:365-372.
    [112] Schleifenbaum J, K hn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, et al.Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide.J Hypertens,2010,28(9):1875-1882.
    [113] Rebolledo A, Rebolledo OR, Marra CA, García ME, Roldán Palomo AR, Rimorini L,et al. Early alterations in vascular contractility associated to changes in fatty acidcomposition and oxidative stress markers in perivascular adipose tissue. CardiovascDiabetol,2010,21;9(1):65.
    [114] Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotesendothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6mice. CircJ,201l,74(7):1479-1487.
    [115] Gil-Ortega M, Stucchi P, Guzmán-Ruiz R, Cano V, Arribas S, González MC, et al.Adaptative nitric oxide overproduction in perivascular adipose tissue during earlydiet-induced obesity. Endocrinology,2010,151(7):3299-3306.
    [116] Ribiere C, Jaubert AM, Gaudiot N, Sabourault D, Marcus ML, Boucher JL, et al.White adipose tissue nitric oxide synthase: a potential source for NO production.Biochem Biophys Res Commun,1996,222(3):706-712.
    [117] Mehebik N, Jaubert AM, Sabourault D, Giudicelli Y, Ribière C. Leptin-induced nitricoxide production in white adipocytes is mediated through PKA and MAP kinaseactivation. Am J Physiol Cell Physiol,2005,289(2):C379-387.
    [118] Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, et al. Hydrogen sulfide derived fromperiadventitial adipose tissue is a vasodilator. J Hypertens,2009,27(11):2174-2185.
    [119] Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. H2S as a physiologic vasorelaxant:hypertension in mice with deletion of cystathionine gamma-lyase. Science,2008,322(5901):587-590.
    [120] Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, et al. Role of perivascularadipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesisof hypertension. Circulation,2011,124(10):1160-1171.
    [121] Lee RM, Lu C, Su LY, Gao YJ. Endothelium-dependent relaxation factor released byperivascular adipose tissue. J Hypertens,2009,27(4):782-790.
    [122] Lu C, Su LY, Lee RM, Gao YJ. Alterations in perivascular adipose tissue structure andfunction in hypertension. Eur J Pharmacol,2011,656(1-3):68-73.
    [123] Byku M, Macarthur H, Westfall TC. Inhibitory effects of angiotensin-(1-7) on thenerve stimulation-induced release of norepinephrine and neuropeptide Y from themesenteric arterial bed. Am J Physiol Heart Circ Physiol,2010,298(2):H457-465.
    [124] Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator:regulation and signaling leading to dysfunction. Exp Biol Med (Maywood),2006,231(3):237-251.
    [125] Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in thebreakdown of endothelium-derived vascular relaxing factor. Nature,1986,320(6061):454-456.
    [126] Cooper D, Stokes KY, Tailor A, Granger DN. Oxidative stress promotes bloodcell-endothelial cell interactions in the microcirculation. Cardiovasc Toxicol,2002,2(3):165-180.
    [127] Lu C, Su LY, Lee RM, Gao YJ. Mechanisms for perivascular adipose tissue-mediatedpotentiation of vascular contraction to perivascular neuronal stimulation: the role ofadipocyte-derived angiotensin II. Eur J Pharmacol,2010,634(1-3):107-112.
    [128] Maenhaut N, Boydens C, Van de Voorde J. Hypoxia enhances the relaxing influenceof perivascular adipose tissue in isolated mice aorta. Eur J Pharmacol,2010,641(2-3):207-212.
    [129] Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al.Local inflammation and hypoxia blunt the protective anticontractile properties ofperivascular adipose tissue in obese patients. Circulation,2009,119(12):1661-1670.
    [130] Withers SB, Agabiti-Rosei C, Livingstone DM, Little MC, Aslam R, Malik RA, et al.Macrophage activation is responsible for loss of anticontractile function in inflamedperivascular fat. Arterioscler Thromb Vasc Biol,2011,31(4):908-913.
    [131] Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity,diabetes, and vascular diseases. Eur Heart J,2008,29(24):2959-2971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700