用户名: 密码: 验证码:
野鸟禽流感监测及哺乳动物跨种传播能力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感(Avian Influenza, A1)是由甲型流感病毒所引起的各种家禽及野生禽类感染疾病综合征。根据致病性不同可划分为高致病性禽流感和低致病性禽流感。近儿年来,屡有禽流感病毒特别是低致病性禽流感突破种间屏障作用,直接感染人类或其它哺乳动物,甚至致人死亡事件的情况发生。野鸟作为储存宿主在禽流感病毒传播中的作用一直受到高度关注:H5N1亚型禽流感随野鸟迁徙在不到两年的时间里传播到14个国家40多个地区;感染人的H7N9亚型禽流感病毒致少有2个基因节片源于野鸟携带病毒的变异;导致江西感染病例的人H10N8亚型禽流感病毒来自于野鸟。这些事件说明禽流感特别是高致病性禽流感已经严重危及到人类的健康与生命安全,并有进一步突破种间屏障引发人间流感大流行的潜在可能。在野生禽流感监测中,方面,发达国家己将野鸟禽流感监测列入疫病监测中的常态化监测工作。中国林业局自2008年起开展了主动监测工作。因野鸟采样极为困难,国家投入相对较少,我国对野鸟禽流感的监测工作还相对落后,如2013年在发生H7N9人感染事件前,周边的日韩等国均已在野鸭中发生该病毒的前体病毒,而我国缺少相关毒株的监测,无法有效溯源。另一方面,H5、H6、H7、H9、H10等多亚型禽源病毒向人类跨种传播的现象提示我们可能有更多亚型的禽流感病毒会对人类健康构成威胁,因此,深入了解作为储存宿主的野鸟中禽流感病毒的分布情况和野鸟源病毒对哺乳动物的跨种传播作用,对于加深我们对流感病毒的认知,做好禽流感的防控工作有着重要的意义。
     本研究采集了14省市48个地区的15152份野鸟样品,进行了流感病毒的分离鉴定,分离得到57株病毒,进行一步分析表明野鸟流感病毒携带率约为0.38%,秋季样品分离率高于春季。拭子样品分离率约为0.42%,粪便(环境)样品分离率为0.40%,组织样品分离率为0.18%。分离的57株病毒包括8种HA和7种NA亚型,其中H3、H4亚型为优势流行毒株,但野鸟携带高致病性H5亚型禽流感在病毒的比例较高(17.5%),说明防控形势依然严峻。为进一步了解这些毒株的起源及与国内流行株(包括人、猪流行株)之间的关系,本研究对30株代表病毒进行了全基因测序。HA基因进化分析表明,除H3亚型具有宿主特异性外,其余亚型均存在禽、猪或禽、人或三者基因重组现象。NA基因进化关系更加复杂,但与HA进化关系无协同或一致性。相比于外部基因,内部基因(PB2、PB、PA、NP、M、NS)进化关系更是错综复杂,均存在禽、猪、人宿主间基因节片交换现象。以上结果表明野鸟是流感病毒天然的贮存库和基因库,为不同亚型或不同宿主的流感病毒提供基因片段。此外,首次在国内野鸟中分离到H13N6和H5N8病毒,提示进一步加强候鸟监测工作将有助于提前了解可能进入家禽中的病毒。
     为了解这些病毒对哺乳动物的致病性,本研究以小鼠为模型对28株病毒进行感染与致病能力研究。所用用的28株病毒均能在小鼠的肺脏、鼻甲骨中复制,但病毒滴度差别较大,以H5N8最高,可达105.7EID50/ml。 H5N1、H5N8、H4N6、H3N2、H7、H9N2业型毒株对小鼠均有不同程度的致死性,其中H5N8的致死率达100%,其余H3和H6亚型的病毒虽然能使小鼠感染,但并无特别的临床特征。本结果提示我们上述源于野鸟的病毒已不需要适应就可能直接感染哺乳动物。
     为进一步评估毒株在哺乳动物间水平传播的能力,分别进行了受体结合特性分析和豚鼠间水平传播能力评估。受体结合特性测定结果表明H3业型病毒均具有SAα-2,6Gal(人样流感病毒受体)结合特性,H7、H9亚型也具有一定的SAα-2,6Gal结合特性。本研究选取H3和H9亚型毒株在豚鼠间进行了接触传播研究,结果表明S89(H3N2)、ZH47(H3N3)和JL-2(H9N2)均具有一定的豚鼠间传播能力,其中以S89(H3N2)传播能力最高(2/3)。利用反向遗传学技术分析了决定S89(H3N2)与SAα-2,6Gal结合的关键位点,发现L274I影响病毒受体结合特性,表明除已发现的系列位点外,受体结合区域的其它位点同样会影响病毒受体识别能力。
     为进一步分析野鸟、野生动物乃致一些家养动物携带病原体的背景,我们建立了病毒性病原体宏基因组学分析方法,结果表明,该方法无样品类型特殊性差别,对环境、组织样品均普遍适用。应用该方法首次对野鸟体内病毒种类及其丰度进行了研究,检测到多种病毒(鹅圆环病毒、雉疱疹病毒、鸭乙型肝炎病毒、鹤乙型肝炎病毒、禽流感病毒等)。在对突发大规模死亡的家养猪样品分析中发现猪流行性腹泻病毒和新型猪嵴病毒。吉林省鼠出血热监测表明,宿主动物携带的汉坦病毒仍以汉城病毒为主,其遗传进化呈现多样性。这些研究表明该方法对新型或未知病毒性病原体分析具有重要应用价值。
Avian Influenza is a variety infection disease syndrome of poultry and wild birds caused by influenza A virus. Avian influenza virus can be divided into highly pathogenic and low pathogenic avian influenza virus according to its pathogenic in avian. In recent years, avian influenza virus especially low pathogenic avian influenza virus frequent crossed the species barrier, directly infection of humans or other mammals, even causing death event in human. The role of wild birds as reservoir host in the spread of the virus has been highly gained concerns. H5N1subtype avian influenza has spread across14countries and more than40areas along with migratory wild birds in less than two years. At least two genes of human infection H7N9subtype avian influenza virus come from wild bird virus variation. The genes of caused human infection H10N8avian influenza virus in Jiangxi are also originated from wild birds. Avian influenza especially highly pathogenic avian influenza has seriously endangered to human beings, and has the potential to break through the species barrier and caused next influenza pandemic. On the one hand, the developed countries have the wild bird influenza monitoring included in the normal monitoring disease surveillance. Chinese forestry bureau have carried out active surveillance since2008. However, the monitoring work of avian influenza in wild birds in China is relatively backward because of the sampling is extremely difficult from wild bird; especially the national investment is relatively limited. For example, before the event H7N9infection in2013, precursor virus have been detected in the wild duck by our neighboring countries such as Japan and South Korea, but our traceability was not effective because of lack monitoring related strains. On the other hand, the phenomenon of H5, H6, H7, H9, H10subtype avian viruses infection human suggested that more subtype of avian influenza virus would pose a threat to human health. Therefore, it is necessary to in-depth understanding of the influenza virus distribution among wild birds and mammalian cross species transmission, not only for deepen our understanding of the influenza virus, but has an important significance to avian influenza prevention and control.
     In this study,15152samples were collected from48regions of14provinces, and then isolation and identification of influenza virus were performed.57strains of avian influenza virus were obtained from wild birds in this survey, the influenza virus positive rate is about0.38%, and the rate of autumn sample is higher than its in spring. Swab sample isolation rate is about0.42%, feces (environment) sample isolation rate is0.40%, and tissue sample isolation rate is0.18%.57strains of virus containing8HA and7NA subtypes, H3, H4subtype is the predominant strains, but highly pathogenic avian influenza H5subtype is also distributed to a wide range in wild birds, accounting for17.5%of the overall isolation of virus, the situation of prevention and control of this disease still grim. In order to understand the relationship between the origin of these strains and the domestic epidemic strains (including human, porcine epidemic strain),30strains was selected for study by whole genome sequencing. Phylogenetic analysis of HA gene showed that, except for the H3subtype with host specificity in avian; the other subtypes were originated from bird, pig or poultry, or all three gene recombination. NA gene evolution was more complex, but no synergistic or consistency with HA in relation to the evolution. Compared to the external gene, the evolutionary relationship of genes (PB2, PB1, PA, NP, M, and NS) was more complex, the phenomenon of gene segments recombination of influenza virus from bird, pig, human host was also observed. The results indicated that wild bird is a reservoir host and natural genes bank of influenza virus genes, providing gene segments for different subtypes and different hosts. In addition, there is need to further strengthen the monitoring of migratory birds because of first isolation H13N6and H5N8virus in wild birds.
     In order to understand the pathogenicity of these viruses to mammals, mice were selected as model to evaluate the characterization of infection and pathogenic of28representative virus strains isolated from wild birds. The selected viruses can be replicated in mouse lungs, nasal turbinates, but the virus titer different, the H5N8subtype is the highest, up to105.7EID50/ml. The H3N2, H5N1, H5N8, H4N6, H7, H9N2subtype strains can cause mice death, the mortality of H5N8reached up to100%, the rest of the H3and H6subtypes of the virus can make mice infected without clinical special features. These results showed that the sourced wild bird virus may directly infect humans without adaption. The receptor binding property and horizontal transmission between guinea pigs were analyzed to evaluate transmission in mammals. Receptor binding assay showed that the H3subtype virus has SA a-2,6Gal (human-like influenza virus receptor) binding property, H7, H9subtypes has SA α-2,6Gal binding property in some degree. H3and H9subtypes strains were selected for contacted transmission in guinea pigs, the S89(H3N2), ZH47(H3N3) and JL-2(H9N2) can transmit in guinea pigs, in which S89(H3N2) was the highest (2/3). The recombinant rS89strains were constructed by reverse genetics technology and found that rS89-HA-L2741can influence the S89virus SA α-2,6Gal receptor binding characteristics. These results showed that except the series of sites have been found; other sites receptor binding may also affect the recognition ability of virus receptor.
     We established viral metagenomic to analyze the pathogen of wild birds, wild domestic mammalian. The method is universal for different type samples, such as environment, tissue, or swab samples. This method was first used to study viruses and distribution of wild bird, and detect a variety of virus (goose circovirus, pheasant herpes virus, duck hepatitis B virus, crane, hepatitis B virus, avian influenza virus etc.). Porcine epidemic diarrhea virus and porcine novel kobuvirus were found in outbreak of pig death. Most of Hantaviruses carried by animal hosts in Jilin Province were Seoul viruses, of which the genetics showed a diversity. These results showed that the method is important to new or unknown viral pathogens.
引文
[1]Rohm C, Zhou N, Suss J, Mackenzie J, Webster RG. Characterization of a novel influenza hemagglutinin, H15:criteria for determination of influenza A subtypes. Virology,1996,217(2): 508-516.
    [2]Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol,2005,79(5):2814-2822.
    [3]Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis,2004, 4(3):177-189.
    [4]Horimoto T, Kawaoka Y. Influenza:lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol,2005,3(8):591-600.
    [5]Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A,2012,109(11): 4269-4274.
    [6]Chan PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis,2002,34 Suppl 2:S58-64.
    [7]Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, Chunsuthiwat S, Sawanpanyalert P, Kijphati R, Lochindarat S, Srisan P, Suwan P, Osotthanakorn Y, Anantasetagoon T, Kanjanawasri S, Tanupattarachai S, Weerakul J, Chaiwirattana R, Maneerattanaporn M, Poolsavathitikool R, Chokephaibulkit K, Apisarnthanarak A, Dowell SF. Human disease from influenza A (H5N1), Thailand,2004. Emerg Infect Dis,2005,11(2):201-209.
    [8]Tran TH, Nguyen TL, Nguyen TD, Luong TS, Pham PM, Nguyen v V, Pham TS, Vo CD, Le TQ, Ngo TT, Dao BK, Le PP, Nguyen TT, Hoang TL, Cao VT, Le TG, Nguyen DT, Le HN, Nguyen KT, Le HS, Le VT, Christiane D, Tran TT, Menno de J, Schultsz C, Cheng P, Lim W, Horby P, Farrar J, World Health Organization International Avian Influenza Investigative T. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med,2004,350(12):1179-1188.
    [9]Hinshaw VS, Air GM, Gibbs AJ, Graves L, Prescott B, Karunakaran D. Antigenic and genetic characterization of a novel hemagglutinin subtype of influenza A viruses from gulls. J Virol, 1982,42(3):865-872.
    [10]Kawaoka Y, Yamnikova S, Chambers TM, Lvov DK, Webster RG. Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology,1990,179(2):759-767.
    [11]Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science,2005,309(5738):1206.
    [12]Buxton Bridges C, Katz JM, Seto WH, Chan PK, Tsang D, Ho W, Mak KH, Lim W, Tam JS, Clarke M, Williams SG, Mounts AW, Bresee JS, Conn LA, Rowe T, Hu-Primmer J, Abernathy RA, Lu X, Cox NJ, Fukuda K. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J Infect Dis,2000,181(1): 344-348.
    [13]Ferguson NM, Fraser C, Donnelly CA, Ghani AC, Anderson RM. Public health. Public health risk from the avian H5N1 influenza epidemic. Science,2004,304(5673):968-969.
    [14]Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med,2013,368(20):1888-1897.
    [15]Lam TT, Wang J, Shen Y, Zhou B, Duan L, Cheung CL, Ma C, Lycett SJ, Leung CY, Chen X, Li L, Hong W, Chai Y, Zhou L, Liang H, Ou Z, Liu Y, Farooqui A, Kelvin DJ, Poon LL, Smith DK, Pybus OG, Leung GM, Shu Y, Webster RG, Webby RJ, Peiris JS, Rambaut A, Zhu H, Guan Y. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature,2013,502(7470):241-244.
    [16]Bouvier NM, Palese P. The biology of influenza viruses. Vaccine,2008,26 Suppl 4:D49-53.
    [17]Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, Chen L, Smith C, Hill RC, Ferro P, Pompey J, Bright RA, Medina MJ, Johnson CM, Olsen CW, Cox NJ, Klimov AI, Katz JM, Donis RO. Transmission of equine influenza virus to dogs. Science,2005,310(5747): 482-485.
    [18]Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1):a threat to human health. Clin Microbiol Rev,2007,20(2):243-267.
    [19]Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev,1992,56(1):152-179.
    [20]Bouvier NM, Lowen AC. Animal Models for Influenza Virus Pathogenesis and Transmission. Viruses,2010,2(8):1530-1563.
    [21]Kawaoka Y, Krauss S, Webster RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol,1989,63(11):4603-4608.
    [22]Lindstrom SE, Cox NJ, Klimov A. Genetic analysis of human H2N2 and early H3N2 influenza viruses,1957-1972:evidence for genetic divergence and multiple reassortment events. Virology, 2004,328(1):101-119.
    [23]Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet,1998,351(9101):472-477.
    [24]Brown IH. The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol,2000, 74(1-2):29-46.
    [25]Olsen CW. The emergence of novel swine influenza viruses in North America. Virus Res,2002. 85(2):199-210.
    [26]Myers KP, Olsen CW, Gray GC. Cases of swine influenza in humans:a review of the literature. Clin Infect Dis,2007,44(8):1084-1088.
    [27]Belser JA, Lu X, Maines TR, Smith C, Li Y, Donis RO, Katz JM, Tumpey TM. Pathogenesis of avian influenza (H7) virus infection in mice and ferrets:enhanced virulence of Eurasian H7N7 viruses isolated from humans. J Virol,2007,81(20):11139-11147.
    [28]Belser JA, Szretter KJ, Katz JM, Tumpey TM. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv Virus Res,2009,73: 55-97.
    [29]Dybing JK, Schultz-Cherry S, Swayne DE, Suarez DL, Perdue ML. Distinct pathogenesis of hong kong-origin H5N1 viruses in mice compared to that of other highly pathogenic H5 avian influenza viruses. J Virol,2000,74(3):1443-1450.
    [30]Joseph T, McAuliffe J, Lu B, Jin H, Kemble G, Subbarao K. Evaluation of replication and pathogenicity of avian influenza a H7 subtype viruses in a mouse model. J Virol,2007,81(19): 10558-10566.
    [31]Lu X, Tumpey TM, Morken T, Zaki SR, Cox NJ, Katz JM. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol, 1999,73(7):5903-5911.
    [32]Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HH, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol,2005,79(18):11788-11800.
    [33]Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science,2001,293(5536):1840-1842.
    [34]Lowen AC, Mubareka S, Tumpey TM, Garcia-Sastre A, Palese P. The guinea pig as a transmission model for human influenza viruses. Proc Natl Acad Sci U S A,2006,103(26): 9988-9992.
    [35]Tang X, Chong KT. Histopathology and growth kinetics of influenza viruses (H1N1 and H3N2) in the upper and lower airways of guinea pigs. J Gen Virol,2009,90(Pt 2):386-391.
    [36]Wang L, Chitano P, Murphy TM. Length oscillation induces force potentiation in infant guinea pig airway smooth muscle. Am JPhysiol Lung Cell Mol Physiol,2005,289(6):L909-915.
    [37]Kwon YK, Lipatov AS, Swayne DE. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus. Vet Pathol,2009,46(1): 138-141.
    [38]Van Hoeven N, Belser JA, Szretter KJ, Zeng H, Staeheli P, Swayne DE, Katz JM, Tumpey TM. Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol,2009,83(7): 2851-2861.
    [39]Steel J, Staeheli P, Mubareka S, Garcia-Sastre A, Palese P, Lowen AC. Transmission of pandemic H1N1 influenza virus and impact of prior exposure to seasonal strains or interferon treatment. J Virol,2010,84(1):21-26.
    [40]Gao Y, Zhang Y, Shinya K, Deng G, Jiang Y, Li Z, Guan Y, Tian G, Li Y, Shi J, Liu L, Zeng X, Bu Z, Xia X, Kawaoka Y, Chen H. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog,2009,5(12): e1000709.
    [41]Steel J, Lowen AC, Mubareka S, Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog,2009,5(1):e1000252.
    [42]Francis T, Magill TP. Immunological Studies with the Virus of Influenza. J Exp Med,1935, 62(4):505-516.
    [43]Francis T, Stuart-Harris CH. Studies on the Nasal Histology of Epidemic Influenza Virus Infection in the Ferret:I. The Development and Repair of the Nasal Lesion. J Exp Med,1938, 68(6):789-802.
    [44]Francis T, Stuart-Harris CH. Studies on the Nasal Histology of Epidemic Influenza Virus Infection in the Ferret:Iii. Histological and Serological Observations on Ferrets Receiving Repeated Inoculations of Epidemic Infuenza Virus. J Exp Med,1938,68(6):813-830.
    [45]Mubareka S, Lowen AC, Steel J, Coates AL, Garcia-Sastre A, Palese P. Transmission of influenza virus via aerosols and fomites in the guinea pig model. J Infect Dis,2009,199(6): 858-865.
    [46]Baz M, Abed Y, Simon P, Hamelin ME, Boivin G. Effect of the neuraminidase mutation H274Y conferring resistance to oseltamivir on the replicative capacity and virulence of old and recent human influenza A(H1N1) viruses. J Infect Dis,2010,201(5):740-745.
    [47]Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science,2009,325(5939):481-483.
    [48]Malakhov MP, Aschenbrenner LM, Smee DF, Wandersee MK, Sidwell RW, Gubareva LV, Mishin VP, Hayden FG, Kim DH, Ing A, Campbell ER, Yu M, Fang F. Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother, 2006,50(4):1470-1479.
    [49]Herlocher ML, Elias S, Truscon R, Harrison S, Mindell D, Simon C, Monto AS. Ferrets as a transmission model for influenza:sequence changes in HA1 of type A (H3N2) virus. J Infect Dis,2001,184(5):542-546.
    [50]Jackson S, Van Hoeven N, Chen LM, Maines TR, Cox NJ, Katz JM, Donis RO. Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets:a public health risk assessment. J Virol,2009,83(16):8131-8140.
    [51]Boltz DA, Rehg JE, McClaren J, Webster RG, Govorkova EA. Oseltamivir prophylactic regimens prevent H5N1 influenza morbidity and mortality in a ferret model. J Infect Dis,2008, 197(9):1315-1323.
    [52]Cameron CM, Cameron MJ, Bermejo-Martin JF, Ran L, Xu L, Turner PV, Ran R, Danesh A, Fang Y, Chan PK, Mytle N, Sullivan TJ, Collins TL, Johnson MG, Medina JC, Rowe T, Kelvin DJ. Gene expression analysis of host innate immune responses during Lethal H5N1 infection in ferrets. J Virol,2008,82(22):11308-11317.
    [53]Kim YH, Kim HS, Cho SH, Seo SH. Influenza B virus causes milder pathogenesis and weaker inflammatory responses in ferrets than influenza A virus. Viral Immunol,2009,22(6):423-430.
    [54]Mishin VP, Hayden FG, Gubareva LV. Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob Agents Chemother,2005,49(11):4515-4520.
    [55]Belser JA, Blixt O, Chen LM, Pappas C, Maines TR, Van Hoeven N, Donis R, Busch J, McBride R, Paulson JC, Katz JM, Tumpey TM. Contemporary North American influenza H7 viruses possess human receptor specificity:Implications for virus transmissibility. Proc Natl Acad Sci U S A,2008,105(21):7558-7563.
    [56]Wan H, Sorrell EM, Song H, Hossain MJ, Ramirez-Nieto G, Monne I, Stevens J, Cattoli G, Capua I, Chen LM, Donis RO, Busch J, Paulson JC, Brockwell C, Webby R, Blanco J, A1-Natour MQ, Perez DR. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PLoS One,2008,3(8):e2923.
    [57]Shope RE. The Infection of Ferrets with Swine Influenza Virus. J Exp Med,1934,60(1):49-61.
    [58]Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl AcadSci USA,2004,101(13):4620-4624.
    [59]van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T. H5N1 Virus Attachment to Lower Respiratory Tract. Science,2006,312(5772):399.
    [60]Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y. Avian flu:influenza virus receptors in the human airway. Nature,2006,440(7083):435-436.
    [61]Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, Garcia-Sastre A, Sasisekharan R, Katz JM, Tumpey TM. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci USA,2009,106(9):3366-3371.
    [62]Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J Virol,2010, 84(9):4395-4406.
    [63]Govorkova EA, Rehg JE, Krauss S, Yen HL, Guan Y, Peiris M, Nguyen TD, Hanh TH, Puthavathana P, Long HT, Buranathai C, Lim W, Webster RG, Hoffmann E. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol,2005,79(4): 2191-2198.
    [64]Zhou B, Li Y, Halpin R, Hine E, Spiro DJ, Wentworth DE. PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J Virol,2011,85(1): 357-365.
    [65]Berg P. Co-chairman's remarks:reverse genetics:directed modification of DNA for functional analysis. Gene,1993,135(1-2):261-264.
    [66]刘光清.动物病毒反向遗传学.北京:科学出版社,2009.
    [67]Goff SP, Berg P. Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells. Cell,1976,9(4 PT 2):695-705.
    [68]Taniguchi T, Palmieri M, Weissmann C. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature,1978,274(5668):223-228.
    [69]Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A,1999,96(16):9345-9350.
    [70]Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y. "Ambisense" approach for the generation of influenza A virus:vRNA and mRNA synthesis from one template. Virology,2000, 267(2):310-317.
    [71]Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A,2000,97(11): 6108-6113.
    [72]Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine,2002,20(25-26):3165-3170.
    [73]Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci USA,2002,99(17):11411-11416.
    [74]Neumann G, Fujii K, Kino Y, Kawaoka Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A,2005, 102(46):16825-16829.
    [75]Zhang X, Kong W, Ashraf S, Curtiss R,3rd. A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. J Virol,2009,83(18): 9296-9303.
    [76]Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. JBacteriol,1991,173(14):4371-4378.
    [77]Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem Biol,1998, 5(10):R245-249.
    [78]Puthavathana P, Srivatanakul P, Thanapatra S, Kosiyatrakul T, Phitakpraiwan P. Presence of herpes simplex virus type 2 (HSV-2) antibodies and antigens in patients with cervical carcinoma in Thailand. J Med Assoc Thai,1980,63(10):560-567.
    [79]Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol,2003,185(20): 6220-6223.
    [80]Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F. Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci,2004, 271(1539):565-574.
    [81]Jones MS, Kapoor A, Lukashov VV, Simmonds P, Hecht F, Delwart E. New DNA viruses identified in patients with acute viral infection syndrome. J Virol,2005,79(13):8230-8236.
    [82]Culley AI, Lang AS, Suttle CA. Metagenomic analysis of coastal RNA virus communities. Science,2006,312(5781):1795-1798.
    [83]Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MA, Dalianis T, Ramqvist T, Andersson B. Identification of a third human polyomavirus. J Virol,2007,81(8): 4130-4136.
    [84]Breitbart M, Haynes M, Kelley S, Angly F, Edwards RA, Felts B, Mahaffy JM, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F. Viral diversity and dynamics in an infant gut. Res Microbiol,2008,159(5):367-373.
    [85]Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C, Palacios G, Khristova ML, Weyer J, Swanepoel R, Egholm M, Nichol ST, Lipkin WI. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog,2009,5(5):e1000455.
    [86]Blomstrom AL, Widen F, Hammer AS, Belak S, Berg M. Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J Clin Microbiol,2010,48(12):4392-4396.
    [87]Lauck M, Hyeroba D, Tumukunde A, Weny G, Lank SM, Chapman CA, O'Connor DH, Friedrich TC, Goldberg TL. Novel, divergent simian hemorrhagic fever viruses in a wild Ugandan red colobus monkey discovered using direct pyrosequencing. PLoS One,2011,6(4): e19056.
    [88]Ng TF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol,2012,86(22):12161-12175.
    [89]Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the human gut virome. Proc Natl Acad Sci USA,2013,110(30):12450-12455.
    [90]Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Jr., Rohwer F. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics,2006,7:57.
    [91]Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc,2009,4(4):470-483.
    [92]Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL. The fecal viral flora of wild rodents. PLoS Pathog,2011,7(9):e1002218.
    [93]Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles,2006,10(4):295-300.
    [94]Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol,2008,79(5):743-750.
    [95]Jin D, Lu W, Ping S, Zhang W, Chen J, Dun B, Ma R, Zhao Z, Sha J, Li L, Yang Z, Chen M, Lin M. Identification of a new gene encoding EPSPs with high glyphosate resistance from the metagenomic library. Curr Microbiol,2007,55(4):350-355.
    [96]Lee DG, Jeon JH, Jang MK, Kim NY, Lee JH, Lee JH, Kim SJ, Kim GD, Lee SH. Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett,2007,29(3):465-472.
    [97]Park HJ, Jeon JH, Kang SG, Lee JH, Lee SA, Kim HK. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr Purif,2007, 52(2):340-347.
    [98]Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee JH, Lee SH. Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). J Microbiol,2005,43(2):172-178.
    [99]Xu M, Xiao X, Wang F. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment. Extremophiles,2008,12(2):255-262.
    [100]Chu X, He H, Guo C, Sun B. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol,2008,80(4):615-625.
    [101]Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM. Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol,2000,66(6): 2541-2547.
    [102]Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling:microarray analysis of an environmental genomic library. Appl Environ Microbiol,2003,69(8):4927-4934.
    [103]Henne A, Schmitz RA, Bomeke M, Gottschalk G, Daniel R. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol,2000,66(7):3113-3116.
    [104]Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A,2002, 99(22):14250-14255.
    [105]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967.
    [106]van Orsouw NJ, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJ. Complexity reduction of polymorphic sequences (CRoPS):a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One,2007,2(11):e1172.
    [107]Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ, Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T, Wilson RK, Mardis ER. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods,2008,5(2):183-188.
    [108]Finkbeiner SR, Allred AF, Tarr PI, Klein EJ, Kirkwood CD, Wang D. Metagenomic analysis of human diarrhea:viral detection and discovery. PLoS Pathog,2008,4(2):e1000011.
    [109]Svraka S, Rosario K, Duizer E, van der Avoort H, Breitbart M, Koopmans M. Metagenomic sequencing for virus identification in a public-health setting. J Gen Virol,2010,91(Pt 11): 2846-2856.
    [110]Law J, Jovel J, Patterson J, Ford G, O'Keefe S, Wang W, Meng B, Song D, Zhang Y, Tian Z, Wasilenko ST, Rahbari M, Mitchell T, Jordan T, Carpenter E, Mason AL, Wong GK. Identification of hepatotropic viruses from plasma using deep sequencing:a next generation diagnostic tool. PLoS One,2013,8(4):e60595.
    [111]Blinkova O, Kapoor A, Victoria J, Jones M, Wolfe N, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Zaidi S, Delwart EL. Cardioviruses are genetically diverse and cause common enteric infections in South Asian children. J Virol,2009,83(9):4631-4641.
    [112]Gaynor AM, Nissen MD, Whiley DM, Mackay IM, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog,2007,3(5):e64.
    [113]Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl JMed,2003,348(20):1967-1976.
    [114]Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, group Ss. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet,2003,361(9366):1319-1325.
    [115]Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL. Baric RS, Stockwell TB, Spiro DJ, Denison MR. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog,2010,6(5): e1000896.
    [116]Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI. A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med,2008, 358(10):991-998.
    [117]Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Quan PL, Lipkin WI, Downing R, Tappero JW, Okware S, Lutwama J, Bakamutumaho B, Kayiwa J, Comer JA, Rollin PE, Ksiazek TG, Nichol ST. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog,2008,4(11):e1000212.
    [118]Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26(10):1135-1145.
    [119]Palenik B, Ren Q, Tai V, Paulsen IT. Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. Environ Microbiol,2009, 11(2):349-359.
    [120]Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem Ⅱ. Science,2008,322(5904):1110-1112.
    [121]Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007:status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res,2008,36(Database issue):D475-479.
    [122]Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA:a community resource for metagenomics. PLoS Biol,2007,5(3):e75.
    [123]Krause L, Diaz NN, Bartels D, Edwards RA, Puhler A, Rohwer F, Meyer F, Stoye J. Finding novel genes in bacterial communities isolated from the environment. Bioinformatics,2006, 22(14):e281-289.
    [124]Wooley JC, Ye Y. Metagenomics:Facts and Artifacts, and Computational Challenges*. J ComputSci Technol,2009,25(1):71-81.
    [125]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature,2010,464(7285):59-65.
    [126]Gitig D. Marine metagenomics. Biotechniques,2010,48(5):361-365.
    [127]Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA. Global patterns of influenza a virus in wild birds. Science,2006,312(5772):384-388.
    [128]Alexander DJ. A review of avian influenza in different bird species. Vet Microbiol,2000, 74(1-2):3-13.
    [129]Stallknecht DE, Shane SM. Host range of avian influenza virus in free-living birds. Vet Res Commun,1988,12(2-3):125-141.
    [130]Alexander DJ, Gough RE. Isolations of avian influenza virus from birds in Great Britain. Vet Rec,1986,118(19):537-538.
    [131]Capua I, Alexander DJ. Avian influenza:recent developments. Avian Pathol,2004,33(4): 393-404.
    [132]Manvell RJ, McKinney P, Wernery U, Frost K. Isolation of a highly pathogenic influenza A virus of subtype H7N3 from a peregrine falcon (Falco peregrinus). Avian Pathol,2000,29(6): 635-637.
    [133]Hanson BA, Stallknecht DE, Swayne DE, Lewis LA, Senne DA. Avian influenza viruses in Minnesota ducks during 1998-2000. Avian Dis,2003,47(3 Suppl):867-871.
    [134]De Marco MA, Foni GE, Campitelli L, Raffini E, Di Trani L, Delogu M, Guberti V, Barigazzi G, Donatelli I. Circulation of influenza viruses in wild waterfowl wintering in Italy during the 1993-99 period:evidence of virus shedding and seroconversion in wild ducks. Avian Dis,2003, 47(3 Suppl):861-866.
    [135]Fouchier RA, Olsen B, Bestebroer TM, Herfst S, van der Kemp L, Rimmelzwaan GF, Osterhaus AD. Influenza A virus surveillance in wild birds in Northern Europe in 1999 and 2000. Avian Dis,2003,47(3 Suppl):857-860.
    [136]Feare CJ. The role of wild birds in the spread of HPAI H5N1. Avian Dis,2007,51(1 Suppl): 440-447.
    [137]Alexander DJ. Report on avian influenza in the Eastern Hemisphere during 1997-2002. Avian Dis,2003,47(3 Suppl):792-797.
    [138]L'Vov D K, Shchelkanov M, Deriabin PG, Grebennikova TV, Prilipov AG, Nepoklonov EA, Onishchenko GG, Vlasov NA, Aliper TI, Zaberezhnyi AD, Kireev DE, Krasheninnikov OP, Kiriukhin ST, Burtseva El, Slepushkin AN. [Isolation of influenza A/H5N1 virus strains from poultry and wild birds in West Siberia during epizooty (July 2005) and their depositing to the state collection of viruses (August 8,2005)]. Vopr Virusol,2006,51(1):11-14.
    [139]Okazaki K, Takada A, Ito T, Imai M, Takakuwa H, Hatta M, Ozaki H, Tanizaki T, Nagano T, Ninomiya A, Demenev VA, Tyaptirganov MM, Karatayeva TD, Yamnikova SS, Lvov DK, Kida H. Precursor genes of future pandemic influenza viruses are perpetuated in ducks nesting in Siberia. Arch Virol,2000,145(5):885-893.
    [140]Karasin AI, Carman S, Olsen CW. Identification of human H1N2 and human-swine reassortant H1N2 and H1N1 influenza A viruses among pigs in Ontario. Canada (2003 to 2005). J Clin Microbiol,2006,44(3):1123-1126.
    [141]Ma W, Kahn RE, Richt JA. The pig as a mixing vessel for influenza viruses:Human and veterinary implications. J Mol Genet Med,2008,3(1):158-166.
    [142]Tsukamoto K, Javier PC, Shishido M, Noguchi D, Pearce J, Kang HM, Jeong OM, Lee YJ, Nakanishi K, Ashizawa T. SYBR green-based real-time reverse transcription-PCR for typing and subtyping of all hemagglutinin and neuraminidase genes of avian influenza viruses and comparison to standard serological subtyping tests. J Clin Microbiol,2012,50(1):37-45.
    [143]Larkin EK, Morris NJ, Li Y, Nock NL, Stein CM. Comparison of affected sibling-pair linkage methods to identify gene x gene interaction in GAW15 simulated data. BMC Proc,2007,1 Suppl 1:S66.
    [144]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol,2011,28(10):2731-2739.
    [145]Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster RG, Yu K. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A,2004, 101(28):10452-10457.
    [146]Matlin KS, Reggio H, Helenius A, Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol,1981,91(3 Pt 1):601-613.
    [147]Rust MJ, Lakadamyali M, Zhang F, Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol,2004,11(6):567-573.
    [148]Stegmann T, Morselt HW, Scholma J, Wilschut J. Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching. Biochim Biophys Acta,1987, 904(1):165-170.
    [149]Briedis DJ, Conti G, Munn EA, Mahy BW. Migration of influenza virus-specific polypeptides from cytoplasm to nucleus of infected cells. Virology,1981,111(1):154-164.
    [150]Walker JA, Kawaoka Y. Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus. J Gen Virol,1993,74 (Pt 2):311-314.
    [151]Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog,2007, 3(10):1374-1379.
    [152]Bender C, Hall H, Huang J, Klimov A, Cox N, Hay A, Gregory V, Cameron K, Lim W, Subbarao K. Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998. Virology,1999,254(1):115-123.
    [153]Choppin PW, Scheid A. The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses. Rev Infect Dis,1980,2(1):40-61.
    [154]Matrosovich M, Zhou N, Kawaoka Y, Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol,1999,73(2):1146-1155.
    [155]Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, Zou S, Yang L, Chen T, Dong L, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang S, Zhang Y, Li H, Gong T, Shi Y, Ni X, Li J, Zhou J, Fan J, Wu J, Zhou X, Hu M, Wan J, Yang W, Li D, Wu G, Feng Z, Gao GF, Wang Y, Jin Q, Liu M, Shu Y. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection:a descriptive study. Lancet,2014, 383(9918):714-721.
    [156]Parry J. H10N8 avian flu virus claims its first known human casualty. BMJ,2014,348:g1360.
    [157]Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature,1988,333(6172): 426-431.
    [158]Wood GW, McCauley JW, Bashiruddin JB, Alexander DJ. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol,1993,130(1-2):209-217.
    [159]Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol,2000,74(18): 8502-8512.
    [160]Matrosovich MN, Krauss S, Webster RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology,2001,281(2):156-162.
    [161]Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, Holtzman MJ, Brody SL. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol,2006,80(15):7469-7480.
    [162]Nicholls JM, Chan MC, Chan WY, Wong HK, Cheung CY, Kwong DL, Wong MP, Chui WH, Poon LL, Tsao SW, Guan Y, Peiris JS. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med,2007,13(2):147-149.
    [163]Neumann G, Chen H, Gao GF, Shu Y, Kawaoka Y. H5N1 influenza viruses:outbreaks and biological properties. Cell Res,2010,20(1):51-61.
    [164]Jourdain E, van Riel D, Munster VJ, Kuiken T, Waldenstrom J, Olsen B, Ellstrom P. The pattern of influenza virus attachment varies among wild bird species. PLoS One,2011,6(9): e24155.
    [165]Nfon C, Berhane Y, Zhang S, Handel K, Labrecque O, Pasick J. Molecular and antigenic characterization of triple-reassortant H3N2 swine influenza viruses isolated from pigs, turkey and quail in Canada. Transbound Emerg Dis,2011,58(5):394-401.
    [166]Deng G, Tan D, Shi J, Cui P, Jiang Y, Liu L, Tian G, Kawaoka Y, Li C, Chen H. Complex reassortment of multiple subtypes of avian influenza viruses in domestic ducks at the Dongting Lake Region of China.J Virol, 2013,87(17):9452-9462.
    [167]Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, Swayne D, Bender C, Huang J, Hemphill M, Rowe T, Shaw M, Xu X, Fukuda K, Cox N. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science,1998, 279(5349):393-396.
    [168]Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A,2004,101(5): 1356-1361.
    [169]Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA,2000,97(17):9654-9658.
    [170]Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with influenza H9N2. Lancet,1999,354(9182):916-917.
    [171]Stevens J, Blixt O, Paulson JC, Wilson I A. Glycan microarray technologies:tools to survey host specificity of influenza viruses. Nat Rev Microbiol,2006,4(11):857-864.
    [172]Li J, Ishaq M, Prudence M, Xi X, Hu T, Liu Q, Guo D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res, 2009,144(1-2):123-129.
    [173]Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology,2004,320(2):258-266.
    [174]Xu C, Hu WB, Xu K, He YX, Wang TY, Chen Z, Li TX, Liu JH, Buchy P, Sun B. Amino acids 473 V and 598P of PB1 from an avian-origin influenza A virus contribute to polymerase activity, especially in mammalian cells. J Gen Virol,2012,93(Pt 3):531-540.
    [175]Springer GF, Schwick HG, Fletcher MA. The relationship of the influenza virus inhibitory activity of glycoproteins to their molecular size and sialic acid content. Proc Natl Acad Sci US A,1969,64(2):634-641.
    [176]Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R. Glycans as receptors for influenza pathogenesis. Glycoconjugate Journal,2010,27(6): 561-570.
    [177]Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol,2005,1(2):106-112.
    [178]Djikeng A, Kuzmickas R, Anderson NG, Spiro DJ. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One,2009,4(9):e7264.
    [179]Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, Delwart E. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol, 2010,84(14):6955-6965.
    [180]Li R, Li Y, Kristiansen K, Wang J. SOAP:short oligonucleotide alignment program. Bioinformatics,2008,24(5):713-714.
    [181]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res,2010,20(2):265-272.
    [182]Fan S, Sun H, Ying Y, Gao X, Wang Z, Yu Y, Li Y, Wang T, Yu Z, Yang S, Zhao Y, Qin C, Gao Y, Xia X. Identification and characterization of porcine kobuvirus variant isolated from suckling piglet in Gansu province, China. Viruses,2013,5(10):2548-2560.
    [183]Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol,2009,83(9):4642-4651.
    [184]Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, Tammadoni S, Nosrat B, Conrad D, Rohwer F. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One,2009,4(10):e7370.
    [185]Kapoor A, Victoria J, Simmonds P, Wang C, Shafer RW, Nims R, Nielsen O, Delwart E. A highly divergent picornavirus in a marine mammal. J Virol,2008,82(1):311-320.
    [186]Day JM, Ballard LL, Duke MV, Scheffler BE, Zsak L. Metagenomic analysis of the turkey gut RNA virus community. Virol J,2010,7:313.
    [187]Capua I, Grossele B, Bertoli E, Cordioli P. Monitoring for highly pathogenic avian influenza in wild birds in Italy. Vet Rec,2000,147(22):640.
    [188]Meteyer CU, Docherty DE, Glaser LC, Franson JC, Senne DA, Duncan R. Diagnostic findings in the 1992 epornitic of neurotropic velogenic Newcastle disease in double-crested cormorants from the upper midwestern United States. Avian Dis,1997,41(1):171-180.
    [189]Ziedler K, Hlinak A. [The occurrence of virus enteritis (duck plague) in wild birds]. Berl Munch Tierarztl Wochenschr,1992,105(4):122-125.
    [190]Howard JJ, Oliver J, Grayson MA. Antibody response of wild birds to natural infection with alphaviruses. JMed Entomol,2004,41(6):1090-1103.
    [191]Jamgaonkar AV, Yergolkar PN, Geevarghese G, Joshi GD, Joshi MV, Mishra AC. Serological evidence for Japanese encephalitis virus and West Nile virus infections in water frequenting and terrestrial wild birds in Kolar District, Karnataka State, India. A retrospective study. Acta Virol,2003,47(3):185-188.
    [192]Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses:west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res,2003,1(1):5-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700