用户名: 密码: 验证码:
miR-9对缺氧诱导大鼠肺动脉平滑肌细胞表型转化的影响及调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     慢性缺氧所致的持续性肺动脉压升高称之为缺氧性肺动脉高压(hypoxicpulmonary hypertension,HPH),该病理生理过程是高原心脏病和慢性阻塞性肺疾患等疾病发生的中心环节。在慢性缺氧性肺动脉高压形成早期,肺血管收缩是主要因素,随着缺氧时间的延长,肺血管结构改建也参与其中。持续缺氧引起的肺血管结构改建过程中,肺中小动脉中膜增厚,管腔狭窄及肌化,从而使肺血管阻力持久升高,进而造成持续性肺动脉压力升高。长期持续的肺动脉高压所致的右心室后负荷增加可以引起右心室肥大,严重者甚至发展为右心衰竭。HPH是许多心肺疾病发生发展过程中重要的病理生理基础。因此,研究HPH的发病机理,对防治与其相关的心肺疾病具有重要的临床意义。
     肺动脉平滑肌细胞(pulmonary arterial smooth muscle cells,PASMCs)是构成肺动脉壁的主要细胞,位于肺血管壁中层,其肥大增生是缺氧性肺血管结构改建的重要病理特征。与骨骼肌和心肌细胞等不同,血管平滑肌细胞(vascular smooth muscle cells,VSMCs)是一种非终末分化细胞,其表型具有较强的可塑性。正常成年动物的VSMCs主要是收缩表型。在多种刺激因素作用下,VSMCs可从具有收缩功能的分化表型转化为有较强增殖和迁移能力的去分化表型。在表型转化过程中,除了VSMCs增殖能力和分泌功能增强外,血管平滑肌细胞的分化标志基因,如平滑肌肌球蛋白重链(smoothmuscle myosin heavy chain,SM-MHC),血管平滑肌α-肌动蛋白(SM-α-actin),调宁蛋白(calponin)及平滑肌22α (smooth muscle22alpha,SM22α)蛋白等表达下调。有关缺氧性肺血管结构改建机制的研究,以往多聚焦在缺氧如何影响PASMCs的增殖、凋亡、迁移和分泌等功能方面,对PASMCs表型转化的机制研究较少。有研究提示,VSMCs的表型转化是增殖、迁移等事件发生的起始步骤,是血管平滑肌增生相关疾病发生的病理生理基础。最近研究发现,缺氧刺激也能诱导肺动脉平滑肌发生表型转化,但表型转化发生的具体机制不清楚。
     微小RNA(microRNA,miRNA)是近年来发现的一类长度约21个核苷酸的内源性非编码小RNA分子,主要通过与mRNA的3′非翻译区结合影响mRNA的稳定性或抑制蛋白翻译过程从而在转录后水平对相应的靶基因发挥负调控作用。据估计,miRNA能参与调节30%以上的已知人类基因,它们几乎可以调节机体的所有病理生理进程。最近研究发现,缺氧环境下miRNA表达改变能调节肺动脉平滑肌相应增殖、凋亡、迁移等功能,并参与缺氧肺动脉高压的形成。然而miRNA是否参与调节缺氧诱导的肺动脉平滑肌表型转化以及缺氧如何引起相关miRNA表达变化却少有报道。
     本课题通过建立缺氧诱导的肺动脉平滑肌表型转化模型,在前期实验中,我们采用RT-qPCR方法检测候选miRNA的差异表达情况,挑选出缺氧后上调最高的miR-9。进一步采用干扰和过表达方法探讨miR-9是否在缺氧诱导的肺动脉平滑肌表型转化中起重要作用,并对缺氧诱导miR-9表达上调的机制进行了研究。
     研究方法与内容:
     1.采用胶原酶I消化法进行大鼠原代PASMCs的培养,采用差异贴壁法纯化PASMCs,并使用特异性SM-α-actin抗体进行免疫荧光染色鉴定。
     2.缺氧(3%O2)处理PASMCs后,Western Blot法检测SM-MHC,SM-α-actin,Calponin-1和SM22α等血管平滑肌细胞标志基因的表达;RT-qPCR法检测各候选miRNA的差异表达情况。
     3.常氧培养PASMCs时转染miR-9mimics,采用Western Blot法检测血管平滑肌细胞标志基因的表达,同时用EdU染色检测PASMCs的增殖活性,探索常氧条件下过表达miR-9对血管平滑肌细胞标志基因的表达及增殖的影响。在缺氧诱导PASMCs表型改变模型中转染miR-9inhibitor,Western Blot检测血管平滑肌细胞标志基因的表达,采用EdU染色检测PASMCs的增殖活性,探讨miR-9在缺氧诱导PASMCs表型改变模型中的作用。
     4.缺氧条件下转染HIF-1α特异性siRNA,采用RT-qPCR法检测PASMCs中miR-9的表达,研究HIF-1α在缺氧诱导miR-9表达上调中的作用。
     5. RT-qPCR方法检测缺氧后miR-9各初级转录本的表达变化,观察缺氧对各初级转录本表达量的影响。缺氧处理原代培养PASMCs条件下转染HIF-1α特异性siRNA,检测miR-9各初级转录本的表达,探索HIF-1α在缺氧诱导miR-9各初级转录本的表达变化中的作用。
     6.采用生物信息学分析miR-9-1,miR-9-2和miR-9-3转录起始位点上游5KB范围内的调控区序列,使用chip bioinformatics mapper软件寻找各调控区域内HIF-1α的结合基序;采用ChIP方法验证缺氧后HIF-1α在各预测区域的结合情况。
     7.通过双荧光素酶报告基因实验探讨HIF-1与其结合序列对基因转录的作用。
     8.模拟海拔5000米低压缺氧21天,建立大鼠HPH模型,采用RT-qPCR方法检测miR-9的表达,观察miR-9在大鼠肺中小动脉段中的表达情况。
     结果:
     1.胶原酶消化法培养大鼠原代PASMCs,免疫荧光鉴定结果显示,经数次差异贴壁法纯化,细胞SM-α-actin阳性率高,PASMCs纯度可达到95%以上。
     2.与常氧对照比较,原代PASMCs经3%O2缺氧处理24h和48h后,VSMCs收缩表型标志基因蛋白SM-MHC、SM-α-actin、Calponin-1、SM22α的表达均显著下调;缺氧48h后,PASMCs的EdU染色阳性率显著增高。PASMCs缺氧24h后,miR-9在候选的miRNA中表达上调倍数最高,约升高5倍,且缺氧48h后仍能维持4倍以上。
     3.常氧条件下,与转染mimic control相比较,转染miR-9mimic能下调PASMCs中VSMCs收缩标志基因蛋白表达,提高EdU染色阳性率;缺氧条件下,与转染inhibitorcontrol相比较,转染miR-9inhibitor使PASMCs中VSMCs收缩标志基因蛋白表达显著回升,PASMCs的EdU染色阳性率显著回调。
     4.缺氧条件下转染HIF-1α特异性siRNA,PASMCs中miR-9表达显著降低。
     5.缺氧48h后,pri-miR-9-1与pri-miR-9-3表达量显著升高,pri-miR-9-2的表达量无显著改变;转染HIF-1α特异性siRNA能显著抑制pri-miR-9-1与pri-miR-9-3的表达水平。
     6.生物信息学分析发现,miR-9-1转录起始位点上游5KB范围内的调控区域内有三个HIF-1α结合位点,分别位于-1292/-1279(R1),-1008/-995(R2)和-874/-861(R3)区域;miR-9-3转录起始位点上游5KB范围内的调控区域内有一个HIF-1α结合位点,位于-43/-28(R)区域。ChIP检测发现,缺氧24h和48h后,HIF-1α与miR-9-1的调控区域内R1、R2和R3的结合均显著增加,其中HIF-1α在R1的富集最高。缺氧24h和48h后,HIF-1α与miR-9-3调控区域内R的结合显著增加。
     7.采用双荧光素酶报告基因检测HIF-1α及其相应结合位点对基因转录活性的影响,结果发现,对miR-9-1而言,缺氧与转染HIF-1α能增强野生型Luc-miR-9-1(WT)报告基因活性,分别提高2.1倍和1.8倍;但对突变型Luc-miR-9-1(M3)无作用。缺氧条件下如果干扰HIF-1α能显著减弱野生型Luc-miR-9-1(WT)报告基因活性。对miR-9-3而言,缺氧与转染HIF-1α均能增强野生型Luc-miR-9-3(WT)报告基因活性,分别提高2.7倍和1.9倍;但对突变型Luc-miR-9-3(M)无作用。缺氧条件下如果干扰HIF-1α则能显著减弱野生型Luc-miR-9-3(WT)报告基因活性。
     8.与常氧对照组相比,HPH模型大鼠肺中小动脉段的miR-9表达显著升高。
     结论:
     1. miR-9参与了缺氧诱导的PASMCs表型转化进程。
     2.缺氧条件下miR-9表达升高可能主要源于miR-9-1与miR-9-3的表达上调。
     3.缺氧诱导的miR-9表达上调受HIF-1调控。
     综上所述,HIF-1-miR-9调控途径是缺氧诱导肺动脉平滑肌细胞发生表型转化的重要调节机制,miR-9可能成为防治HPH的潜在治疗靶点。
Background and Objective
     Chronic hypoxia-induced pulmonary hypertension is called hypoxic pulmonaryhypertension (HPH), which plays a key role in the development of high altitude heartdisease and chronic pulmonary heart disease such as chronic obstructive pulmonary disease.HPH is a severe disease characterized by pulmonary vasoconstriction and vascularremodeling, leading to increased vascular resistance and right ventricular dysfunction.Thickening of the media occurs consistently at all levels of the pulmonary arterial tree,especially in small pulmonary arteries, and there is extension of new smooth muscle into thepartially muscular and non-muscular peripheral arteries. The changes of vascular narrowingmay lead to a progressive increase in pulmonary vascular resistance and right ventricleafterload, which in turn induce right ventricular hypertrophy, or even cause the rightventricular failure and death. HPH is believed to be the major pathophysiological process ofmany cardiovascular diseases. Therefore, it is worthy to elucidate the pathogenesis of HPHfor clinical significance of prevention and treatment in cardiovascular diseases.
     Pulmonary arterial smooth muscle cells (PASMCs) are the cellular components of thenormal pulmonary arterial wall that provides structural integrity and regulates the diameterby contracting and relaxing dynamically in response to vasoactive stimuli. Hypertrophy andhyperplasia of PASMCs are important pathological features during hypoxic pulmonaryvascular structural remodeling. Unlike the skeletal and cardiac muscle cells, vascularsmooth muscle cells (VSMCs) are non-terminally differentiated cells and retain remarkableplasticity. The differentiated VSMCs are characterized by specific contractile proteins, ionchannels, and cell surface receptors that regulate the contractile process and are thus termedcontractile phenotype cells. VSMCs can modulate their phenotype from contractile featureto proliferative feature under certain environmental cues. The phenotype-switched VSMCs always exhibit increased proliferation, migration and matrix synthesis, characterized bydecreased expression of contractile marker proteins, including smooth muscle (SM) α-actin(SM-α-actin), SM-myosin heavy chain (SM-MHC), h1-calponin (calponin1) and SM22α.Previous studies suggested that phenotypic switch of VSMCs is the initial step of somemolecular events such as proliferation and migration and is the pathophysiological basis incardiovascular diseases. Recently, several studies have demonstrated that PASMCs caninduce a phenotype switch from contractile to proliferative activity and induce excessiveproliferation when exposed to hypoxia. These changes represent the majorpathophysiological characteristics in HPH. However, the mechanisms involved in theseevents are poorly understood.
     MicroRNA (miRNA) is a class of small endogenous non-coding RNA moleculesranging from21-23nucleotides in length that controls gene expression inpost-transcriptional level by targeting mRNAs for translational repression or cleavage. It isestimated that miRNA can directly regulate at least30%of the genes in the human genomeand are therefore believed to be involved in regulating almost all physiological andpathological cellular processes. Recent studies have found that several miRNA are involvedin the changes of proliferation, apoptosis, migration and other functions in pulmonary arterysmooth muscles during hypoxia and participate in HPH, however, the underlyingmechanisms remain obscure.
     In an initial quantitative RT-qPCR-based screen for differentially expressed miRNA,we identified miR-9as the most significantly up-regulated miRNA in primary PASMCs inresponse to hypoxia. The objective of our current study is to determine whether miR-9playsan important role in phenotypic switch of PASMCs and, if so, to determine the epigeneticregulatory mechanism for the up-regulation of miR-9in phenotypically modulated PASMCsunder hypoxia.
     Methods and contents:
     1. Collagenase digestion methods were applied for culturing primary PASMCs of rats,PASMCs were purified by differential adherence and were identified by immunofluorescence staining for SM-α-actin antibody.
     2. The marker gene expressions of vascular smooth muscle cells were detected byWestern Blot; and miRNA expressions were measured by quantitative RT-PCR (RT-qPCR).
     3. To explore the roles of miR-9in normoxia, PASMCs were transfected miR-9mimics.To explore the roles of miR-9under hypoxia, PASMCs were transfected with miR-9inhibitor. The protein expressions of marker genes were measured by Western Blot and theproliferation ability was detected by EdU assay.
     4. To investigate the role of HIF-1α in miR-9expression under hypoxic conditions,PASMCs were transfected with HIF-1α-specific siRNA before miR-9expression wasdetected by RT-qPCR.
     5. RT-qPCR was performed to determine the expressions of three primary transcripts ofmiR-9under hypoxic conditions and HIF-1α-specific siRNA were applied to investigate therole of HIF-1α in the differential expressions of three primary transcripts of miR-9underhypoxia.
     6. The putative HIF-1binding motifs (5′-RCGTG-3′) located within the5-KB regionsupstream of TSSs of miR-9-1, miR-9-2and miR-9-3loci were predicted with the MAPPERdatabase. ChIP assays were performed to determine whether HIF-1α was recruited to theputative binding sites under hypoxia.
     7. To investigate the functional consequences of each binding sites, wild type anddeletion mutant reporters were constructed and dual-luciferase reporter assays wereperformed.
     8. To investigate miR-9expression in small pulmonary arteries of HPH, the HPHmodel of rats was established and then the miR-9expression in pulmonary arterial sectionwas detected by RT-qPCR.
     Results:
     1. After several times of purification for PASMCs by differential adherence, theSM-α-actin-positive cells can reach95%.
     2. Hypoxia treatment down-regulated several VSMCs-specific genes at protein levels,including SM-MHC, SM-α-actin, calponin1and SM22α, compared with the normoxiacontrol group. Cells exposed to hypoxia for48h showed an increased EdU positivePASMCs. Among the candidate miRNAs in HPH, miR-9showed the highest increase(5.3-fold) after24h of hypoxia and was maintained at above4-fold increase after48h ofhypoxia.
     3. Compared with the negative control group,transfection with the miR-9inhibitor significantly increased the expression of contractile phenotypic marker genes at proteinlevels and reduced the percentage of EdU positive PASMCs after48h of hypoxia exposure.By contrast, miR-9mimic, but not mimic control, significantly reduced VSMC markergenes at protein levels and increased the percentage of EdU positive PASMCs in normoxia.
     4. Transfection of HIF-1α specific siRNA significantly reduced miR-9expressionunder hypoxia.
     5. After48h hypoxia exposure, both pri-miR-9-1and pri-miR-9-3significantlyelevated, while pri-miR-9-2had no significant difference. In addition, silencing HIF-1αnearly abolished the hypoxia-induced increase in pri-miR-9-1and pri-miR-9-3comparedwith scrambled siRNA group.
     6. Using in silico analysis, we found the presence of putative HIF-1binding motifs(5′-RCGTG-3′) located within the5-KB regions upstream of TSSs of both miR-9-1andmiR-9-3loci. The miR-9-1locus contains three putative HIF-1binding sites, located at-1292/-1279(R1),-1008/-995(R2) and-874/-861(R3), respectively, and miR-9-3locus hasa putative HIF-1binding site located at-43/-28(R). The HIF-1α enrichment increased in allthe three HIF-1motifs upstream of miR-9-1after24h and48h of hypoxia; among them,miR-9-1R1showed the most significant increase. HIF-1α enrichment upstream of miR-9-3also increased after24h and48h of hypoxia exposure.
     7. The functional consequences of HIF-1binding sites were assessed by dual luciferasereporter assays. For miR-9-1, hypoxia exposure (1%O2) or transfection of HIF-1α vectorenhanced the luciferase activity of wild-type reporter Luc-miR-9-1(WT) to2.1-fold or1.8-fold, respectively, but there were no significant difference on the luciferase activity ofdeletion mutant reporter Luc-miR-9-1(M3). Conversely, depletion of HIF-1α using siRNAfollowed by hypoxia exposure attenuated the luciferase activity of wild-type reporter (WT)but had no effect on the deletion mutant reporter (M3). For miR-9-3, the luciferase activityof wild-type reporter Luc-miR-9-3was increased2.7-fold by hypoxia exposure and wasincreased1.9-fold by transfection of HIF-1α vector. However, neither hypoxia nor HIF-1αoverexpression had any effect on the luciferase activity of the deletion mutant reporterLuc-miR-9-3M (M). Conversely, siRNA-mediated depletion of HIF-1α followed byhypoxia exposure attenuated the luciferase activity of wild-type reporter (WT) but not ofdeletion mutant reporter (M).
     8. Rats were exposed to5000m simulated high altitude in hypobaric chamber toestablish the HPH model. Compared with normoxic control group, the miR-9expression ofchronic hypoxia group in pulmonary arterial section increased significantly.
     Conclusion:
     1. miR-9is involved in hypoxia-induced phenotypic modulation in PASMCs of rats.
     2. The up-regulation of miR-9under hypoxia mainly originates from the transcriptionalactivation of miR-9-1and miR-9-3.
     3. The hypoxia-induced upregulation of miR-9expression is regulated by HIF-1.
     In summary, HIF-1-miR-9regulatory pathway is an important regulatory mechanismof hypoxia-induced phenotypic modulation in PASMCs of rats; miR-9could be a potentialtherapeutic target for prevention and treatment of HPH.
引文
1高钰琪,高原军事医学,重庆出版社(2005)1-2.
    M. Maggiorini, F. Leon-Velarde, High-altitude pulmonary hypertension: a pathophysiological entity to different diseases,Eur Respir J22(2003)1019-1025
    E. Cahill, S.C. Rowan, M. Sands, M. Banahan, D. Ryan, K. Howell, P. McLoughlin, The pathophysiological basis ofchronic hypoxic pulmonary hypertension in the mouse: vasoconstrictor and structural mechanisms contribute equally, ExpPhysiol97(2012)796-806.
    K.R. Stenmark, K.A. Fagan, M.G. Frid, Hypoxia-induced pulmonary vascular remodeling: cellular and molecularmechanisms, Circ Res99(2006)675-691
    T. Tajsic, N.W. Morrell, Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonaryhypertension, Compr Physiol1(2011)295-317
    H. Li, S.J. Chen, Y.F. Chen, Q.C. Meng, J. Durand, S. Oparil, T.S. Elton, Enhanced endothelin-1and endothelinreceptor gene expression in chronic hypoxia, J Appl Physiol (1985)77(1994)1451-1459
    S. Eddahibi, N. Hanoun, L. Lanfumey, K.P. Lesch, B. Raffestin, M. Hamon, S. Adnot, Attenuated hypoxic pulmonaryhypertension in mice lacking the5-hydroxytryptamine transporter gene, J Clin Invest105(2000)1555-1562.
    W. Jie, J. Guo, Z. Shen, X. Wang, S. Zheng, G. Wang, Q. Ao, Contribution of myocardin in the hypoxia-inducedphenotypic switching of rat pulmonary arterial smooth muscle cells, Exp Mol Pathol89(2010)301-306
    B. Yi, J. Cui, J.N. Ning, G.S. Wang, G.S. Qian, K.Z. Lu, Over-expression of PKGIalpha inhibits hypoxia-inducedproliferation, Akt activation, and phenotype modulation of human PASMCs: the role of phenotype modulationof PASMCs in pulmonary vascular remodeling, Gene492(2012)354-360.
    L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, Nat Rev Genet5(2004)522-531
    R.A. Shivdasani, MicroRNAs: regulators of gene expression and cell differentiation, Blood108(2006)3646-3653.
    O. Dumortier, C. Hinault, E. Van Obberghen, MicroRNAs and metabolism crosstalk in energy homeostasis, Cell Metab18(2013)312-324.
    H.W. Hwang, J.T. Mendell, MicroRNAs in cell proliferation, cell death, and tumorigenesis, Br J Cancer96Suppl (2007)R40-44
    W. Yang, D.Y. Lee, Y. Ben-David, The roles of microRNAs in tumorigenesis and angiogenesis, Int J PhysiolPathophysiol Pharmacol3(2011)140-155.
    R.M. O'Connell, D.S. Rao, D. Baltimore, microRNA regulation of inflammatory responses, Annu Rev Immunol30(2012)295-312.
    Y. Suarez, W.C. Sessa, MicroRNAs as novel regulators of angiogenesis, Circ Res104(2009)442-454.
    J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediatedpulmonary artery smooth muscle cell proliferation and migration, Am J Physiol Lung Cell Mol Physiol299(2010)L861-871.
    A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R. Paquet, S. Biardel, S. Provencher, J.Cote, M.J. Simard, S. Bonnet, Role for miR-204in human pulmonary arterial hypertension, J Exp Med208(2011)5035-548
    D. Torella, C. Iaconetti, D. Catalucci, G.M. Ellison, A. Leone, C.D. Waring, A. Bochicchio, C. Vicinanza, I. Aquila, A.Curcio, G. Condorelli, C. Indolfi, MicroRNA-133controls vascular smooth muscle cell phenotypic switch in vitro andvascular remodeling in vivo, Circ Res109(2011)880-893.
    K.R. Cordes, N.T. Sheehy, M.P. White, E.C. Berry, S.U. Morton, A.N. Muth, T.H. Lee, J.M. Miano, K.N. Ivey, D.Srivastava, miR-145and miR-143regulate smooth muscle cell fate and plasticity, Nature460(2009)705-710
    Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin, C. Zhang, MicroRNA-145, anovel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    1K.B. Acampora, J. Nagatomi, E.M. Langan,3rd, M. LaBerge, Increased synthetic phenotype behavior of smooth musclecells in response to in vitro balloon angioplasty injury model, Ann Vasc Surg24(2010)116-126.
    M. Aikawa, Y. Sakomura, M. Ueda, K. Kimura, I. Manabe, S. Ishiwata, N. Komiyama, H. Yamaguchi, Y. Yazaki, R.Nagai, Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression,Circulation96(1997)82-90.
    D. Gomez, G.K. Owens, Smooth muscle cell phenotypic switching in atherosclerosis, Cardiovasc Res95(2012)156-164.
    S. Mori, Y. Saito,[Phenotypic change of the smooth muscle cell and atherosclerosis], Nihon Yakurigaku Zasshi107(1996)161-170.
    Y. Mitani, M. Ueda, R. Komatsu, K. Maruyama, R. Nagai, M. Matsumura, M. Sakurai, Vascular smooth muscle cell6phenotypes in primary pulmonary hypertension, Eur Respir J17(2001)316-320.
    N.W. Morrell, X. Yang, P.D. Upton, K.B. Jourdan, N. Morgan, K.K. Sheares, R.C. Trembath, Altered growth responsesof pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growthfactor-beta(1) and bone morphogenetic proteins, Circulation104(2001)790-795.
    G.K. Owens, M.S. Kumar, B.R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation indevelopment and disease, Physiol Rev84(2004)767-801.
    X.M. Yu, L. Wang, J.F. Li, J. Liu, J. Li, W. Wang, J. Wang, C. Wang, Wnt5a inhibits hypoxia-induced pulmonaryarterial smooth muscle cell proliferation by downregulation of beta-catenin, Am J Physiol Lung Cell Mol Physiol304(2013) L103-111
    A. Raghavan, G. Zhou, Q. Zhou, J.C. Ibe, R. Ramchandran, Q. Yang, H. Racherla, P. Raychaudhuri, J.U. Raj,Hypoxia-induced pulmonary arterial smooth muscle cell proliferation is controlled by forkhead box M1, Am J Respir CellMol Biol46(2012)431-436.
    1X. Li, X. Zhang, R. Leathers, A. Makino, C. Huang, P. Parsa, J. Macias, J.X. Yuan, S.W. Jamieson, P.A. Thistlethwaite,Notch3signaling promotes the development of pulmonary arterial hypertension, Nat Med15(2009)1289-1297.
    2P. Gammell, MicroRNAs: recently discovered key regulators of proliferation and apoptosis in animal cells:Identification of miRNAs regulating growth and survival, Cytotechnology53(2007)55-63.
    3L.T. Jeker, J.A. Bluestone, MicroRNA regulation of T-cell differentiation and function, Immunol Rev253(2013)65-81
    4I. Alvarez-Garcia, E.A. Miska, MicroRNA functions in animal development and human disease, Development132(2005)4653-4662.
    I. Guller, A.P. Russell, MicroRNAs in skeletal muscle: their role and regulation in development, disease and function, JPhysiol588(2010)4075-4087.
    6D. Torella, C. Iaconetti, D. Catalucci, G.M. Ellison, A. Leone, C.D. Waring, A. Bochicchio, C. Vicinanza, I. Aquila, A.Curcio, G. Condorelli, C. Indolfi, MicroRNA-133controls vascular smooth muscle cell phenotypic switch in vitro andvascular remodeling in vivo, Circ Res109(2011)880-893.
    7K.R. Cordes, N.T. Sheehy, M.P. White, E.C. Berry, S.U. Morton, A.N. Muth, T.H. Lee, J.M. Miano, K.N. Ivey, D.Srivastava, miR-145and miR-143regulate smooth muscle cell fate and plasticity, Nature460(2009)705-710.
    8Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin, C. Zhang, MicroRNA-145, anovel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    1G.Q. Qian, L.X. Wang, C. Cheng, X.Y. Huang, S.T. Yei,[Primary cell culture and identification methods of ratpulmonary arterial smooth muscle cells], Zhongguo Ying Yong Sheng Li Xue Za Zhi26(2010)125-128.
    1S. Feng, S. Cong, X. Zhang, X. Bao, W. Wang, H. Li, Z. Wang, G. Wang, J. Xu, B. Du, D. Qu, W. Xiong, M. Yin, X.Ren, F. Wang, J. He, B. Zhang, MicroRNA-192targeting retinoblastoma1inhibits cell proliferation and induces cellapoptosis in lung cancer cells, Nucleic Acids Res39(2011)6669-6678.
    2T. Zhang, Y. Gao, Y. Mao, Q. Zhang, C. Lin, P. Lin, J. Zhang, X. Wang, Growth inhibition and apoptotic effect ofalpha-eleostearic acid on human breast cancer cells, J Nat Med66(2012)77-84.
    3H. Zhang, Y. Gong, Z. Wang, L. Jiang, R. Chen, X. Fan, H. Zhu, L. Han, X. Li, J. Xiao, X. Kong, Apelin inhibits theproliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagyunder hypoxia, J Cell Mol Med18(2014)542-553.
    S.S. Rensen, P.A. Doevendans, G.J. van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypicdiversity, Neth Heart J15(2007)100-108.
    1J.D. Hemmer, D. Dean, A. Vertegel, E. Langan,3rd, M. LaBerge, Effects of serum deprivation on the mechanicalproperties of adherent vascular smooth muscle cells, Proc Inst Mech Eng H222(2008)761-772
    Y. Yamanaka, K. Hayashi, T. Komurasaki, S. Morimoto, T. Ogihara, K. Sobue, EGF family ligand-dependentphenotypic modulation of smooth muscle cells through EGF receptor, Biochem Biophys Res Commun281(2001)373-377.
    Y.C. Wu, L. Cui, G. Li, S. Yin, Y.J. Gao, Y.L. Cao,[PDGF-BB initiates vascular smooth muscle-like phenotypedifferentiation of human bone marrow mesenchymal stem cells in vitro], Zhonghua Zheng Xing Wai Ke Za Zhi23(2007)335-339.
    S. Inamoto, C.S. Kwartler, A.L. Lafont, Y.Y. Liang, V.T. Fadulu, S. Duraisamy, M. Willing, A. Estrera, H. Safi, M.C.Hannibal, J. Carey, J. Wiktorowicz, F.K. Tan, X.H. Feng, H. Pannu, D.M. Milewicz, TGFBR2mutations alter smoothmuscle cell phenotype and predispose to thoracic aortic aneurysms and dissections, Cardiovasc Res88(2010)520-529.
    C.C. Wang, I. Gurevich, B. Draznin, Insulin affects vascular smooth muscle cell phenotype and migration via distinctsignaling pathways, Diabetes52(2003)2562-2569.
    T. Sorger, N. Friday, L.D. Yang, E.M. Levine, Heparin and the phenotype of adult human vascular smooth muscle cells,In Vitro Cell Dev Biol Anim31(1995)671-683.
    W. Jie, J. Guo, Z. Shen, X. Wang, S. Zheng, G. Wang, Q. Ao, Contribution of myocardin in the hypoxia-inducedphenotypic switching of rat pulmonary arterial smooth muscle cells, Exp Mol Pathol89(2010)301-306
    B. Yi, J. Cui, J.N. Ning, G.S. Wang, G.S. Qian, K.Z. Lu, Over-expression of PKGIalpha inhibits hypoxia-inducedproliferation, Akt activation, and phenotype modulation of human PASMCs: the role of phenotype modulation ofPASMCs in pulmonary vascular remodeling, Gene492(2012)354-360.
    B.N. Davis-Dusenbery, C. Wu, A. Hata, Micromanaging vascular smooth muscle cell differentiation and phenotypicmodulation, Arterioscler Thromb Vasc Biol31(2011)2370-2377.
    J. Li, L. Zhao, X. He, T. Yang, K. Yang, MiR-21inhibits c-Ski signaling to promote the proliferation of rat vascularsmooth muscle cells, Cell Signal26(2014)724-729.
    N.J. Leeper, A. Raiesdana, Y. Kojima, H.J. Chun, J. Azuma, L. Maegdefessel, R.K. Kundu, T. Quertermous, P.S. Tsao,
    J.M. Spin, MicroRNA-26a is a novel regulator of vascular smooth muscle cell function, J Cell Physiol226(2011)1035-1043.
    S.G. Sun, B. Zheng, M. Han, X.M. Fang, H.X. Li, S.B. Miao, M. Su, Y. Han, H.J. Shi, J.K. Wen, miR-146a andKruppel-like factor4form a feedback loop to participate in vascular smooth muscle cell proliferation, EMBO Rep12(2011)56-62.
    X. Liu, Y. Cheng, S. Zhang, Y. Lin, J. Yang, C. Zhang, A necessary role of miR-221and miR-222in vascular smoothmuscle cell proliferation and neointimal hyperplasia, Circ Res104(2009)476-487
    K.R. Cordes, N.T. Sheehy, M.P. White, E.C. Berry, S.U. Morton, A.N. Muth, T.H. Lee, J.M. Miano, K.N. Ivey, D.Srivastava, miR-145and miR-143regulate smooth muscle cell fate and plasticity, Nature460(2009)705-710.
    Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin, C. Zhang, MicroRNA-145, anovel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    1A.H. Baker, MicroRNA21"shapes" vascular smooth muscle behavior through regulating tropomyosin1, ArteriosclerThromb Vasc Biol31(2011)1941-1942.
    J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediatedpulmonary artery smooth muscle cell proliferation and migration, Am J Physiol Lung Cell Mol Physiol299(2010)L861-871.
    3A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R. Paquet, S. Biardel, S. Provencher, J.Cote, M.J. Simard, S. Bonnet, Role for miR-204in human pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    4S.S. Pullamsetti, C. Doebele, A. Fischer, R. Savai, B. Kojonazarov, B.K. Dahal, H.A. Ghofrani, N. Weissmann, F.Grimminger, A. Bonauer, W. Seeger, A.M. Zeiher, S. Dimmeler, R.T. Schermuly, Inhibition of microRNA-17improveslung and heart function in experimental pulmonary hypertension, Am J Respir Crit Care Med185(2012)409-419.
    5S. Jalali, G.K. Ramanathan, P.T. Parthasarathy, S. Aljubran, L. Galam, A. Yunus, S. Garcia, R.R. Cox, Jr., R.F. Lockey,N. Kolliputi, Mir-206regulates pulmonary artery smooth muscle cell proliferation and differentiation, PLoS One7(2012)e46808.
    6J. Kim, Y. Kang, Y. Kojima, J.K. Lighthouse, X. Hu, M.A. Aldred, D.L. McLean, H. Park, S.A. Comhair, D.M. Greif,S.C. Erzurum, H.J. Chun, An endothelial apelin-FGF link mediated by miR-424and miR-503is disrupted in pulmonaryarterial hypertension, Nat Med19(2013)74-82.
    7L. Guo, Z. Qiu, L. Wei, X. Yu, X. Gao, S. Jiang, H. Tian, C. Jiang, D. Zhu, The microRNA-328regulates hypoxicpulmonary hypertension by targeting at insulin growth factor1receptor and L-type calcium channel-alpha1C,Hypertension59(2012)1006-1013
    1S.L. Tan, T. Ohtsuka, A. Gonzalez, R. Kageyama, MicroRNA9regulates neural stem cell differentiation by controllingHes1expression dynamics in the developing brain, Genes Cells17(2012)952-961.
    2H. Luo, H. Zhang, Z. Zhang, X. Zhang, B. Ning, J. Guo, N. Nie, B. Liu, X. Wu, Down-regulated miR-9and miR-433inhuman gastric carcinoma, J Exp Clin Cancer Res28(2009)82.
    3S.D. Selcuklu, M.T. Donoghue, K. Rehmet, M. de Souza Gomes, A. Fort, P. Kovvuru, M.K. Muniyappa, M.J. Kerin, A.J.Enright, C. Spillane, MicroRNA-9inhibition of cell proliferation and identification of novel miR-9targets bytranscriptome profiling in breast cancer cells, J Biol Chem287(2012)29516-29528.
    4L. Zhu, H. Chen, D. Zhou, D. Li, R. Bai, S. Zheng, W. Ge, MicroRNA-9up-regulation is involved in colorectal cancermetastasis via promoting cell motility, Med Oncol29(2012)1037-1043.
    5H. Zhang, M. Qi, S. Li, T. Qi, H. Mei, K. Huang, L. Zheng, Q. Tong, microRNA-9targets matrix metalloproteinase14to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells, Mol Cancer Ther11(2012)1454-1466.
    6L. Ma, J. Young, H. Prabhala, E. Pan, P. Mestdagh, D. Muth, J. Teruya-Feldstein, F. Reinhardt, T.T. Onder, S.Valastyan, F. Westermann, F. Speleman, J. Vandesompele, R.A. Weinberg, miR-9, a MYC/MYCN-activated microRNA,regulates E-cadherin and cancer metastasis, Nat Cell Biol12(2010)247-256.
    7C. Leucht, C. Stigloher, A. Wizenmann, R. Klafke, A. Folchert, L. Bally-Cuif, MicroRNA-9directs late organizeractivity of the midbrain-hindbrain boundary, Nat Neurosci11(2008)641-648.
    K. Wang, B. Long, J. Zhou, P.F. Li, miR-9and NFATc3regulate myocardin in cardiac hypertrophy, J Biol Chem285(2010)11903-11912.
    1K. Wang, B. Long, J. Zhou, P.F. Li, miR-9and NFATc3regulate myocardin in cardiac hypertrophy, J Biol Chem285(2010)11903-11912.
    1E. Leucci, A. Zriwil, L.H. Gregersen, K.T. Jensen, S. Obad, C. Bellan, L. Leoncini, S. Kauppinen, A.H. Lund, Inhibitionof miR-9de-represses HuR and DICER1and impairs Hodgkin lymphoma tumour outgrowth in vivo, Oncogene31(2012)5081-5089.
    D. Nass, S. Rosenwald, E. Meiri, S. Gilad, H. Tabibian-Keissar, A. Schlosberg, H. Kuker, N. Sion-Vardy, A. Tobar, O.Kharenko, E. Sitbon, G. Lithwick Yanai, E. Elyakim, H. Cholakh, H. Gibori, Y. Spector, Z. Bentwich, I. Barshack, N.Rosenfeld, MiR-92b and miR-9/9*are specifically expressed in brain primary tumors and can be used to differentiateprimary from metastatic brain tumors, Brain Pathol19(2009)375-383.
    P. Rotkrua, Y. Akiyama, Y. Hashimoto, T. Otsubo, Y. Yuasa, MiR-9downregulates CDX2expression in gastric cancercells, Int J Cancer129(2011)2611-2620.
    X. Zhou, C. Marian, K.H. Makambi, O. Kosti, B.V. Kallakury, C.A. Loffredo, Y.L. Zheng, MicroRNA-9as potentialbiomarker for breast cancer local recurrence and tumor estrogen receptor status, PLoS One7(2012) e39011.
    1H. Tang, L. Yao, X. Tao, Y. Yu, M. Chen, R. Zhang, C. Xu, miR-9functions as a tumor suppressor in ovarian serouscarcinoma by targeting TLN1, Int J Mol Med32(2013)381-388.
    2H.Y. Wan, L.M. Guo, T. Liu, M. Liu, X. Li, H. Tang, Regulation of the transcription factor NF-kappaB1bymicroRNA-9in human gastric adenocarcinoma, Mol Cancer9(2010)16.
    3L. Zheng, T. Qi, D. Yang, M. Qi, D. Li, X. Xiang, K. Huang, Q. Tong, microRNA-9suppresses the proliferation,invasion and metastasis of gastric cancer cells through targeting cyclin D1and Ets1, PLoS One8(2013) e55719.
    4W. Jie, J. Guo, Z. Shen, X. Wang, S. Zheng, G. Wang, Q. Ao, Contribution of myocardin in the hypoxia-inducedphenotypic switching of rat pulmonary arterial smooth muscle cells, Exp Mol Pathol89(2010)301-306.
    5B. Yi, J. Cui, J.N. Ning, G.S. Wang, G.S. Qian, K.Z. Lu, Over-expression of PKGIalpha inhibits hypoxia-inducedproliferation, Akt activation, and phenotype modulation of human PASMCs: the role of phenotype modulation ofPASMCs in pulmonary vascular remodeling, Gene492(2012)354-360.
    W. Xing, T.C. Zhang, D. Cao, Z. Wang, C.L. Antos, S. Li, Y. Wang, E.N. Olson, D.Z. Wang, Myocardin inducescardiomyocyte hypertrophy, Circ Res98(2006)1089-1097.
    1T. Tanaka, H. Sato, H. Doi, C.A. Yoshida, T. Shimizu, H. Matsui, M. Yamazaki, H. Akiyama, K. Kawai-Kowase, T. Iso,T. Komori, M. Arai, M. Kurabayashi, Runx2represses myocardin-mediated differentiation and facilitates osteogenicconversion of vascular smooth muscle cells, Molecular and Cellular Biology28(2008)1147-1160.
    2L. Pfisterer, A. Feldner, M. Hecker, T. Korff, Hypertension impairs myocardin function: a novel mechanism facilitatingarterial remodelling, Cardiovasc Res96(2012)120-129.
    3Z. Wang, D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, E.N. Olson, Myocardin and ternary complex factorscompete for SRF to control smooth muscle gene expression, Nature428(2004)185-189
    J. Huang, L. Cheng, J. Li, M. Chen, D. Zhou, M.M. Lu, A. Proweller, J.A. Epstein, M.S. Parmacek, Myocardin regulatesexpression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice, J ClinInvest118(2008)515-525.
    5Z. Wang, D.Z. Wang, G.C. Pipes, E.N. Olson, Myocardin is a master regulator of smooth muscle gene expression, ProcNatl Acad Sci U S A100(2003)7129-7134.
    6R.H. Tang, X.L. Zheng, T.E. Callis, W.E. Stansfield, J. He, A.S. Baldwin, D.Z. Wang, C.H. Selzman, Myocardininhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression, Proc Natl Acad Sci U S A105(2008)3362-3367.
    K. Wang, B. Long, J. Zhou, P.F. Li, miR-9and NFATc3regulate myocardin in cardiac hypertrophy, J Biol Chem285(2010)11903-11912.
    1D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell116(2004)281-297.
    J. Liu, M.A. Carmell, F.V. Rivas, C.G. Marsden, J.M. Thomson, J.J. Song, S.M. Hammond, L. Joshua-Tor, G.J. Hannon,Argonaute2is the catalytic engine of mammalian RNAi, Science305(2004)1437-1441.
    G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng, T. Tuschl, Human Argonaute2mediates RNAcleavage targeted by miRNAs and siRNAs, Mol Cell15(2004)185-197.
    G.L. Semenza, HIF-1and mechanisms of hypoxia sensing, Curr Opin Cell Biol13(2001)167-171.
    K. Yamashita, D.J. Discher, J. Hu, N.H. Bishopric, K.A. Webster, Molecular regulation of the endothelin-1gene byhypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP, J Biol Chem276(2001)12645-12653.
    J. Wang, L. Weigand, W. Lu, J.T. Sylvester, G.L. Semenza, L.A. Shimoda, Hypoxia inducible factor1mediateshypoxia-induced TRPC expression and elevated intracellular Ca2+in pulmonary arterial smooth muscle cells, Circ Res98(2006)1528-1537.
    L.A. Shimoda, M. Fallon, S. Pisarcik, J. Wang, G.L. Semenza, HIF-1regulates hypoxic induction of NHE1expressionand alkalinization of intracellular pH in pulmonary arterial myocytes, Am J Physiol Lung Cell Mol Physiol291(2006)L941-949.
    1V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors, Blood Rev27(2013)41-53.
    2J.A. Forsythe, B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, G.L. Semenza, Activation of vascularendothelial growth factor gene transcription by hypoxia-inducible factor1, Molecular and Cellular Biology16(1996)4604-4613.
    3G.L. Semenza, G.L. Wang, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the humanerythropoietin gene enhancer at a site required for transcriptional activation, Molecular and Cellular Biology12(1992)5447-5454.
    4M. Hayashi, M. Sakata, T. Takeda, T. Yamamoto, Y. Okamoto, K. Sawada, A. Kimura, R. Minekawa, M. Tahara, K.Tasaka, Y. Murata, Induction of glucose transporter1expression through hypoxia-inducible factor1alpha under hypoxicconditions in trophoblast-derived cells, J Endocrinol183(2004)145-154.
    5G.L. Semenza, B.H. Jiang, S.W. Leung, R. Passantino, J.P. Concordet, P. Maire, A. Giallongo, Hypoxia responseelements in the aldolase A, enolase1, and lactate dehydrogenase A gene promoters contain essential binding sites forhypoxia-inducible factor1, J Biol Chem271(1996)32529-32537.
    6O. Minchenko, I. Opentanova, D. Minchenko, T. Ogura, H. Esumi, Hypoxia induces transcription of6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4gene via hypoxia-inducible factor-1alpha activation, FEBS Lett576(2004)14-20.
    7J.D. Firth, B.L. Ebert, P.J. Ratcliffe, Hypoxic regulation of lactate dehydrogenase A. Interaction betweenhypoxia-inducible factor1and cAMP response elements, J Biol Chem270(1995)21021-21027.
    8Q.F. Li, A.G. Dai, Hypoxia inducible factor-1alpha correlates the expression of heme oxygenase1gene in pulmonaryarteries of rat with hypoxia-induced pulmonary hypertension, Acta Biochim Biophys Sin (Shanghai)36(2004)133-140.
    9F. Jung, L.A. Palmer, N. Zhou, R.A. Johns, Hypoxic regulation of inducible nitric oxide synthase via hypoxia induciblefactor-1in cardiac myocytes, Circ Res86(2000)319-325.
    G. Camenisch, D.M. Stroka, M. Gassmann, R.H. Wenger, Attenuation of HIF-1DNA-binding activity limitshypoxia-inducible endothelin-1expression, Pflugers Arch443(2001)240-249.
    1J. Wang, L. Weigand, W. Lu, J.T. Sylvester, G.L. Semenza, L.A. Shimoda, Hypoxia inducible factor1mediateshypoxia-induced TRPC expression and elevated intracellular Ca2+in pulmonary arterial smooth muscle cells, Circ Res98(2006)1528-1537.
    2L.A. Shimoda, M. Fallon, S. Pisarcik, J. Wang, G.L. Semenza, HIF-1regulates hypoxic induction of NHE1expressionand alkalinization of intracellular pH in pulmonary arterial myocytes, Am J Physiol Lung Cell Mol Physiol291(2006)L941-949.
    3E.M. Abud, J. Maylor, C. Undem, A. Punjabi, A.L. Zaiman, A.C. Myers, J.T. Sylvester, G.L. Semenza, L.A. Shimoda,Digoxin inhibits development of hypoxic pulmonary hypertension in mice, Proc Natl Acad Sci U S A109(2012)1239-1244.
    1T.K. Jeffery, J.C. Wanstall, Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonaryhypertension, Pharmacol Ther92(2001)1-20.
    1J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediatedpulmonary artery smooth muscle cell proliferation and migration, Am J Physiol Lung Cell Mol Physiol299(2010)L861-871.
    1A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R. Paquet, S. Biardel, S. Provencher, J.Cote, M.J. Simard, S. Bonnet, Role for miR-204in human pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    2C. Atkinson, S. Stewart, P.D. Upton, R. Machado, J.R. Thomson, R.C. Trembath, N.W. Morrell, Primary pulmonaryhypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor,Circulation105(2002)1672-1678.
    3V. Pelouch, F. Kolar, B. Ost'adal, M. Milerova, R. Cihak, J. Widimsky, Regression of chronic hypoxia-inducedpulmonary hypertension, right ventricular hypertrophy, and fibrosis: effect of enalapril, Cardiovasc Drugs Ther11(1997)177-185.
    1S. Lafitte, X. Pillois, P. Reant, F. Picard, F. Arsac, M. Dijos, P. Coste, P. Dos Santos, R. Roudaut, Estimation ofpulmonary pressures and diagnosis of pulmonary hypertension by Doppler echocardiography: a retrospective comparisonof routine echocardiography and invasive hemodynamics, J Am Soc Echocardiogr26(2013)457-463.
    1S.S. Kothari, Clinical classification of pulmonary hypertension, J Am Coll Cardiol55(2010)267; author reply267.
    K.B. Lane, R.D. Machado, M.W. Pauciulo, J.R. Thomson, J.A. Phillips,3rd, J.E. Loyd, W.C. Nichols, R.C. Trembath,Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonaryhypertension, Nat Genet26(2000)81-84.
    J. Cogan, E. Austin, L. Hedges, B. Womack, J. West, J. Loyd, R. Hamid, Role of BMPR2alternative splicing in heritableulmonary arterial hypertension penetrance, Circulation126(2012)1907-1916.
    G. Pousada, A. Villar, C. Vilarino, D. Valverde, Mutational Analysis of BMPR2, KCNA5, and ACVRL Genes in PatientsWith Pulmonary Arterial Hypertension, Chest145(2014)511A.
    J.H. Newman, L. Wheeler, K.B. Lane, E. Loyd, R. Gaddipati, J.A. Phillips,3rd, J.E. Loyd, Mutation in the gene for bonemorphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred, N Engl J Med345(2001)319-324.
    J.R. Thomson, R.D. Machado, M.W. Pauciulo, N.V. Morgan, M. Humbert, G.C. Elliott, K. Ward, M. Yacoub, G. Mikhail,P. Rogers, J. Newman, L. Wheeler, T. Higenbottam, J.S. Gibbs, J. Egan, A. Crozier, A. Peacock, R. Allcock, P. Corris, J.E.Loyd, R.C. Trembath, W.C. Nichols, Sporadic primary pulmonary hypertension is associated with germline mutations ofthe gene encoding BMPR-II, a receptor member of the TGF-beta family, J Med Genet37(2000)741-745.
    M.R. Maclean, Y. Dempsie, The serotonin hypothesis of pulmonary hypertension revisited, Adv Exp Med Biol661(2010)309-322.
    M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib, V. Gressin, A. Yaici, E. Weitzenblum, J.F. Cordier, F.Chabot, C. Dromer, C. Pison, M. Reynaud-Gaubert, A. Haloun, M. Laurent, E. Hachulla, G. Simonneau, Pulmonaryarterial hypertension in France: results from a national registry, Am J Respir Crit Care Med173(2006)1023-1030.
    Y. Ling, M.K. Johnson, D.G. Kiely, R. Condliffe, C.A. Elliot, J.S. Gibbs, L.S. Howard, J. Pepke-Zaba, K.K. Sheares, P.A.Corris, A.J. Fisher, J.L. Lordan, S. Gaine, J.G. Coghlan, S.J. Wort, M.A. Gatzoulis, A.J. Peacock, Changing demographics,epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registryof the United Kingdom and Ireland, Am J Respir Crit Care Med186(2012)790-796.
    A.E. Frost, D.B. Badesch, R.J. Barst, R.L. Benza, C.G. Elliott, H.W. Farber, A. Krichman, T.G. Liou, G.E. Raskob, P.Wason, K. Feldkircher, M. Turner, M.D. McGoon, The changing picture of patients with pulmonary arterial hypertensionin the United States: how REVEAL differs from historic and non-US Contemporary Registries, Chest139(2011)128-137.
    D.B. Badesch, G.E. Raskob, C.G. Elliott, A.M. Krichman, H.W. Farber, A.E. Frost, R.J. Barst, R.L. Benza, T.G. Liou, M.Turner, S. Giles, K. Feldkircher, D.P. Miller, M.D. McGoon, Pulmonary arterial hypertension: baseline characteristics fromthe REVEAL Registry, Chest137(2010)376-387.
    M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib, V. Gressin, A. Yaici, E. Weitzenblum, J.F. Cordier, F.Chabot, C. Dromer, C. Pison, M. Reynaud-Gaubert, A. Haloun, M. Laurent, E. Hachulla, V. Cottin, B. Degano, X. Jais, D.Montani, R. Souza, G. Simonneau, Survival in patients with idiopathic, familial, and anorexigen-associated pulmonaryarterial hypertension in the modern management era, Circulation122(2010)156-163.
    T.T. Zhang, B. Cui, D.Z. Dai, X.Y. Tang, Pharmacological efficacy of CPU86017on hypoxic pulmonary hypertensionin rats: mediated by direct inhibition of calcium channels and antioxidant action, but indirect effects on the ET-1pathway, JCrdiovasc Pharmacol46(2005)727-734
    V.F. Tapson, F. Torres, F. Kermeen, A.M. Keogh, R.P. Allen, R.P. Frantz, D.B. Badesch, A.E. Frost, S.M. Shapiro, K.Laliberte, J. Sigman, C. Arneson, N. Galie, Oral treprostinil for the treatment of pulmonary arterial hypertension in patientson background endothelin receptor antagonist and/or phosphodiesterase type5inhibitor therapy (the FREEDOM-C study):a randomized controlled trial, Chest142(2012)1383-1390.
    J.L. Vachiery, Prostacyclins in pulmonary arterial hypertension: the need for earlier therapy, Adv Ther28(2011)251-269.
    1S. Wedgwood, R.W. Dettman, S.M. Black, ET-1stimulates pulmonary arterial smooth muscle cell proliferation viainduction of reactive oxygen species, Am J Physiol Lung Cell Mol Physiol281(2001) L1058-1067.
    2L. Wei, Y. Liu, H. Kaneto, B.L. Fanburg, JNK regulates serotonin-mediated proliferation and migration of pulmonaryartery smooth muscle cells, Am J Physiol Lung Cell Mol Physiol298(2010) L863-869.
    3Y. Yu, M. Sweeney, S. Zhang, O. Platoshyn, J. Landsberg, A. Rothman, J.X. Yuan, PDGF stimulates pulmonary vascularsmooth muscle cell proliferation by upregulating TRPC6expression, Am J Physiol Cell Physiol284(2003) C316-330.
    4Y. Yuan, F. Yang, H. Xu, W.Y. Yu, Y. Sun, H.J. Deng, W.D. Ma, Z.Q. Wei, R.M. Wang,[Effect ofN-acetyl-seryl-aspartyl-lysyl-proline on differentiation from pulmonary fibroblast to myofibroblast mediated byRho-associated coiled-coilforming protein kinase pathway], Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi31(2013)654-660.
    5N. Sandbo, S. Kregel, S. Taurin, S. Bhorade, N.O. Dulin, Critical role of serum response factor in pulmonarymyofibroblast differentiation induced by TGF-beta, Am J Respir Cell Mol Biol41(2009)332-338.
    6J.V. Jester, J. Huang, P.A. Barry-Lane, W.W. Kao, W.M. Petroll, H.D. Cavanagh, Transforming growthfactor(beta)-mediated corneal myofibroblast differentiation requires actin and fibronectin assembly, Invest Ophthalmol VisSci40(1999)1959-1967.
    7S.T. Hollenbeck, H. Itoh, O. Louie, P.L. Faries, B. Liu, K.C. Kent, Type I collagen synergistically enhancesPDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the alpha2beta1integrinand PDGFbeta receptor, Biochem Biophys Res Commun325(2004)328-337.
    8M.L. Correa-Giannella, M.R. de Azevedo, D. Leroith, D. Giannella-Neto, Fibronectin glycation increases IGF-I inducedproliferation of human aortic smooth muscle cells, Diabetol Metab Syndr4(2012)19.
    9T. Ishigaki, K. Imanaka-Yoshida, N. Shimojo, S. Matsushima, W. Taki, T. Yoshida, Tenascin-C enhances crosstalksignaling of integrin alphavbeta3/PDGFR-beta complex by SRC recruitment promoting PDGF-induced proliferation andmigration in smooth muscle cells, J Cell Physiol226(2011)2617-2624.
    1M. Humbert, D. Montani, F. Perros, P. Dorfmuller, S. Adnot, S. Eddahibi, Endothelial cell dysfunction and cross talkbetween endothelium and smooth muscle cells in pulmonary arterial hypertension, Vascul Pharmacol49(2008)113-118.
    D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell116(2004)281-297.
    O. Dumortier, C. Hinault, E. Van Obberghen, MicroRNAs and metabolism crosstalk in energy homeostasis, Cell Metab18(2013)312-324.
    5R.A. Shivdasani, MicroRNAs: regulators of gene expression and cell differentiation, Blood108(2006)3646-3653.
    H.W. Hwang, J.T. Mendell, MicroRNAs in cell proliferation, cell death, and tumorigenesis, Br J Cancer96Suppl (2007)R40-44.
    W. Yang, D.Y. Lee, Y. Ben-David, The roles of microRNAs in tumorigenesis and angiogenesis, Int J PhysiolPathophysiol Pharmacol3(2011)140-155.
    R.M. O'Connell, D.S. Rao, D. Baltimore, microRNA regulation of inflammatory responses, Annu Rev Immunol30(2012)295-312.
    Y. Suarez, W.C. Sessa, MicroRNAs as novel regulators of angiogenesis, Circ Res104(2009)442-454.
    1A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R. Paquet, S. Biardel, S. Provencher, J.Cote, M.J. Simard, S. Bonnet, Role for miR-204in human pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    A. Chaouat, L. Savale, C. Chouaid, L. Tu, B. Sztrymf, M. Canuet, B. Maitre, B. Housset, C. Brandt, P. Le Corvoisier, E.Weitzenblum, S. Eddahibi, S. Adnot, Role for interleukin-6in COPD-related pulmonary hypertension, Chest136(2009)678-687.
    S.M. Golembeski, J. West, Y. Tada, K.A. Fagan, Interleukin-6causes mild pulmonary hypertension and augmentshypoxia-induced pulmonary hypertension in mice, Chest128(2005)572S-573S.
    M.K. Steiner, O.L. Syrkina, N. Kolliputi, E.J. Mark, C.A. Hales, A.B. Waxman, Interleukin-6overexpression inducespulmonary hypertension, Circ Res104(2009)236-244,228p following244.
    M. Zhang, Q. Liu, S. Mi, X. Liang, Z. Zhang, X. Su, J. Liu, Y. Chen, M. Wang, Y. Zhang, F. Guo, R. Yang, BothmiR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3expression, J Immunol186(2011)4716-4724.
    T. Luo, S. Cui, C. Bian, X. Yu, Crosstalk between TGF-beta/Smad3and BMP/BMPR2signaling pathways viamiR-17-92cluster in carotid artery restenosis, Mol Cell Biochem389(2014)169-176.
    M. Brock, M. Trenkmann, R.E. Gay, B.A. Michel, S. Gay, M. Fischler, S. Ulrich, R. Speich, L.C. Huber, Interleukin-6modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster17/92pathway, Circ Res104(2009)1184-1191.
    J. Tao, D. Wu, P. Li, B. Xu, Q. Lu, W. Zhang, microRNA-18a, a member of the oncogenic miR-17-92cluster, targetsDicer and suppresses cell proliferation in bladder cancer T24cells, Mol Med Rep5(2012)167-172.
    1P. Mu, Y.C. Han, D. Betel, E. Yao, M. Squatrito, P. Ogrodowski, E. de Stanchina, A. D'Andrea, C. Sander, A. Ventura,Genetic dissection of the miR-17~92cluster of microRNAs in Myc-induced B-cell lymphomas, Genes Dev23(2009)2806-2811.
    2S.S. Pullamsetti, C. Doebele, A. Fischer, R. Savai, B. Kojonazarov, B.K. Dahal, H.A. Ghofrani, N. Weissmann, F.Grimminger, A. Bonauer, W. Seeger, A.M. Zeiher, S. Dimmeler, R.T. Schermuly, Inhibition of microRNA-17improves
    3lung and heart function in experimental pulmonary hypertension, Am J Respir Crit Care Med185(2012)409-419.S. Yang, S. Banerjee, A. Freitas, H. Cui, N. Xie, E. Abraham, G. Liu, miR-21regulates chronic hypoxia-inducedpulmonary vascular remodeling, Am J Physiol Lung Cell Mol Physiol302(2012) L521-529.
    4V.N. Parikh, R.C. Jin, S. Rabello, N. Gulbahce, K. White, A. Hale, K.A. Cottrill, R.S. Shaik, A.B. Waxman, Y.Y. Zhang,B.A. Maron, J.C. Hartner, Y. Fujiwara, S.H. Orkin, K.J. Haley, A.L. Barabasi, J. Loscalzo, S.Y. Chan, MicroRNA-21integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach,Circulation125(2012)1520-1532.
    5J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediatedpulmonary artery smooth muscle cell proliferation and migration, Am J Physiol Lung Cell Mol Physiol299(2010)L861-871.
    6J. Yang, X. Li, R.S. Al-Lamki, M. Southwood, J. Zhao, A.M. Lever, F. Grimminger, R.T. Schermuly, N.W. Morrell,Smad-dependent and smad-independent induction of id1by prostacyclin analogues inhibits proliferation of pulmonaryartery smooth muscle cells in vitro and in vivo, Circ Res107(2010)252-262.
    7A. Moustakas, S. Souchelnytskyi, C.H. Heldin, Smad regulation in TGF-beta signal transduction, J Cell Sci114(2001)4359-4369.
    8P. Caruso, M.R. MacLean, R. Khanin, J. McClure, E. Soon, M. Southgate, R.A. MacDonald, J.A. Greig, K.E. Robertson,R. Masson, L. Denby, Y. Dempsie, L. Long, N.W. Morrell, A.H. Baker, Dynamic changes in lung microRNA profilesduring the development of pulmonary hypertension due to chronic hypoxia and monocrotaline, Arterioscler Thromb VascBiol30(2010)716-723.
    1M.S. Parmacek, MicroRNA-modulated targeting of vascular smooth muscle cells, J Clin Invest119(2009)2526-2528.E.N. Olson, A. Nordheim, Linking actin dynamics and gene transcription to drive cellular motile functions, Nat Rev MolCell Biol11(2010)353-365.
    M. Xin, E.M. Small, L.B. Sutherland, X. Qi, J. McAnally, C.F. Plato, J.A. Richardson, R. Bassel-Duby, E.N. Olson,MicroRNAs miR-143and miR-145modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury,Genes Dev23(2009)2166-2178
    B.N. Davis-Dusenbery, M.C. Chan, K.E. Reno, A.S. Weisman, M.D. Layne, G. Lagna, A. Hata, down-regulation ofKruppel-like factor-4(KLF4) by microRNA-143/145is critical for modulation of vascular smooth muscle cell phenotypeby transforming growth factor-beta and bone morphogenetic protein4, J Biol Chem286(2011)28097-28110.
    J.M. Boucher, S.M. Peterson, S. Urs, C. Zhang, L. Liaw, The miR-143/145cluster is a novel transcriptional target ofJagged-1/Notch signaling in vascular smooth muscle cells, J Biol Chem286(2011)28312-28321.
    L. Elia, M. Quintavalle, J. Zhang, R. Contu, L. Cossu, M.V. Latronico, K.L. Peterson, C. Indolfi, D. Catalucci, J. Chen,S.A. Courtneidge, G. Condorelli, The knockout of miR-143and-145alters smooth muscle cell maintenance and vascularhomeostasis in mice: correlates with human disease, Cell Death Differ16(2009)1590-1598.
    Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin, C. Zhang, MicroRNA-145, anovel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    P. Caruso, Y. Dempsie, H.C. Stevens, R.A. McDonald, L. Long, R. Lu, K. White, K.M. Mair, J.D. McClure, M.Southwood, P. Upton, M. Xin, E. van Rooij, E.N. Olson, N.W. Morrell, M.R. MacLean, A.H. Baker, A role for miR-145inpulmonary arterial hypertension: evidence from mouse models and patient samples, Circ Res111(2012)290-300.
    1A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R. Paquet, S. Biardel, S. Provencher, J.Cote, M.J. Simard, S. Bonnet, Role for miR-204in human pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    R. Paulin, A. Courboulin, J. Meloche, V. Mainguy, E. Dumas de la Roque, N. Saksouk, J. Cote, S. Provencher, M.A.
    Sussman, S. Bonnet, Signal transducers and activators of transcription-3/pim1axis plays a critical role in the pathogenesisof human pulmonary arterial hypertension, Circulation123(2011)1205-1215.
    S. Bonnet, G. Rochefort, G. Sutendra, S.L. Archer, A. Haromy, L. Webster, K. Hashimoto, S.N. Bonnet, E.D. Michelakis,The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted, Proc Natl AcadSci U S A104(2007)11418-11423.
    J. Kim, Y. Kang, Y. Kojima, J.K. Lighthouse, X. Hu, M.A. Aldred, D.L. McLean, H. Park, S.A. Comhair, D.M. Greif,S.C. Erzurum, H.J. Chun, An endothelial apelin-FGF link mediated by miR-424and miR-503is disrupted in pulmonaryarterial hypertension, Nat Med19(2013)74-82.
    1T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G. Feldmann, M. Yamakuchi, M.Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A. Maitra, J.T. Mendell, Transactivation of miR-34a by p53broadlyinfluences gene expression and promotes apoptosis, Mol Cell26(2007)745-752.
    S. Mizuno, H.J. Bogaard, D. Kraskauskas, A. Alhussaini, J. Gomez-Arroyo, N.F. Voelkel, T. Ishizaki, p53Genedeficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice, Am J Physiol Lung CellMol Physiol300(2011) L753-761.
    X. Ji, Z. Wang, A. Geamanu, A. Goja, F.H. Sarkar, S.V. Gupta, Delta-tocotrienol suppresses Notch-1pathway byupregulating miR-34a in nonsmall cell lung cancer cells, Int J Cancer131(2012)2668-2677.
    S. Jalali, G.K. Ramanathan, P.T. Parthasarathy, S. Aljubran, L. Galam, A. Yunus, S. Garcia, R.R. Cox, Jr., R.F. Lockey, N.Kolliputi, Mir-206regulates pulmonary artery smooth muscle cell proliferation and differentiation, PLoS One7(2012) e46808.
    J. Yue, J. Guan, X. Wang, L. Zhang, Z. Yang, Q. Ao, Y. Deng, P. Zhu, G. Wang, MicroRNA-206is involved inhypoxia-induced pulmonary hypertension through targeting of the HIF-1alpha/Fhl-1pathway, Lab Invest93(2013)748-759.
    L. Guo, Z. Qiu, L. Wei, X. Yu, X. Gao, S. Jiang, H. Tian, C. Jiang, D. Zhu, The microRNA-328regulates hypoxicpulmonary hypertension by targeting at insulin growth factor1receptor and L-type calcium channel-alpha1C,Hypertension59(2012)1006-1013.
    1.高钰琪,高原军事医学,重庆出版社(2005)1-2.
    2. M. Maggiorini, F. Leon-Velarde, High-altitude pulmonary hypertension: apathophysiological entity to different diseases, Eur Respir J22(2003)1019-1025.
    3. E. Cahill, S.C. Rowan, M. Sands, M. Banahan, D. Ryan, K. Howell, P. McLoughlin,The pathophysiological basis of chronic hypoxic pulmonary hypertension in the mouse:vasoconstrictor and structural mechanisms contribute equally, Exp Physiol97(2012)796-806.
    4. K.R. Stenmark, K.A. Fagan, M.G. Frid, Hypoxia-induced pulmonary vascularremodeling: cellular and molecular mechanisms, Circ Res99(2006)675-691.
    5. T. Tajsic, N.W. Morrell, Smooth muscle cell hypertrophy, proliferation, migration andapoptosis in pulmonary hypertension, Compr Physiol1(2011)295-317.
    6. H. Li, S.J. Chen, Y.F. Chen, Q.C. Meng, J. Durand, S. Oparil, T.S. Elton, Enhancedendothelin-1and endothelin receptor gene expression in chronic hypoxia, J ApplPhysiol (1985)77(1994)1451-1459.
    7. S. Eddahibi, N. Hanoun, L. Lanfumey, K.P. Lesch, B. Raffestin, M. Hamon, S. Adnot,Attenuated hypoxic pulmonary hypertension in mice lacking the5-hydroxytryptaminetransporter gene, J Clin Invest105(2000)1555-1562.
    8. W. Jie, J. Guo, Z. Shen, X. Wang, S. Zheng, G. Wang, Q. Ao, Contribution ofmyocardin in the hypoxia-induced phenotypic switching of rat pulmonary arterialsmooth muscle cells, Exp Mol Pathol89(2010)301-306.
    9. B. Yi, J. Cui, J.N. Ning, G.S. Wang, G.S. Qian, K.Z. Lu, Over-expression ofPKGIalpha inhibits hypoxia-induced proliferation, Akt activation, and phenotypemodulation of human PASMCs: the role of phenotype modulation of PASMCs inpulmonary vascular remodeling, Gene492(2012)354-360.
    10. L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation, NatRev Genet5(2004)522-531.
    11. R.A. Shivdasani, MicroRNAs: regulators of gene expression and cell differentiation,Blood108(2006)3646-3653.
    12. O. Dumortier, C. Hinault, E. Van Obberghen, MicroRNAs and metabolism crosstalk inenergy homeostasis, Cell Metab18(2013)312-324.
    13. H.W. Hwang, J.T. Mendell, MicroRNAs in cell proliferation, cell death, andtumorigenesis, Br J Cancer96Suppl (2007) R40-44.
    14. W. Yang, D.Y. Lee, Y. Ben-David, The roles of microRNAs in tumorigenesis andangiogenesis, Int J Physiol Pathophysiol Pharmacol3(2011)140-155.
    15. R.M. O'Connell, D.S. Rao, D. Baltimore, microRNA regulation of inflammatoryresponses, Annu Rev Immunol30(2012)295-312.
    16. Y. Suarez, W.C. Sessa, MicroRNAs as novel regulators of angiogenesis, Circ Res104(2009)442-454.
    17. J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation andmigration, Am J Physiol Lung Cell Mol Physiol299(2010) L861-871.
    18. A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R.Paquet, S. Biardel, S. Provencher, J. Cote, M.J. Simard, S. Bonnet, Role for miR-204inhuman pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    19. D. Torella, C. Iaconetti, D. Catalucci, G.M. Ellison, A. Leone, C.D. Waring, A.Bochicchio, C. Vicinanza, I. Aquila, A. Curcio, G. Condorelli, C. Indolfi,MicroRNA-133controls vascular smooth muscle cell phenotypic switch in vitro andvascular remodeling in vivo, Circ Res109(2011)880-893.
    20. K.R. Cordes, N.T. Sheehy, M.P. White, E.C. Berry, S.U. Morton, A.N. Muth, T.H. Lee,J.M. Miano, K.N. Ivey, D. Srivastava, miR-145and miR-143regulate smooth musclecell fate and plasticity, Nature460(2009)705-710.
    21. Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin,C. Zhang, MicroRNA-145, a novel smooth muscle cell phenotypic marker andmodulator, controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    22. K.B. Acampora, J. Nagatomi, E.M. Langan,3rd, M. LaBerge, Increased syntheticphenotype behavior of smooth muscle cells in response to in vitro balloon angioplastyinjury model, Ann Vasc Surg24(2010)116-126.
    23. M. Aikawa, Y. Sakomura, M. Ueda, K. Kimura, I. Manabe, S. Ishiwata, N. Komiyama,H. Yamaguchi, Y. Yazaki, R. Nagai, Redifferentiation of smooth muscle cells aftercoronary angioplasty determined via myosin heavy chain expression, Circulation96(1997)82-90.
    24. D. Gomez, G.K. Owens, Smooth muscle cell phenotypic switching in atherosclerosis,Cardiovasc Res95(2012)156-164.
    25. S. Mori, Y. Saito,[Phenotypic change of the smooth muscle cell and atherosclerosis],Nihon Yakurigaku Zasshi107(1996)161-170.
    26. Y. Mitani, M. Ueda, R. Komatsu, K. Maruyama, R. Nagai, M. Matsumura, M. Sakurai,Vascular smooth muscle cell phenotypes in primary pulmonary hypertension, EurRespir J17(2001)316-320.
    27. N.W. Morrell, X. Yang, P.D. Upton, K.B. Jourdan, N. Morgan, K.K. Sheares, R.C.Trembath, Altered growth responses of pulmonary artery smooth muscle cells frompatients with primary pulmonary hypertension to transforming growth factor-beta(1)and bone morphogenetic proteins, Circulation104(2001)790-795.
    28. G.K. Owens, M.S. Kumar, B.R. Wamhoff, Molecular regulation of vascular smoothmuscle cell differentiation in development and disease, Physiol Rev84(2004)767-801.
    29. X.M. Yu, L. Wang, J.F. Li, J. Liu, J. Li, W. Wang, J. Wang, C. Wang, Wnt5a inhibitshypoxia-induced pulmonary arterial smooth muscle cell proliferation bydownregulation of beta-catenin, Am J Physiol Lung Cell Mol Physiol304(2013)L103-111.
    30. A. Raghavan, G. Zhou, Q. Zhou, J.C. Ibe, R. Ramchandran, Q. Yang, H. Racherla, P.Raychaudhuri, J.U. Raj, Hypoxia-induced pulmonary arterial smooth muscle cellproliferation is controlled by forkhead box M1, Am J Respir Cell Mol Biol46(2012)431-436.
    31. X. Li, X. Zhang, R. Leathers, A. Makino, C. Huang, P. Parsa, J. Macias, J.X. Yuan,S.W. Jamieson, P.A. Thistlethwaite, Notch3signaling promotes the development ofpulmonary arterial hypertension, Nat Med15(2009)1289-1297.
    32. P. Gammell, MicroRNAs: recently discovered key regulators of proliferation andapoptosis in animal cells: Identification of miRNAs regulating growth and survival,Cytotechnology53(2007)55-63.
    33. L.T. Jeker, J.A. Bluestone, MicroRNA regulation of T-cell differentiation and function,Immunol Rev253(2013)65-81.
    34. I. Alvarez-Garcia, E.A. Miska, MicroRNA functions in animal development and humandisease, Development132(2005)4653-4662.
    35. I. Guller, A.P. Russell, MicroRNAs in skeletal muscle: their role and regulation indevelopment, disease and function, J Physiol588(2010)4075-4087.
    36. G.Q. Qian, L.X. Wang, C. Cheng, X.Y. Huang, S.T. Yei,[Primary cell culture andidentification methods of rat pulmonary arterial smooth muscle cells], Zhongguo YingYong Sheng Li Xue Za Zhi26(2010)125-128.
    37. S. Feng, S. Cong, X. Zhang, X. Bao, W. Wang, H. Li, Z. Wang, G. Wang, J. Xu, B. Du,D. Qu, W. Xiong, M. Yin, X. Ren, F. Wang, J. He, B. Zhang, MicroRNA-192targetingretinoblastoma1inhibits cell proliferation and induces cell apoptosis in lung cancercells, Nucleic Acids Res39(2011)6669-6678.
    38. T. Zhang, Y. Gao, Y. Mao, Q. Zhang, C. Lin, P. Lin, J. Zhang, X. Wang, Growthinhibition and apoptotic effect of alpha-eleostearic acid on human breast cancer cells, JNat Med66(2012)77-84.
    39. H. Zhang, Y. Gong, Z. Wang, L. Jiang, R. Chen, X. Fan, H. Zhu, L. Han, X. Li, J. Xiao,X. Kong, Apelin inhibits the proliferation and migration of rat PASMCs via theactivation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia, JCell Mol Med18(2014)542-553.
    40. S.S. Rensen, P.A. Doevendans, G.J. van Eys, Regulation and characteristics of vascularsmooth muscle cell phenotypic diversity, Neth Heart J15(2007)100-108.
    41. J.D. Hemmer, D. Dean, A. Vertegel, E. Langan,3rd, M. LaBerge, Effects of serumdeprivation on the mechanical properties of adherent vascular smooth muscle cells,Proc Inst Mech Eng H222(2008)761-772.
    42. Y. Yamanaka, K. Hayashi, T. Komurasaki, S. Morimoto, T. Ogihara, K. Sobue, EGFfamily ligand-dependent phenotypic modulation of smooth muscle cells through EGFreceptor, Biochem Biophys Res Commun281(2001)373-377.
    43. Y.C. Wu, L. Cui, G. Li, S. Yin, Y.J. Gao, Y.L. Cao,[PDGF-BB initiates vascularsmooth muscle-like phenotype differentiation of human bone marrow mesenchymalstem cells in vitro], Zhonghua Zheng Xing Wai Ke Za Zhi23(2007)335-339.
    44. S. Inamoto, C.S. Kwartler, A.L. Lafont, Y.Y. Liang, V.T. Fadulu, S. Duraisamy, M.Willing, A. Estrera, H. Safi, M.C. Hannibal, J. Carey, J. Wiktorowicz, F.K. Tan, X.H.Feng, H. Pannu, D.M. Milewicz, TGFBR2mutations alter smooth muscle cellphenotype and predispose to thoracic aortic aneurysms and dissections, Cardiovasc Res88(2010)520-529.
    45. C.C. Wang, I. Gurevich, B. Draznin, Insulin affects vascular smooth muscle cellphenotype and migration via distinct signaling pathways, Diabetes52(2003)2562-2569.
    46. T. Sorger, N. Friday, L.D. Yang, E.M. Levine, Heparin and the phenotype of adulthuman vascular smooth muscle cells, In Vitro Cell Dev Biol Anim31(1995)671-683.
    47. B.N. Davis-Dusenbery, C. Wu, A. Hata, Micromanaging vascular smooth muscle celldifferentiation and phenotypic modulation, Arterioscler Thromb Vasc Biol31(2011)2370-2377.
    48. J. Li, L. Zhao, X. He, T. Yang, K. Yang, MiR-21inhibits c-Ski signaling to promotethe proliferation of rat vascular smooth muscle cells, Cell Signal26(2014)724-729.
    49. N.J. Leeper, A. Raiesdana, Y. Kojima, H.J. Chun, J. Azuma, L. Maegdefessel, R.K.Kundu, T. Quertermous, P.S. Tsao, J.M. Spin, MicroRNA-26a is a novel regulator ofvascular smooth muscle cell function, J Cell Physiol226(2011)1035-1043.
    50. S.G. Sun, B. Zheng, M. Han, X.M. Fang, H.X. Li, S.B. Miao, M. Su, Y. Han, H.J. Shi,J.K. Wen, miR-146a and Kruppel-like factor4form a feedback loop to participate invascular smooth muscle cell proliferation, EMBO Rep12(2011)56-62.
    51. X. Liu, Y. Cheng, S. Zhang, Y. Lin, J. Yang, C. Zhang, A necessary role of miR-221and miR-222in vascular smooth muscle cell proliferation and neointimal hyperplasia,Circ Res104(2009)476-487.
    52. A.H. Baker, MicroRNA21"shapes" vascular smooth muscle behavior throughregulating tropomyosin1, Arterioscler Thromb Vasc Biol31(2011)1941-1942.
    53. S.S. Pullamsetti, C. Doebele, A. Fischer, R. Savai, B. Kojonazarov, B.K. Dahal, H.A.Ghofrani, N. Weissmann, F. Grimminger, A. Bonauer, W. Seeger, A.M. Zeiher, S.Dimmeler, R.T. Schermuly, Inhibition of microRNA-17improves lung and heartfunction in experimental pulmonary hypertension, Am J Respir Crit Care Med185(2012)409-419.
    54. S. Jalali, G.K. Ramanathan, P.T. Parthasarathy, S. Aljubran, L. Galam, A. Yunus, S.Garcia, R.R. Cox, Jr., R.F. Lockey, N. Kolliputi, Mir-206regulates pulmonary arterysmooth muscle cell proliferation and differentiation, PLoS One7(2012) e46808.
    55. J. Kim, Y. Kang, Y. Kojima, J.K. Lighthouse, X. Hu, M.A. Aldred, D.L. McLean, H.Park, S.A. Comhair, D.M. Greif, S.C. Erzurum, H.J. Chun, An endothelial apelin-FGFlink mediated by miR-424and miR-503is disrupted in pulmonary arterial hypertension,Nat Med19(2013)74-82.
    56. L. Guo, Z. Qiu, L. Wei, X. Yu, X. Gao, S. Jiang, H. Tian, C. Jiang, D. Zhu, ThemicroRNA-328regulates hypoxic pulmonary hypertension by targeting at insulingrowth factor1receptor and L-type calcium channel-alpha1C, Hypertension59(2012)1006-1013.
    57. S.L. Tan, T. Ohtsuka, A. Gonzalez, R. Kageyama, MicroRNA9regulates neural stemcell differentiation by controlling Hes1expression dynamics in the developing brain,Genes Cells17(2012)952-961.
    58. H. Luo, H. Zhang, Z. Zhang, X. Zhang, B. Ning, J. Guo, N. Nie, B. Liu, X. Wu,Down-regulated miR-9and miR-433in human gastric carcinoma, J Exp Clin CancerRes28(2009)82.
    59. S.D. Selcuklu, M.T. Donoghue, K. Rehmet, M. de Souza Gomes, A. Fort, P. Kovvuru,M.K. Muniyappa, M.J. Kerin, A.J. Enright, C. Spillane, MicroRNA-9inhibition of cellproliferation and identification of novel miR-9targets by transcriptome profiling inbreast cancer cells, J Biol Chem287(2012)29516-29528.
    60. L. Zhu, H. Chen, D. Zhou, D. Li, R. Bai, S. Zheng, W. Ge, MicroRNA-9up-regulationis involved in colorectal cancer metastasis via promoting cell motility, Med Oncol29(2012)1037-1043.
    61. H. Zhang, M. Qi, S. Li, T. Qi, H. Mei, K. Huang, L. Zheng, Q. Tong, microRNA-9targets matrix metalloproteinase14to inhibit invasion, metastasis, and angiogenesis ofneuroblastoma cells, Mol Cancer Ther11(2012)1454-1466.
    62. L. Ma, J. Young, H. Prabhala, E. Pan, P. Mestdagh, D. Muth, J. Teruya-Feldstein, F.Reinhardt, T.T. Onder, S. Valastyan, F. Westermann, F. Speleman, J. Vandesompele,R.A. Weinberg, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin andcancer metastasis, Nat Cell Biol12(2010)247-256.
    63. C. Leucht, C. Stigloher, A. Wizenmann, R. Klafke, A. Folchert, L. Bally-Cuif,MicroRNA-9directs late organizer activity of the midbrain-hindbrain boundary, NatNeurosci11(2008)641-648.
    64. K. Wang, B. Long, J. Zhou, P.F. Li, miR-9and NFATc3regulate myocardin in cardiachypertrophy, J Biol Chem285(2010)11903-11912.
    65. E. Leucci, A. Zriwil, L.H. Gregersen, K.T. Jensen, S. Obad, C. Bellan, L. Leoncini, S.Kauppinen, A.H. Lund, Inhibition of miR-9de-represses HuR and DICER1and impairsHodgkin lymphoma tumour outgrowth in vivo, Oncogene31(2012)5081-5089.
    66. D. Nass, S. Rosenwald, E. Meiri, S. Gilad, H. Tabibian-Keissar, A. Schlosberg, H.Kuker, N. Sion-Vardy, A. Tobar, O. Kharenko, E. Sitbon, G. Lithwick Yanai, E.Elyakim, H. Cholakh, H. Gibori, Y. Spector, Z. Bentwich, I. Barshack, N. Rosenfeld,MiR-92b and miR-9/9*are specifically expressed in brain primary tumors and can beused to differentiate primary from metastatic brain tumors, Brain Pathol19(2009)375-383.
    67. P. Rotkrua, Y. Akiyama, Y. Hashimoto, T. Otsubo, Y. Yuasa, MiR-9downregulatesCDX2expression in gastric cancer cells, Int J Cancer129(2011)2611-2620.
    68. X. Zhou, C. Marian, K.H. Makambi, O. Kosti, B.V. Kallakury, C.A. Loffredo, Y.L.Zheng, MicroRNA-9as potential biomarker for breast cancer local recurrence andtumor estrogen receptor status, PLoS One7(2012) e39011.
    69. H. Tang, L. Yao, X. Tao, Y. Yu, M. Chen, R. Zhang, C. Xu, miR-9functions as atumor suppressor in ovarian serous carcinoma by targeting TLN1, Int J Mol Med32(2013)381-388.
    70. H.Y. Wan, L.M. Guo, T. Liu, M. Liu, X. Li, H. Tang, Regulation of the transcriptionfactor NF-kappaB1by microRNA-9in human gastric adenocarcinoma, Mol Cancer9(2010)16.
    71. L. Zheng, T. Qi, D. Yang, M. Qi, D. Li, X. Xiang, K. Huang, Q. Tong, microRNA-9suppresses the proliferation, invasion and metastasis of gastric cancer cells throughtargeting cyclin D1and Ets1, PLoS One8(2013) e55719.
    72. W. Xing, T.C. Zhang, D. Cao, Z. Wang, C.L. Antos, S. Li, Y. Wang, E.N. Olson, D.Z.Wang, Myocardin induces cardiomyocyte hypertrophy, Circ Res98(2006)1089-1097.
    73. T. Tanaka, H. Sato, H. Doi, C.A. Yoshida, T. Shimizu, H. Matsui, M. Yamazaki, H.Akiyama, K. Kawai-Kowase, T. Iso, T. Komori, M. Arai, M. Kurabayashi, Runx2represses myocardin-mediated differentiation and facilitates osteogenic conversion ofvascular smooth muscle cells, Molecular and Cellular Biology28(2008)1147-1160.
    74. L. Pfisterer, A. Feldner, M. Hecker, T. Korff, Hypertension impairs myocardin function:a novel mechanism facilitating arterial remodelling, Cardiovasc Res96(2012)120-129.
    75. Z. Wang, D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, E.N. Olson,Myocardin and ternary complex factors compete for SRF to control smooth musclegene expression, Nature428(2004)185-189.
    76. J. Huang, L. Cheng, J. Li, M. Chen, D. Zhou, M.M. Lu, A. Proweller, J.A. Epstein, M.S.Parmacek, Myocardin regulates expression of contractile genes in smooth muscle cellsand is required for closure of the ductus arteriosus in mice, J Clin Invest118(2008)515-525.
    77. Z. Wang, D.Z. Wang, G.C. Pipes, E.N. Olson, Myocardin is a master regulator ofsmooth muscle gene expression, Proc Natl Acad Sci U S A100(2003)7129-7134.
    78. R.H. Tang, X.L. Zheng, T.E. Callis, W.E. Stansfield, J. He, A.S. Baldwin, D.Z. Wang,C.H. Selzman, Myocardin inhibits cellular proliferation by inhibitingNF-kappaB(p65)-dependent cell cycle progression, Proc Natl Acad Sci U S A105(2008)3362-3367.
    79. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell116(2004)281-297.
    80. J. Liu, M.A. Carmell, F.V. Rivas, C.G. Marsden, J.M. Thomson, J.J. Song, S.M.Hammond, L. Joshua-Tor, G.J. Hannon, Argonaute2is the catalytic engine ofmammalian RNAi, Science305(2004)1437-1441.
    81. G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng, T. Tuschl, HumanArgonaute2mediates RNA cleavage targeted by miRNAs and siRNAs, Mol Cell15(2004)185-197.
    82. G.L. Semenza, HIF-1and mechanisms of hypoxia sensing, Curr Opin Cell Biol13(2001)167-171.
    83. K. Yamashita, D.J. Discher, J. Hu, N.H. Bishopric, K.A. Webster, Molecular regulationof the endothelin-1gene by hypoxia. Contributions of hypoxia-inducible factor-1,activator protein-1, GATA-2, AND p300/CBP, J Biol Chem276(2001)12645-12653.
    84. J. Wang, L. Weigand, W. Lu, J.T. Sylvester, G.L. Semenza, L.A. Shimoda, Hypoxiainducible factor1mediates hypoxia-induced TRPC expression and elevatedintracellular Ca2+in pulmonary arterial smooth muscle cells, Circ Res98(2006)1528-1537.
    85. L.A. Shimoda, M. Fallon, S. Pisarcik, J. Wang, G.L. Semenza, HIF-1regulates hypoxicinduction of NHE1expression and alkalinization of intracellular pH in pulmonaryarterial myocytes, Am J Physiol Lung Cell Mol Physiol291(2006) L941-949.
    86. V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors, Blood Rev27(2013)41-53.
    87. J.A. Forsythe, B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, G.L. Semenza,Activation of vascular endothelial growth factor gene transcription byhypoxia-inducible factor1, Molecular and Cellular Biology16(1996)4604-4613.
    88. G.L. Semenza, G.L. Wang, A nuclear factor induced by hypoxia via de novo proteinsynthesis binds to the human erythropoietin gene enhancer at a site required fortranscriptional activation, Molecular and Cellular Biology12(1992)5447-5454.
    89. M. Hayashi, M. Sakata, T. Takeda, T. Yamamoto, Y. Okamoto, K. Sawada, A. Kimura,R. Minekawa, M. Tahara, K. Tasaka, Y. Murata, Induction of glucose transporter1expression through hypoxia-inducible factor1alpha under hypoxic conditions introphoblast-derived cells, J Endocrinol183(2004)145-154.
    90. G.L. Semenza, B.H. Jiang, S.W. Leung, R. Passantino, J.P. Concordet, P. Maire, A.Giallongo, Hypoxia response elements in the aldolase A, enolase1, and lactatedehydrogenase A gene promoters contain essential binding sites for hypoxia-induciblefactor1, J Biol Chem271(1996)32529-32537.
    91. O. Minchenko, I. Opentanova, D. Minchenko, T. Ogura, H. Esumi, Hypoxia inducestranscription of6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4gene viahypoxia-inducible factor-1alpha activation, FEBS Lett576(2004)14-20.
    92. J.D. Firth, B.L. Ebert, P.J. Ratcliffe, Hypoxic regulation of lactate dehydrogenase A.Interaction between hypoxia-inducible factor1and cAMP response elements, J BiolChem270(1995)21021-21027.
    93. Q.F. Li, A.G. Dai, Hypoxia inducible factor-1alpha correlates the expression of hemeoxygenase1gene in pulmonary arteries of rat with hypoxia-induced pulmonaryhypertension, Acta Biochim Biophys Sin (Shanghai)36(2004)133-140.
    94. F. Jung, L.A. Palmer, N. Zhou, R.A. Johns, Hypoxic regulation of inducible nitric oxidesynthase via hypoxia inducible factor-1in cardiac myocytes, Circ Res86(2000)319-325.
    95. G. Camenisch, D.M. Stroka, M. Gassmann, R.H. Wenger, Attenuation of HIF-1DNA-binding activity limits hypoxia-inducible endothelin-1expression, Pflugers Arch443(2001)240-249.
    96. E.M. Abud, J. Maylor, C. Undem, A. Punjabi, A.L. Zaiman, A.C. Myers, J.T. Sylvester,G.L. Semenza, L.A. Shimoda, Digoxin inhibits development of hypoxic pulmonaryhypertension in mice, Proc Natl Acad Sci U S A109(2012)1239-1244.
    97. T.K. Jeffery, J.C. Wanstall, Pulmonary vascular remodeling: a target for therapeuticintervention in pulmonary hypertension, Pharmacol Ther92(2001)1-20.
    98. C. Atkinson, S. Stewart, P.D. Upton, R. Machado, J.R. Thomson, R.C. Trembath, N.W.Morrell, Primary pulmonary hypertension is associated with reduced pulmonaryvascular expression of type II bone morphogenetic protein receptor, Circulation105(2002)1672-1678.
    99. V. Pelouch, F. Kolar, B. Ost'adal, M. Milerova, R. Cihak, J. Widimsky, Regression ofchronic hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, andfibrosis: effect of enalapril, Cardiovasc Drugs Ther11(1997)177-185.
    1. S. Lafitte, X. Pillois, P. Reant, F. Picard, F. Arsac, M. Dijos, P. Coste, P. Dos Santos, R.Roudaut, Estimation of pulmonary pressures and diagnosis of pulmonary hypertensionby Doppler echocardiography: a retrospective comparison of routine echocardiographyand invasive hemodynamics, J Am Soc Echocardiogr26(2013)457-463.
    2. S.S. Kothari, Clinical classification of pulmonary hypertension, J Am Coll Cardiol55(2010)267; author reply267.
    3. K.B. Lane, R.D. Machado, M.W. Pauciulo, J.R. Thomson, J.A. Phillips,3rd, J.E. Loyd,W.C. Nichols, R.C. Trembath, Heterozygous germline mutations in BMPR2, encodinga TGF-beta receptor, cause familial primary pulmonary hypertension, Nat Genet26(2000)81-84.
    4. J. Cogan, E. Austin, L. Hedges, B. Womack, J. West, J. Loyd, R. Hamid, Role ofBMPR2alternative splicing in heritable pulmonary arterial hypertension penetrance,Circulation126(2012)1907-1916.
    5. G. Pousada, A. Villar, C. Vilarino, D. Valverde, Mutational Analysis of BMPR2,KCNA5, and ACVRL Genes in Patients With Pulmonary Arterial Hypertension, Chest145(2014)511A.
    6. J.H. Newman, L. Wheeler, K.B. Lane, E. Loyd, R. Gaddipati, J.A. Phillips,3rd, J.E.Loyd, Mutation in the gene for bone morphogenetic protein receptor II as a cause ofprimary pulmonary hypertension in a large kindred, N Engl J Med345(2001)319-324.
    7. J.R. Thomson, R.D. Machado, M.W. Pauciulo, N.V. Morgan, M. Humbert, G.C. Elliott,K. Ward, M. Yacoub, G. Mikhail, P. Rogers, J. Newman, L. Wheeler, T. Higenbottam,J.S. Gibbs, J. Egan, A. Crozier, A. Peacock, R. Allcock, P. Corris, J.E. Loyd, R.C.Trembath, W.C. Nichols, Sporadic primary pulmonary hypertension is associated withgermline mutations of the gene encoding BMPR-II, a receptor member of the TGF-betafamily, J Med Genet37(2000)741-745.
    8. M.R. Maclean, Y. Dempsie, The serotonin hypothesis of pulmonary hypertensionrevisited, Adv Exp Med Biol661(2010)309-322.
    9. M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib, V. Gressin, A. Yaici, E.Weitzenblum, J.F. Cordier, F. Chabot, C. Dromer, C. Pison, M. Reynaud-Gaubert, A.Haloun, M. Laurent, E. Hachulla, G. Simonneau, Pulmonary arterial hypertension inFrance: results from a national registry, Am J Respir Crit Care Med173(2006)1023-1030.
    10. Y. Ling, M.K. Johnson, D.G. Kiely, R. Condliffe, C.A. Elliot, J.S. Gibbs, L.S. Howard,J. Pepke-Zaba, K.K. Sheares, P.A. Corris, A.J. Fisher, J.L. Lordan, S. Gaine, J.G.Coghlan, S.J. Wort, M.A. Gatzoulis, A.J. Peacock, Changing demographics,epidemiology, and survival of incident pulmonary arterial hypertension: results fromthe pulmonary hypertension registry of the United Kingdom and Ireland, Am J RespirCrit Care Med186(2012)790-796.
    11. A.E. Frost, D.B. Badesch, R.J. Barst, R.L. Benza, C.G. Elliott, H.W. Farber, A.Krichman, T.G. Liou, G.E. Raskob, P. Wason, K. Feldkircher, M. Turner, M.D. McGoon,The changing picture of patients with pulmonary arterial hypertension in the UnitedStates: how REVEAL differs from historic and non-US Contemporary Registries, Chest139(2011)128-137.
    12. D.B. Badesch, G.E. Raskob, C.G. Elliott, A.M. Krichman, H.W. Farber, A.E. Frost, R.J.Barst, R.L. Benza, T.G. Liou, M. Turner, S. Giles, K. Feldkircher, D.P. Miller, M.D.McGoon, Pulmonary arterial hypertension: baseline characteristics from the REVEALRegistry, Chest137(2010)376-387.
    13. M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib, V. Gressin, A. Yaici, E.Weitzenblum, J.F. Cordier, F. Chabot, C. Dromer, C. Pison, M. Reynaud-Gaubert, A.Haloun, M. Laurent, E. Hachulla, V. Cottin, B. Degano, X. Jais, D. Montani, R. Souza,G. Simonneau, Survival in patients with idiopathic, familial, and anorexigen-associatedpulmonary arterial hypertension in the modern management era, Circulation122(2010)156-163.
    14. T.T. Zhang, B. Cui, D.Z. Dai, X.Y. Tang, Pharmacological efficacy of CPU86017onhypoxic pulmonary hypertension in rats: mediated by direct inhibition of calciumchannels and antioxidant action, but indirect effects on the ET-1pathway, J CardiovascPharmacol46(2005)727-734.
    15. V.F. Tapson, F. Torres, F. Kermeen, A.M. Keogh, R.P. Allen, R.P. Frantz, D.B. Badesch,A.E. Frost, S.M. Shapiro, K. Laliberte, J. Sigman, C. Arneson, N. Galie, Oraltreprostinil for the treatment of pulmonary arterial hypertension in patients onbackground endothelin receptor antagonist and/or phosphodiesterase type5inhibitortherapy (the FREEDOM-C study): a randomized controlled trial, Chest142(2012)1383-1390.
    16. J.L. Vachiery, Prostacyclins in pulmonary arterial hypertension: the need for earliertherapy, Adv Ther28(2011)251-269.
    17. S. Wedgwood, R.W. Dettman, S.M. Black, ET-1stimulates pulmonary arterial smoothmuscle cell proliferation via induction of reactive oxygen species, Am J Physiol LungCell Mol Physiol281(2001) L1058-1067.
    18. L. Wei, Y. Liu, H. Kaneto, B.L. Fanburg, JNK regulates serotonin-mediatedproliferation and migration of pulmonary artery smooth muscle cells, Am J PhysiolLung Cell Mol Physiol298(2010) L863-869.
    19. Y. Yu, M. Sweeney, S. Zhang, O. Platoshyn, J. Landsberg, A. Rothman, J.X. Yuan,PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulatingTRPC6expression, Am J Physiol Cell Physiol284(2003) C316-330.
    20. Y. Yuan, F. Yang, H. Xu, W.Y. Yu, Y. Sun, H.J. Deng, W.D. Ma, Z.Q. Wei, R.M. Wang,[Effect of N-acetyl-seryl-aspartyl-lysyl-proline on differentiation from pulmonaryfibroblast to myofibroblast mediated by Rho-associated coiled-coilforming proteinkinase pathway], Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi31(2013)654-660.
    21. N. Sandbo, S. Kregel, S. Taurin, S. Bhorade, N.O. Dulin, Critical role of serumresponse factor in pulmonary myofibroblast differentiation induced by TGF-beta, Am JRespir Cell Mol Biol41(2009)332-338.
    22. J.V. Jester, J. Huang, P.A. Barry-Lane, W.W. Kao, W.M. Petroll, H.D. Cavanagh,Transforming growth factor(beta)-mediated corneal myofibroblast differentiationrequires actin and fibronectin assembly, Invest Ophthalmol Vis Sci40(1999)1959-1967.
    23. S.T. Hollenbeck, H. Itoh, O. Louie, P.L. Faries, B. Liu, K.C. Kent, Type I collagensynergistically enhances PDGF-induced smooth muscle cell proliferation throughpp60src-dependent crosstalk between the alpha2beta1integrin and PDGFbeta receptor,Biochem Biophys Res Commun325(2004)328-337.
    24. M.L. Correa-Giannella, M.R. de Azevedo, D. Leroith, D. Giannella-Neto, Fibronectinglycation increases IGF-I induced proliferation of human aortic smooth muscle cells,Diabetol Metab Syndr4(2012)19.
    25. T. Ishigaki, K. Imanaka-Yoshida, N. Shimojo, S. Matsushima, W. Taki, T. Yoshida,Tenascin-C enhances crosstalk signaling of integrin alphavbeta3/PDGFR-beta complexby SRC recruitment promoting PDGF-induced proliferation and migration in smoothmuscle cells, J Cell Physiol226(2011)2617-2624.
    26. M. Humbert, D. Montani, F. Perros, P. Dorfmuller, S. Adnot, S. Eddahibi, Endothelialcell dysfunction and cross talk between endothelium and smooth muscle cells inpulmonary arterial hypertension, Vascul Pharmacol49(2008)113-118.
    27. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell116(2004)281-297.
    28. O. Dumortier, C. Hinault, E. Van Obberghen, MicroRNAs and metabolism crosstalk inenergy homeostasis, Cell Metab18(2013)312-324.
    29. R.A. Shivdasani, MicroRNAs: regulators of gene expression and cell differentiation,Blood108(2006)3646-3653.
    30. H.W. Hwang, J.T. Mendell, MicroRNAs in cell proliferation, cell death, andtumorigenesis, Br J Cancer96Suppl (2007) R40-44.
    31. W. Yang, D.Y. Lee, Y. Ben-David, The roles of microRNAs in tumorigenesis andangiogenesis, Int J Physiol Pathophysiol Pharmacol3(2011)140-155.
    32. R.M. O'Connell, D.S. Rao, D. Baltimore, microRNA regulation of inflammatoryresponses, Annu Rev Immunol30(2012)295-312.
    33. Y. Suarez, W.C. Sessa, MicroRNAs as novel regulators of angiogenesis, Circ Res104(2009)442-454.
    34. P. Caruso, M.R. MacLean, R. Khanin, J. McClure, E. Soon, M. Southgate, R.A.MacDonald, J.A. Greig, K.E. Robertson, R. Masson, L. Denby, Y. Dempsie, L. Long,N.W. Morrell, A.H. Baker, Dynamic changes in lung microRNA profiles during thedevelopment of pulmonary hypertension due to chronic hypoxia and monocrotaline,Arterioscler Thromb Vasc Biol30(2010)716-723.
    35. A. Courboulin, R. Paulin, N.J. Giguere, N. Saksouk, T. Perreault, J. Meloche, E.R.Paquet, S. Biardel, S. Provencher, J. Cote, M.J. Simard, S. Bonnet, Role for miR-204inhuman pulmonary arterial hypertension, J Exp Med208(2011)535-548.
    36. A. Chaouat, L. Savale, C. Chouaid, L. Tu, B. Sztrymf, M. Canuet, B. Maitre, B.Housset, C. Brandt, P. Le Corvoisier, E. Weitzenblum, S. Eddahibi, S. Adnot, Role forinterleukin-6in COPD-related pulmonary hypertension, Chest136(2009)678-687.
    37. S.M. Golembeski, J. West, Y. Tada, K.A. Fagan, Interleukin-6causes mild pulmonaryhypertension and augments hypoxia-induced pulmonary hypertension in mice, Chest128(2005)572S-573S.
    38. M.K. Steiner, O.L. Syrkina, N. Kolliputi, E.J. Mark, C.A. Hales, A.B. Waxman,Interleukin-6overexpression induces pulmonary hypertension, Circ Res104(2009)236-244,228p following244.
    39.] M. Zhang, Q. Liu, S. Mi, X. Liang, Z. Zhang, X. Su, J. Liu, Y. Chen, M. Wang, Y.Zhang, F. Guo, R. Yang, Both miR-17-5p and miR-20a alleviate suppressive potentialof myeloid-derived suppressor cells by modulating STAT3expression, J Immunol186(2011)4716-4724.
    40. T. Luo, S. Cui, C. Bian, X. Yu, Crosstalk between TGF-beta/Smad3and BMP/BMPR2signaling pathways via miR-17-92cluster in carotid artery restenosis, Mol CellBiochem389(2014)169-176.
    41. M. Brock, M. Trenkmann, R.E. Gay, B.A. Michel, S. Gay, M. Fischler, S. Ulrich, R.Speich, L.C. Huber, Interleukin-6modulates the expression of the bone morphogenicprotein receptor type II through a novel STAT3-microRNA cluster17/92pathway, CircRes104(2009)1184-1191.
    42. J. Tao, D. Wu, P. Li, B. Xu, Q. Lu, W. Zhang, microRNA-18a, a member of theoncogenic miR-17-92cluster, targets Dicer and suppresses cell proliferation in bladdercancer T24cells, Mol Med Rep5(2012)167-172.
    43. P. Mu, Y.C. Han, D. Betel, E. Yao, M. Squatrito, P. Ogrodowski, E. de Stanchina, A.D'Andrea, C. Sander, A. Ventura, Genetic dissection of the miR-17~92cluster ofmicroRNAs in Myc-induced B-cell lymphomas, Genes Dev23(2009)2806-2811.
    44. S.S. Pullamsetti, C. Doebele, A. Fischer, R. Savai, B. Kojonazarov, B.K. Dahal, H.A.Ghofrani, N. Weissmann, F. Grimminger, A. Bonauer, W. Seeger, A.M. Zeiher, S.Dimmeler, R.T. Schermuly, Inhibition of microRNA-17improves lung and heartfunction in experimental pulmonary hypertension, Am J Respir Crit Care Med185(2012)409-419.
    45. S. Yang, S. Banerjee, A. Freitas, H. Cui, N. Xie, E. Abraham, G. Liu, miR-21regulateschronic hypoxia-induced pulmonary vascular remodeling, Am J Physiol Lung Cell MolPhysiol302(2012) L521-529.
    46. V.N. Parikh, R.C. Jin, S. Rabello, N. Gulbahce, K. White, A. Hale, K.A. Cottrill, R.S.Shaik, A.B. Waxman, Y.Y. Zhang, B.A. Maron, J.C. Hartner, Y. Fujiwara, S.H. Orkin,K.J. Haley, A.L. Barabasi, J. Loscalzo, S.Y. Chan, MicroRNA-21integrates pathogenicsignaling to control pulmonary hypertension: results of a network bioinformaticsapproach, Circulation125(2012)1520-1532.
    47. J. Sarkar, D. Gou, P. Turaka, E. Viktorova, R. Ramchandran, J.U. Raj, MicroRNA-21plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation andmigration, Am J Physiol Lung Cell Mol Physiol299(2010) L861-871.
    48. J. Yang, X. Li, R.S. Al-Lamki, M. Southwood, J. Zhao, A.M. Lever, F. Grimminger, R.T.Schermuly, N.W. Morrell, Smad-dependent and smad-independent induction of id1byprostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cellsin vitro and in vivo, Circ Res107(2010)252-262.
    49. A. Moustakas, S. Souchelnytskyi, C.H. Heldin, Smad regulation in TGF-beta signaltransduction, J Cell Sci114(2001)4359-4369.
    50. M.S. Parmacek, MicroRNA-modulated targeting of vascular smooth muscle cells, JClin Invest119(2009)2526-2528.
    51. E.N. Olson, A. Nordheim, Linking actin dynamics and gene transcription to drivecellular motile functions, Nat Rev Mol Cell Biol11(2010)353-365.
    52. M. Xin, E.M. Small, L.B. Sutherland, X. Qi, J. McAnally, C.F. Plato, J.A. Richardson,R. Bassel-Duby, E.N. Olson, MicroRNAs miR-143and miR-145modulate cytoskeletaldynamics and responsiveness of smooth muscle cells to injury, Genes Dev23(2009)2166-2178.
    53. B.N. Davis-Dusenbery, M.C. Chan, K.E. Reno, A.S. Weisman, M.D. Layne, G. Lagna,A. Hata, down-regulation of Kruppel-like factor-4(KLF4) by microRNA-143/145iscritical for modulation of vascular smooth muscle cell phenotype by transforminggrowth factor-beta and bone morphogenetic protein4, J Biol Chem286(2011)28097-28110.
    54. J.M. Boucher, S.M. Peterson, S. Urs, C. Zhang, L. Liaw, The miR-143/145cluster is anovel transcriptional target of Jagged-1/Notch signaling in vascular smooth musclecells, J Biol Chem286(2011)28312-28321.
    55. L. Elia, M. Quintavalle, J. Zhang, R. Contu, L. Cossu, M.V. Latronico, K.L. Peterson, C.Indolfi, D. Catalucci, J. Chen, S.A. Courtneidge, G. Condorelli, The knockout ofmiR-143and-145alters smooth muscle cell maintenance and vascular homeostasis inmice: correlates with human disease, Cell Death Differ16(2009)1590-1598.
    56. Y. Cheng, X. Liu, J. Yang, Y. Lin, D.Z. Xu, Q. Lu, E.A. Deitch, Y. Huo, E.S. Delphin, C.Zhang, MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator,controls vascular neointimal lesion formation, Circ Res105(2009)158-166.
    57. P. Caruso, Y. Dempsie, H.C. Stevens, R.A. McDonald, L. Long, R. Lu, K. White, K.M.Mair, J.D. McClure, M. Southwood, P. Upton, M. Xin, E. van Rooij, E.N. Olson, N.W.Morrell, M.R. MacLean, A.H. Baker, A role for miR-145in pulmonary arterialhypertension: evidence from mouse models and patient samples, Circ Res111(2012)290-300.
    58. R. Paulin, A. Courboulin, J. Meloche, V. Mainguy, E. Dumas de la Roque, N. Saksouk,J. Cote, S. Provencher, M.A. Sussman, S. Bonnet, Signal transducers and activators oftranscription-3/pim1axis plays a critical role in the pathogenesis of human pulmonaryarterial hypertension, Circulation123(2011)1205-1215.
    59. S. Bonnet, G. Rochefort, G. Sutendra, S.L. Archer, A. Haromy, L. Webster, K.Hashimoto, S.N. Bonnet, E.D. Michelakis, The nuclear factor of activated T cells inpulmonary arterial hypertension can be therapeutically targeted, Proc Natl Acad Sci U SA104(2007)11418-11423.
    60. J. Kim, Y. Kang, Y. Kojima, J.K. Lighthouse, X. Hu, M.A. Aldred, D.L. McLean, H.Park, S.A. Comhair, D.M. Greif, S.C. Erzurum, H.J. Chun, An endothelial apelin-FGFlink mediated by miR-424and miR-503is disrupted in pulmonary arterial hypertension,Nat Med19(2013)74-82.
    61. T.C. Chang, E.A. Wentzel, O.A. Kent, K. Ramachandran, M. Mullendore, K.H. Lee, G.Feldmann, M. Yamakuchi, M. Ferlito, C.J. Lowenstein, D.E. Arking, M.A. Beer, A.Maitra, J.T. Mendell, Transactivation of miR-34a by p53broadly influences geneexpression and promotes apoptosis, Mol Cell26(2007)745-752.
    62. S. Mizuno, H.J. Bogaard, D. Kraskauskas, A. Alhussaini, J. Gomez-Arroyo, N.F.Voelkel, T. Ishizaki, p53Gene deficiency promotes hypoxia-induced pulmonaryhypertension and vascular remodeling in mice, Am J Physiol Lung Cell Mol Physiol300(2011) L753-761.
    63. X. Ji, Z. Wang, A. Geamanu, A. Goja, F.H. Sarkar, S.V. Gupta, Delta-tocotrienolsuppresses Notch-1pathway by upregulating miR-34a in nonsmall cell lung cancercells, Int J Cancer131(2012)2668-2677.
    64. S. Jalali, G.K. Ramanathan, P.T. Parthasarathy, S. Aljubran, L. Galam, A. Yunus, S.Garcia, R.R. Cox, Jr., R.F. Lockey, N. Kolliputi, Mir-206regulates pulmonary arterysmooth muscle cell proliferation and differentiation, PLoS One7(2012) e46808.
    65. J. Yue, J. Guan, X. Wang, L. Zhang, Z. Yang, Q. Ao, Y. Deng, P. Zhu, G. Wang,MicroRNA-206is involved in hypoxia-induced pulmonary hypertension throughtargeting of the HIF-1alpha/Fhl-1pathway, Lab Invest93(2013)748-759.
    66. L. Guo, Z. Qiu, L. Wei, X. Yu, X. Gao, S. Jiang, H. Tian, C. Jiang, D. Zhu, ThemicroRNA-328regulates hypoxic pulmonary hypertension by targeting at insulingrowth factor1receptor and L-type calcium channel-alpha1C, Hypertension59(2012)1006-1013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700