用户名: 密码: 验证码:
基于系统建模的低剂量CT重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X射线计算机断层成像(CT)以其高的时间分辨率、空间分辨率及对比度分辨率成为现代影像学的杰出代表,在临床诊断和治疗中广泛使用。但过量照射X光可诱发癌症、白血病或其他遗传性疾病,因此CT的剂量安全问题成为业界关注的焦点。如何以最小的代价和最低的X射线剂量获得最佳的CT图像质量,已经成为临床最为迫切的需求。
     降低X射线剂量的方法有多种,如通过降低管电流和缩短曝光时间来降低X射线球管的毫安秒(mAs)或者减少扫描角向采样数目等直接性的措施来降低X谢线剂量。但与此同时,上述扫描模式下解析重建的图像质量将严重退化,图像中的噪声和伪影影响了临床诊断和应用。近年来,针对低剂量CT图像优质重建的研究方兴未艾,主要集中于对解析重建的低剂量CT图像进行后处理滤波、对低剂量CT投影数据进行恢复,以及包括代数迭代和统计迭代的迭代重建算法。其中,针对迭代重建算法的研究尤其热烈。相对于解析重建算法,迭代重建算法在CT固有的物理系统建模方面具有较大的优势,如可精确模拟系统成像几何,X线多能光谱、线束硬化、散射、噪声等。因此,迭代重建算法能保持或者提高图像空间分辨力的同时抑制伪影和噪声。进一步的,统计迭代重建算法能基于光子统计学建立多种更精确的噪声模型,在降低图像噪声方面有更佳的表现。常规的,在迭代重建过程中,准确建模投影数据的测量方程是得到优质重建的前提和基础,而先验知识的合理利用对于求解的稳定性及获得高精度重建图像具有非常重要的意义。
     目前,在疾病的临床诊断和治疗过程中,常用到反复的CT扫描,如在灌注CT成像、4D-CT成像、CT图像引导的活体组织穿刺检查以及图像引导放疗等过程中。以图像引导放疗为例,除计划阶段CT扫描外,在整个放射治疗阶段,在分次治疗前需对患者进行CBCT扫描来进行定位,在此情况下,患者所接受的累加辐射剂量较常规CT检查扫描将会很高,反复CT扫描增加了罹患肿瘤的风险。在上述反复CT扫描过程中,对于同一个病人,先后两次CT扫描的图像之间除了几何位置和某些不自主运动引起的不同外,大部分解剖结构是相同的。换句话说,两次扫描获取的CT图像之间存在大量的结构冗余信息。传统的针对低剂量CT的研究方法仅仅引入图像自身的局部邻域的约束作为先验信息,未能考虑同一病人先前扫描获取的图像所能提供的先验信息来导引当前CT的图像的重建。鉴于此,本论文针对基于先前图像的先验信息的合理引入、先验信息引入后算法的优化等问题进行了深入的研究,同时本文对基于平板探测器的CBCT(Cone BeamCT)成像系统的噪声特性进行了进一步实验分析和验证,为后续迭代重建建立了理论和系统模型基础。归纳起来,本文的主要工作有:
     1)为合理的引入先验图像信息,同时突破传统先验单纯依赖于目标图像局部邻域内的像素灰度信息的约束,本文利用非局部的思想通过在固定大小的搜索窗内检测基于图像块匹配的像素相似性而形成正则化项来实现基于先验图像的先验信息的有效引入。新方法在能够引入先验图像信息的同时弱化了对当前待重建目标图像和先验图像间配准精度的要求。数值仿真,物理体模以及临床数据实验表明,新方法能够提高当前低剂量图像的重建质量,同时不引入伪结构信息。
     2)针对脑灌注CT成像的两大特点:(1)灌注扫描前的平扫描标准剂量图像的分辨率高且噪声低,可以为低剂量灌注序列增强图像的重建提供极为丰富的形态结构冗余信息;(2)对同一感兴趣层面反复扫描所得的增强序列图像除增强信息外,各图像之间的相对形变量较小;本文提出一种标准剂量平扫描图像导引的低剂量CT脑灌注序列图像重建方法。新方法首先利用利用标准剂量平扫描图像丰富的冗余信息实现基于改进的非局部均值算法的低剂量增强扫描图像的优质恢复,然后对恢复后的图像做去卷积迭代重建。数值仿真体模和病人数据实验表明,该算法能有效抑制图像中噪声,提高图像信噪比,从而使得相应血流动力学参数的计算更加准确。
     3)为解决先验图像和当前待重建图像之间的结构不匹配问题,本文提出了一种利用当前测量所得投影数据与先验图像配准的方法获取与当前待重建图像相近或类似的先验图像用于基于先验图像的CBCT少角度重建。具体来说,本文算法是通过当前测量投影数据与先验图像在当前成像几何下的前向投影数据的匹配来实现图像域变形场的估计,然后将该变形场作用于先验图像来获取配准的先验图像,用于基于先验图像的重建策略中。特别的,本文采用的重建算法为PICCS(Prior Image Compress Constrained Sensing)算法。本文提出的算法能够有效避免图像空间配准时FDK算法重建的图像中噪声和条形伪影对配准精度的影响。XCAT仿真实验以及临床数据实验结果表明,本文提出的方案能够获取优质先验图像,重建结果优于传统PICCS算法。
     4)鉴于CBCT成像系统中平板探测器与常规扇形束CT探测器物理设计上的不同,本文实验性的针对瓦里安TrueBeam系统中的平板探测器采集信号进行噪声相关性研究。通过对固定角度下反复测量的的探测数据的分析得出投影数据在探测器单元之间存在噪声相关性。实验结果表明,二维探测器八邻域内的噪声相关性是明显可见的,且一阶邻域内的相关系数明显高于二阶邻域内相关系数。同时,该噪声相关性与扫描所用X线剂量无关。本文将该噪声相关性应用于基于投影数据噪声模型的惩罚加权最小二乘恢复算法中,重建图像结果表明,该噪声相关性的引入能够提高重建图像质量。该实验研究为CBCT图像重建提供了更精准的系统建模。
X-ray computed tomography (CT) has become an excellent example for medical imaging with its high temporal resolution, spatial resolution and contrast resolution. It has been widely used in the clinical diagnosis and treatment. But the excessive X-ray radiation may induce cancer, leukemia, or some other hereditary disease, so the safety and security of CT imaging has become one focus problem in the industry. How to get the best CT image quality with the minimum cost and minimum X-ray dose, has become one of the most important issue.
     Until now, various techniques have been investigated, including directly lowering the mAs or down-sample the viewing angle, to reduce radiation dose in CT scans. Meanwhile, the associated reconstructed image usually suffers from serious noise and artifacts, which has negative influence for clinical diagnosis. Recently, investigation focused on low dose CT reconstruction can be grouped into three categories:the post-processing of the reconstructed CT image, low dose CT projection restoration, and iterative reconstruction methods that include the algebraic iterative reconstruction algorithm and statistical iterative reconstruction algorithm. Among them, the study on iterative reconstruction algorithms is more popular. Compared with the analytical reconstruction algorithm, the iterative reconstruction algorithm can overcome the inherent physical limitations of CT by modeling the imaging geometry, X-ray spectrum, beam hardening, scattering, and noise, etc. Therefore, the iterative reconstruction algorithm can further improve the image spatial resolution and reduce the artifacts. Furthermore, iterative reconstruction algorithms that based on photon statistics constructing an accurate noise model, has a better performance in reduce image noise. Generally, accurate modeling of projection data measurements is the foundation of high quality reconstruction, and the introduction of prior knowledge to avoid solving ambiguity and high precision image reconstruction has very important significance.
     X-ray CT technologies have been widely explored for specific applications in clinic including perfusion imaging,4D-CT imaging, image-guided intervention and radiotherapy, et al. Under these situations, repeated topographic acquisitions are often prescribed. For instance, except the planning CT, in daily Cone Beam CT (CBCT) examinations for target localization in image-guided radiation therapy (IGRT), repeated scans have become routine procedures. In this case, the cumulative radiation dose still significantly increase as comparison with the conventional CT scans, which has raised major concerns in patients. With regard to the repeated CT scans, a previously scanned high-quality diagnostic CT image volume usually contains same anatomical information as the current scan except for some anatomical changes due to internal motion or patient weight change. In other words, there exists redundant information among the repeated scan CT images. Traditionally, the prior information is constrained on the different values of the local neighboring pixels in the image domain. So the CT scans at different times are often dealt independently and no systematic attempt has been made to integrate the valuable patient-specific prior knowledge, i.e., the previous scanned data that hold a wealth of prior information on the patient-specific anatomy, to promote the subsequent imaging process. According to the above, in this paper, we focus on exploiting reasonable approaches to incorporate the redundancy of information in the prior-image and also the optimization with the introduction of the prior information. Meanwhile, we have a further study on the noise prosperities of the flat panel detector (FPD) mounted on the CBCT imaging system, which has constructed the statitiscal model for CT iterative reconstruction. On the whole, the main works of this paper can be summarized as follows:
     1) To introduce the prior information in a reasonable way, and to overcome the disadvantage of the locally designed prior term with only the different values of the neighboring pixels as the constraint, in this paper, we propose to utilize the nonlocal criteria to search the patched based similarity between different pixels to form the regulation term. In this way, the prior information can be introduced efficiently. The new approach relaxes the need of accurate registration between the target image and the prior image. Experiments on the physical phantom, numerical XCAT phantom, and patient data show that the proposed approach can improve the image quality without introducing new fake structure in low dose CT imaging.
     2) Base on two main characteristics of cerebral perfusion CT imaging:(1) the normal dose pre-contrast scanned image has relative higher resolution and lower noise level as compared to the follow up low dose contrast image. So the redundant information in the precious high quality image can be used to promote the low dose contrast image reconstruction.(2) During the sequential scan of the selected slices, most of the anatomical structures are unchanged except the changes of the intensity level. In his paper, we propose a normal dose pre-contrast scan induced low dose cerebral perfusion CT image reconstruction algorithm. Firstly, the low dose contrasted image is restored by using the improved nonlocal means criterion with the normal dose pre-contrast image. Then the image is reconstructed by an iterative deconvolution reconstruction framework. Experiments on both numerical simulation and patient data show that the algorithm can effectively suppress noise and improve the image SNR, and then to make the corresponding hemodynamic parameters calculation more accurate.
     3) To address the mismatch problem between the prior image and target image for the prior image constrained compressed sensing (PICCS) algorithm, in this paper, we propose to obtain similar or closed image volume by registering the on-treatment projection data and the prior image volume. Particularly, this procedure is facilitated by estimating the deformation vector fields (DVF) through matching the forward projection of the prior image and the measured on-treatment projection. Then by translating the DVF onto the prior image, we get the deformed-prior image that used as the prior image for prior-image based image reconstruction algorithm. The present approach can effectively avoid the negative influence of the noise and artifacts in the FDK reconstructions in the image domain registration. Experimental studies on the XCAT phantom and patient data show that the proposed approach generates high-quality registered prior image with most anatomical structures aligned to the target image, the image quality of the reconstructions has been improved as compared to the standard PICCS algorithm.
     4) Given the physically difference between the flat panel detector in CBCT imaging system and the conventional fan beam CT detector, in this study, we systematically investigated the noise correlation properties among detector bins of CBCT projection data on a True-Beam on-board system. The noise correlation coefficients among detector bins were calculated with repeated scanned measurements. The analyses showed that non-zero noise correlation coefficient values can be found between the eight nearest neighboring pixels. For the first order neighbors, the noise correlation coefficients are larger than the second order ones. Meanwhile, the noise correlation coefficients are independent of the dose level. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction. Reconstruction shows that the consideration of noise correlation results in improved reconstruction quality. An accurate noise model of CBCT projection data was obtained.
引文
[1]Radon J (1917) Translated as'On determining functions from their integralvalues along certain manifolds'by P.C. Parks (1986) in IEEE Transactions inMedical Imaging,1917,5:170-176.
    [2]Hsieh J, Computed tomography:principles, design, artifacts, and recerxt advances[M]. Bellingham:SPIE Press,2003.
    [3]Brenner D J and Hall E J. Computed tomography--an increasing source of radiation exposure[J]. The New England journal of medicine,2007,357: 2277-2284.
    [4]Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer[J]. Archives of internal medicine,2009, 169:2078-2086.
    [5]Sodickson A, Baeyens P F, Andriole K P, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults[J]. Radiology 2009,251:175-184.
    [6]Kijewski M F and Judy P F. The noise power spectrum of CT images [J]. Physics in medicine and biology,1987,32:565-575.
    [7]Rust G F, Aurich V, Reiser M. Noise dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains[C]. Medical Imaging 2002:Physiology and Function from Multidimensional Images,2002,4683:186-197.
    [8]Mendrik A M, Vonken E J, Rutten A, et al. Noise reduction in computed tomography scans using 3D anisotropic hybrid diffusion with continuous switch[J]. IEEE Trans Med Imaging,2009,28(10):1585-1594.
    [9]Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise [J]. Medical physics,1998,25:2139-2147.
    [10]La Riviere P J, Bian J and Vargas P A. Penalized-likelihood sinogram restoration for computed tomography [J]. IEEE transactions on medical imaging,2006,25:1022-1036.
    [11]Wang J, Lu H, Wen J and Liang Z. Multiscale penalized weighted least-squares sinogram restoration for low-dose x-ray computed tomography [J]. IEEE transactions on bio-medical engineering,2006,55: 1022-1031.
    [12]Wang J, Li T, Lu H and Liang Z, Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography [J]. IEEE transactions on medical imaging,2006,25, 1272-1283.
    [13]Wang J, Liang Z and H. Lu. Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography[C]. Conference proceedings:Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference,2006,1:3282-3285.
    [14]Nuyts J, Man B De, Fessler J A, et al. Modelling the physics in the iterative reconstruction for transmission computed tomography [J]. Physics in medicine and biology,2013,58:R63-96.
    [15]Lasio G M, Whiting B R, Williamson J F. Statistical reconstruction for x-ray computed tomography usingenergy-integrating detectors[J]. Phys Med Biol,200752, (8):2247-2266.
    [16]Thibault J B, Sauer K D, Bouman C A, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT [J]. Med Phys, 2007,34(11):4526-44.
    [17]林少春,马建华,陈武凡.基于有序子集的惩罚加权最小二乘低剂量CT优质重建算法研究[J],中国组织工程研究与临床康复,2008,12(4):679-682.
    [18]Yu D F and Fessler J A. Edge-preserving tomographic reconstruction with nonlocal regularization [J]. IEEE Trans Med Imaging,2002,21 (2):159-73.
    [19]Wang J, Li T, Xing L. Iterative image reconstruction for CBCT using edge-preserving prior[J]. Med. Phys.,2009,36(1):252-260.
    [20]Chang M, Li L, Chen Z, et al. A few-view reweighted sparsity hunting (FRESH) method for CT image reconstruction [J]. J Xray Sci Technol,2013, 21(2):161-76.
    [21]Sen Sharma K, Jin X, Holzner C, et al. Experimental studies on few-view reconstruction for high-resolution micro-CT [J]. J Xray Sci Technol,2013, 21(1):25-42.
    [22]Bertram M, Wiegert J, Schafer D, et al. Directional view interpolation for compensation of sparse angular sampling in cone-beam CT [J]. IEEE Trans Med Imaging,2009,28(7):1011-22.
    [23]Nassi M, Brody W R, Medoff B P, et al. Iterative reconstructon--reprojection:an algorithm for limited data cardiac-computed tomography [J]. IEEE Trans Biomed Eng,1982,29(5):333-41.
    [24]Li Y, Chen Y, Hu Y, et al. Strategy of computed tomography sinogram inpainting based on sinusoid-like curve decomposition and eigenvector-guided interpolation [J]. J Opt Soc Am A Opt Image Sci Vis, 2012,29(1):153-63.
    [25]Bian J, Siewerdsen J H, Han X, et al. Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT [J]. Phys Med Biol, 2010,55(22):6575-99.
    [26]Sidky E Y and Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization [J]. Phys Med Biol, 2008,53(17):4777-807.
    [27]Yu H, Zhao S, Hoffman E A, et al. Ultra-low dose lung CT perfusion regularized by a previous scan [J]. Acad Radiol,2009,16(3):363-73.
    [28]Chen G H, Tang J, and Leng S. Prior image constrained compressed sensing (PICCS):a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets [J]. Med Phys,2008,35(2):660-3.
    [29]Xu Q, Yu H, Mou X, et al. Low-dose X-ray CT reconstruction via dictionary learning [J]. IEEE Trans Med Imaging,2012,31(9):1682-97.
    [1]庄天戈.CT原理与算法[M],上海:上海交通大学出版社,1992,77--99
    [2]Kak A C and Malcolm Slaney. Principles of Computerized Tomographic Imaging [M]. IEEE Press,1988.
    [3]J. Radon (1917) Translated as'On determining functions from their integralvalues along certain manifolds'by P.C. Parks (1986) in IEEE Transactions inMedical Imaging,1917,5:170-176.
    [4]Herman G T. Image Reconstruction from Projections:Fundamentals of Computerized Tomography [M]. Academic press, New York,1980.
    [5]Cormak A M. Representation of a function by its line integrates with some radiological applications [J]. Journal of Applied Physics,1956,34(9):1635-1 641.
    [6]Brooks R A and Di Chiro G. Theory of image reconstruction in computed tomography[J]. Radiology,1975,117:561-72.
    [7]Herman G T.投影法图像重建-实现和应用[M],北京:国防工业出版社,1992,65-79
    [8]Horn B K P. Fan-beam reconstruction methods[C]. Proceedings of IEEE,1979, 67:1616-1623.
    [9]Gordon R, Bender R and Herman G T. Algebraic Reconstruction Techniques (Art) for 3-Dimensional Electron Microscopy and X-Ray Photography [J]. Journal of theoretical biology,1970,29:471-481.
    [10]Andersen AH, Kak A C. A superior implementation of the ART algorithm [J], Ultrasonic Imaging,1984,6(3):81-94.
    [11]Herman G T, Meyer L B. Algebraic reconstruction techniques can be made computationally efficient [J] IEEE Trans Med Imaging,1993,12(3):600-609
    [12]Andersen A H and Kak A C. Simultaneous Algebraic Reconstruction Technique (Sart)-a Superior Implementation of the Art Algorithm[J]. Ultrasonic imaging 1984,6:81-94.
    [13]Lei T and Sewchand W. Statistical approach to x-ray CT imaging and its applications in image analysis—Part I:Statistical analysis of x-ray CT imaging [J]. IEEE Trans. Med. Imag.,1992,53-61.
    [14]Whiting B R. Signal statistics in X-ray computed tomography [C]. SPIE Med. Imag.,2002,4682:53-60.
    [15]Whiting B R, Massoumzadeh P, Earl O A, et al. Properties of preprocessed sinogram data in x-ray computed tomography [J]. Med Phys,2006, 33(9):3290-303.
    [16]Thibault J B, Bouman C A, Sauer K D, and Hsieh J. A recursive filter for noise reduction in statistical iterative tomographic imaging [C]. In Proc. SPIE 6065, Computational Imaging IV,60650X,2006.
    [17]Lu H, Hsiao I, Li X, and Liang Z. Noise properties of low-dose CT projections and noise treatment by scale transformations[C]. In Conf. Rec.IEEE NSS-MIC, 2001.
    [18]Li T, Li X, Wang J, et al. Nonlinear sinogram smoothing for low-dose X-ray CT[J]. IEEE Trans Nucl Sci,2004,51(5):2505-2513.
    [19]Shepp L A and Vardi Y. Maximum likelihood reconstruction for emission tomography [J]. IEEE Trans Med Imaging,1982,1(2):113-22.
    [20]Browne J A and Holmes T J. Developments with maximum likelihood X-ray computed tomography [J]. IEEE Trans Med Imaging,1992, 11(1):40-52.
    [21]Richardson W H. Bayesian-based iterative method of image restoration [J]. J. Opt. Soc. Am., January 1972,62(1):55-9.
    [22]Lasio G M, Whiting B R, and Williamson J F. Statistical reconstruction for x-ray computed tomography using energyintegrating detectors [J]. Phys. Med. Biol, April 2007,52(8):2247-66.
    [23]Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography [J]. IEEE Trans Med Imaging,2006,25(10):1272-83.
    [24]Shulman D and Herve J. Regularization of discontinuous flow fields[C]. In Proc. Workshop on Visual Motion,1989,81-86.
    [25]Lalush D S and Tsui B M. A generalized Gibbs prior for maximum a posteriori reconstruction in SPECT [J]. Physics in medicine and biology,1993,38:729-41.
    [26]Hebert T and Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors [J]. IEEE transactions on medical imaging,1989,8:194-202.
    [27]Bouman C and Sauer K. A generalized Gaussian image model for edge-preserving MAP estimation [J]. IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,1993,2:296-310.
    [28]He H, Kondi L P. Choice of Threshold of the Huber-Markov Prior in MAP-based Video Resolution Enhancement [C]. Conference on Electrical and Computer Engineering,2004
    [29]Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Mag.,2007, 24(4):118-120.
    [30]Sidky E Y and Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization [J]. Physics in medicine and biology,2008,53:4777-807.
    [31]Riviere P. La. Reduction of noise-induced streak artifacts in x-ray CT through penalized-likelihood sinogram smoothing[C]. In Conf. Rec. IEEE NSS-MIC, 2003.
    [32]Wang J, Li T, Lu H and Liang Z. Noise Reduction for Low-Dose Single-Slice Helical CT Sinograms [J]. IEEE transactions on nuclear science,2006, 53:1230-7.
    [33]Riviere P La and Pan X. Nonparametric regression sonogram smoothing using a roughness-penalized poisson likelihood objective function [J]. IEEE Trans. Med. Imag.,2000,19:773-786
    [1]Schubert T, Jacob A L, Takes M, et al. CT-guided percutaneous biopsy of a mass lesion in the upper presacral space:a sacral transneuroforaminal approach [J]. Cardiovasc Intervent Radiol,2012,35(5):1255-7.
    [2]Siewerdsen J H. Cone-Beam CT with a Flat-Panel Detector:From Image Science to Image-Guided Surgery [J]. Nucl Instrum Methods Phys Res A,2011, 648(S1):S241-S250..
    [3]Dharap S B, Khandkar A A, Pandey A, et al. Repeat CT scan in closed head injury [J]. Injury,2005,36(3):412-6.
    [4]Zhao B, James L P, Moskowitz C S, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer [J]. Radiology,2009,252(l):263-72.
    [5]Kuo Y C, Wu T H, Chung T S, et al. Effect of regression of enlarged neck lymph nodes on radiation doses received by parotid glands during intensity-modulated radiotherapy for head and neck cancer [J]. Am J Clin Oncol, 2006,29(6):600-5.
    [6]Yu L, Liu X, Leng S, et al. Radiation dose reduction in computed tomography: techniques and future perspective [J]. Imaging Med,2009, 1(1):65-84.
    [7]McCollough C H, Bruesewitz M R, and Kofler J M, Jr. CT dose reduction and dose management tools:overview of available options [J]. Radiographics,2006, 26(2):503-12.
    [8]Kalra M K, Maher M M, Toth T L, et al. Techniques and applications of automatic tube current modulation for CT [J]. Radiology,2004,233(3):649-57..
    [9]Yu L, Bruesewitz M R, Thomas K B, et al. Optimal tube potential for radiation dose reduction in pediatric CT:principles, clinical implementations, and pitfalls [J]. Radiographics,2011,31(3):835-48.
    [10]Ma J, Huang J, Feng Q, et al. Low-dose computed tomography image restoration using previous normal-dose scan [J]. Med Phys,2011,38(10): 5713-5731.
    [11]J. Wang, T. Li and L. Xing, "Iterative image reconstruction for CBCT using edge-preserving prior," Med Phys, vol.36, no.1, pp.252-260,2009.
    [12]Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for lowdose X-ray computed tomography [J]. IEEE Trans Med Imaging,2006,25:1272-83.
    [13]Singh S, Kalra M K, Gilman M D, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT:a pilot study [J]. Radiology,2011,259(2):565-73.
    [14]Jia X, Dong B, Lou Y, et al. GPU-based iterative conebeam CT reconstruction using tight frame regularization [J]. Phys Med Biol,2011,56(13):3787-3807.
    [15]Mitsumori L M, Shuman W P, Busey J M, et al. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient:64 channel liver CT image quality and patient radiation dose [J]. Eur Radiol,2012, 22(1):138-43.
    [16]Li S Z. Markov Random Field Modeling in Image Analysis [M].Japan, Spinger-Verlag,2001.
    [17]Shulman D and Herve J. Regularization of discontinuous flow fields[C]. In Proc. Workshop on Visual Motion,1989,81-86.
    [18]Black M and Sapiro G. Edges as outliers:anisotropic smoothing using local image statistics[C]. Proc Scale-Space Theories in Computer Vision,1999, 259-70.
    [19]Chen G H, Tang J, and Leng S. Prior image constrained compressed sensing (PICCS):a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets [J]. Med Phys,2008,35(2):660-3.
    [20]Xu Q, Yu H, Mou X, et al. Low-dose X-ray CT reconstruction via dictionary learning [J]. IEEE Trans Med Imaging,2012,31(9):1682-97.
    [21]Yu D F and Fessler J A. Edge-preserving tomographic reconstruction with nonlocal regularization [J]. IEEE Trans Med Imaging,2002,21(2):159-73.
    [22]Buades A, Coll B and Morel J M. A nonlocal algorithm for image denoising[C]. Proc. IEEE Computer Vision and Pattern Reconization,2005,2:60-65.
    [23]Lu H, Li X, Li L, et al. Adaptive noise reduction toward low-dose computed tomography[C]. Processing SPIE Medical Imaging,2003,5030:759-766.
    [24]Li T, Li X, Wang J, et al. Nonlinear sinogram smoothing for low-dose X-ray CT[J]. IEEE Trans Nucl Sci,2004,51:2501-13.
    [25]Ma J, Liang Z, Fan Y, et al. Variance analysis of x-ray CT sinograms in the presence of electronic noise background [J]. Med Phys,2012,39(7):4051-65.
    [26]Han G, Liang Z and You J. A fast ray-tracing technique for TCT and ECT studies[C]. IEEE Nuclear Science Symposium Conf Record,1999,3:1515-18.
    [27]W. P. Segars, G Sturgeon, S. Mendonca, J. Grimes, B. MTsui BM. "4D XCAT phantom for multimodality imaging research," Med Phys, vol.37, pp. 4902-4915,2010.
    [28]Segars W P, Sturgeon G, Mendonca S, et al.4D XCAT phantom for multimodality imaging research [J]. Med Phys,2010,37(9):4902-15.
    [29]Black M J, Sapiro G, Marimont D H, et al. Robust anisotropic diffusion [J]. IEEE Trans Image Process,1998,7(3):421-32.
    [30]De Ville D V and Kocher M. SURE-Based Non-Local Means [J]. IEEE Signal Processing Letters, November 2009,16(11):973-976.
    [31]Duval V, Aujol J F, and Gousseau Y. On the parameter choice for the Non-Local Means[R]. Tech. Rep. hal-00468856, HAL,2010.
    [32]Xu F and Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware [J]. IEEE Trans Nucl Sci,2005, 52:654-63.
    [1]Klotz E and Konig M. Perfusion measurements of the brain:using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke [J]. Eur J Radiol,1999,30(3):170-84.
    [2]Koenig M, Klotz E, Luka B, et al. Perfusion CT of the brain:diagnostic approach for early detection of ischemic stroke [J]. Radiology,1998, 209(1):85-93.
    [3]Wintermark M, Sincic R, Sridhar D, et al. Cerebral perfusion CT:technique and clinical applications [J]. J Neuroradiol,2008,35(5):253-60
    [4]Hopyan J, Ciarallo A, Dowlatshahi D, et al. Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography [J]. Radiology,2010,255(1):142-53.
    [5]Hirata M, Sugawara Y, Fukutomi Y, et al. Measurement of radiation dose in cerebral CT perfusion study [J]. Radiat Med,2005,23(2):97-103.
    [6]Kalra M K, Maher M M, Rizzo S, et al. Radiation exposure and projected risks with multidetector-row computed tomography scanning:clinical strategies and technologic developments for dose reduction [J]. J Comput Assist Tomogr,2004,28 Suppl 1S46-9.
    [7]Wiesmann M, Berg S, Bohner G, et al. Dose reduction in dynamic perfusion CT of the brain:effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time [J]. Eur Radiol, 2008,18(12):2967-74.
    [8]Shah N B and Platt S L. ALARA:is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children [J]. Curr Opin Pediatr,2008,20(3):243-7.
    [9]Sadek M M and Chow B J. The Risks of Computed Tomography Go Beyond Radiation [J]. Can J Cardiol,2013,
    [10]Prokop M. Radiation dose in computed tomography. Risks and challenges [J]. Radiologe,2008,48(3):229-42.
    [11]Wintermark M, Smith W S, Ko N U, et al. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients [J]. AJNR Am J Neuroradiol, 2004,25(5):720-9..
    [12]Kamena A, Streitparth F, Grieser C, et al. Dynamic perfusion CT:optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients [J]. Eur J Radiol,2007,64(1):111-8.
    [13]Fujita M, Kitagawa K, Ito T, et al. Dose reduction in dynamic CT stress myocardial perfusion imaging:comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols [J]. Eur Radiol,2014,24(3):748-55.
    [14]Graves J M, Kanal K M, Rivara F P, et al. Dose Reduction Efforts for Pediatric Head CT Imaging in Washington State Trauma Centers:Follow-Up Survey Results [J]. J Am Coll Radiol,2014,11(2):161-168.
    [15]Johkoh T, Honda O, Yamamoto S, et al. Evaluation of image quality and spatial resolution of low-dose high-pitch multidetector-row helical high-resolution CT in 11 autopsy lungs and a wire phantom [J]. Radiat Med, 2001,19(6):279-84.
    [16]Korn A, Fenchel M, Bender B, et al. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection [J]. AJNR Am J Neuroradiol,2012,33(2):218-24.
    [17]Loubele M, Jacobs R, Maes F, et al. Radiation dose vs. image quality for low-dose CT protocols of the head for maxillofacial surgery and oral implant planning [J]. Radiat Prot Dosimetry,2005,117(1-3):211-6.
    [18]Yu H, Zhao S, Hoffman E A, et al. Ultra-low dose lung CT perfusion regularized by a previous scan [J]. Acad Radiol,2009,16(3):363-73.
    [19]Saito N, Kudo K, Sasaki T, et al. Realization of reliable cerebral-blood-flow maps from low-dose CT perfusion images by statistical noise reduction using nonlinear diffusion filtering [J]. Radiol Phys Technol,2008, 1(1):62-74.
    [20]Ma J, Huang J, Feng Q, et al. Low-dose computed tomography image restoration using previous normal-dose scan[J]. Med Phys,2011, 38(10):5713-5731.
    [21]Buades A, Coll B, and More J M. A non-local algorithm for image denoising[C]. In CVPR,2005,2:60-65.
    [22]Gal Y, Mehnert A J, Bradley A P, et al. Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means[J]. IEEE Trans. Med. Imaging,2010,29:302-310.
    [23]Jonic S, Sorzano C O, Thevenaz P, et al. Spline-based image-to-volume registration for three-dimensional electron microscopy [J]. Ultramicroscopy, 2005,103(4):303-17.
    [24]Cao G G and Luo L M. Non-rigid medical image registration based on mutual information and thin-plate spline[J]. Zhongguo Yi Liao Qi Xie Za Zhi, Jan 2009,33:11-4.
    [25]Han G, Liang Z and You J. A fast ray-tracing technique for TCT and ECT studies [C]. IEEE Nuclear Science Symposium Conf. Record, 1999,3:1515-18.
    [26]La Riviere P J, Bian J, and Vargas P A. Penalized-likelihood sinogram restoration for computed tomography [J]. IEEE Trans Med Imaging,2006,25: 1022-36.
    [27]La Riviere P J, Bian J, and Vargas P A. Comparison of quadratic-and median-based roughness penalties for penalized-likelihood sinogram restoration in computed tomography[C]. Int J Biomed Imaging,2006,41380.
    [28]Kudo K, Perfusion Mismatch Analyzer, version 3.0.0.0, available at ASIST-Japan web site, http://asist.umin.jp/index-e.htm (published November 2006, updated February 2009, last accessed February 20,2009).
    [1]Xing L, Thorndyke B, Schreibmann E, et al. Overview of image-guided radiation therapy [J]. Med Dosim,2006,31(2):91-112.
    [2]Sidky E Y and Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization [J]. Phys Med Biol, 2008,53(17):4777-807..
    [3]Yu L F, Pan X C, Pelizzari C A and Martel M. Few-view and limited-angle cone-beam megavoltage CT for breast localization in radiation therapy [C]. P Soc Photo-Opt Ins 5370,2004,2075-2082.
    [4]Feldkamp L A, Davis L C and Kress J W. Practical Cone-Beam Algorithm[J].J Opt Soc Am A,1984,1:612-619.
    [5]Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT [J]. Phys Med Biol,2002,47(15):2583-97.
    [6]Gordon R, Bender R and Herman G T. Algebraic Reconstruction Techniques (Art) for 3-Dimensional Electron Microscopy and X-Ray Photography [J]. Journal of theoretical biology,1970,29:471-481.
    [7]Andersen A H and Kak A C. Simultaneous Algebraic Reconstruction Technique (Sart)-a Superior Implementation of the Art Algorithm[J]. Ultrasonic imaging, 1984,6:81-94.
    [8]Candes E J, Romberg J and Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE T Inform Theory,2006,52:489-509.
    [9]Sidky E Y and Pan X C. Accurate image reconstruction in circular cone-beam computed tomography by total variation minimization:a preliminary investigation[C]. Ieee Nucl Sci Conf R,2006,2904-2907.
    [10]Chen G H, Tang J, and Leng S. Prior image constrained compressed sensing (PICCS):a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets [J]. Med Phys,2008,35(2):660-3.
    [11]Xu Q, Yu H, Mou X, et al. Low-dose X-ray CT reconstruction via dictionary learning [J]. IEEE Trans Med Imaging,2012,31(9):1682-97.
    [12]Yu H, Zhao S, Hoffman E A, et al. Ultra-low dose lung CT perfusion regularized by a previous scan [J]. Acad Radiol,2009,16(3):363-73.
    [13]Ding Y F, Siewerdsen J H and Stayman J W. Incorporation of Noise and Prior Images in Penalized-Likelihood Reconstruction of Sparse Data[C]. Medical Imaging 2012:Physics of Medical Imaging, vol.8313,2012.
    [14]Bergner F, Berkus T, Oelhafen M, et al. A Comparison of 4D Cone-Beam CT Algorithms for Slowly Rotating Scanners [J]. IEEE Nuclear Science Symposium Conference Record,2009, Vols 1-5:3764-3769.
    [15]Lee H, Xing L, Davidi R, et al. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints [J]. Physics in medicine and biology,2012,57:2287-2307.
    [16]Meng B, Xing L, Han B, et al. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy:a proof of concept study [J]. Phys Med Biol,2013, 58(21):7777-89.
    [17]Nett B, Tang J, Aagaard-Kienitz B, et al. Low radiation dose C-arm cone-beam CT based on prior image constrained compressed sensing (PICCS):including compensation for image volume mismatch between multiple data acquisitions [C]. Proc. SPIE 7258, Medical Imaging 2009:Physics of Medical Imaging,,2009, vol.725803.
    [18]Lu W G, Chen M L, Olivera G H, et al. Fast free-form deformable registration via calculus of variations[J]. Physics in medicine and biology, 2004,49:3067-3087.
    [19]Lustig M, Donoho D, and Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging [J]. Magn Reson Med,2007, 58(6):1182-95.
    [20]Wang J and Gu X J. High-quality four-dimensional cone-beam CT by deforming prior images[J]. Physics in medicine and biology,2013,58:231-246.
    [21]Lauzier P T, Tang J, and Chen G H. Prior image constrained compressed sensing:implementation and performance evaluation [J]. Med Phys,2012, 39(1):66-80.
    [22]Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography [J]. IEEE Trans Med Imaging,2006,25(10):1272-83.
    [23]Wang Z and Bovik A C. A universal image quality index[J]. IEEE Signal Proc Let,2002,9:81-84.
    [1]Yang Y, Schreibmann E, Li T, et al. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation[J]. Phys. Med. Biol.,2007,52:685-705.
    [2]Xing L, Thorndyke B, Schreibmann E, et al. Overview of image-guided radiation therapy[J]. Medical Dosimetry,2006,31:91-112.
    [3]Lee L, Le Q T and Xing L. Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file[J]. Int J Radiat Oncol Biol Phys,2008, 70:634-644.
    [4]Brenner D J and Hall E J. Current concepts-Computed tomography-An increasing source of radiation exposure [J]. New England Journal of Medicine,2007,357:2277-2284.
    [5]Wen N, Guan H Q, Hammoud R,et al. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer[J]. Physics in Medicine and Biology, 2007,52:2267-2276.
    [6]Islam M K, Purdie T G, Norrlinger B D, et al. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy[J]. Medical Physics, 2006,33:1573-1582.
    [7]Ouyang L, Solberg T and Wang J. Noise reduction in low-dose cone beam CT by incorporating prior volumetric image information[J]. Med Phys,2012,39: 2569-2577.
    [8]Stsepankou D, Arns A, Ng S K, et al. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization[J]. Physics in Medicine and Biology,2012,57:5955-5970.
    [9]Zhang H, Liu Y, Han H, et al. A comparison study of sinogram-and image-domain penalized re-weighted least-squares approaches to noise reduction for low-dose cone-beam CT[C]. Medical Imaging 2013:Physics of Medical Imaging,2013,8668.
    [10]Feldkamp L A, Davis L C and Kress J W. Practical Cone-Beam Algorithm[J]. Journal of the Optical Society of America a-Optics Image Science and Vision,1984,1:612-619.
    [11]Wang J, Li T F, Liang Z R and Xing L. Dose reduction for kilovotage cone-beam computed tomography in radiation therapy [J]. Physics in Medicine and Biology,2008,53:2897-2909.
    [12]Wang J, Li T, Lu H B and Liang Z R. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography [J]. IEEE Transactions on Medical Imaging,2006, 25:1272-1283.
    [13]Fessler J A. Penalized Weighted Least-Squares Image-Reconstruction for Positron Emission Tomography [J]. IEEE Tran Med Imaging,1994,13:290-300.
    [14]Wang J, Li T and Xing L. Iterative image reconstruction for CBCT using edge-preserving prior[J]. Med Phys,2009,36:252-260.
    [15]Tang J, Nett B E and Chen G H. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms[J]. Phys Med Biol,2009,54:5781-5804.
    [16]J. Wang J, Lu H, Liang Z,et al. An experimental study on the noise properties of x-ray CT sinogram data in Radon space[J]. Phys Med Biol,2008, 53:3327-3341.
    [17]Zhao W and Rowlands J A. Digital radiology using active matrix readout of amorphous selenium:Theoretical analysis of detective quantum efficiency [J]. Medical Physics,1997,24:1819-1833.
    [18]Whiting B R, Massoumzadeh P, Earl O A, et al. Properties of preprocessed sinogram data in x-ray computed tomography [J]. Medical physics,2006, 33:3290-3303.
    [19]Huang S Y, Yang K, Abbey C K, et al. A semi empirical linear model of indirect, flat-panel x-ray detectors [J]. Med Phys,2012,39:2108-18.
    [20]Ma J, Liang Z, Fan Y, et al. Variance analysis of x-ray CT sinograms in the presence of electronic noise background [J]. Med Phys,2012,39:4051-65.
    [21]Thibault J B, Sauer K D, Bouman C A, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT [J]. Med Phys, 2007,34(11):4526-44.
    [22]Hsieh J. Computer Tomography, Principles, Design, Artifacts, and Recent Advances[C].2003,1. Bellingham, WA:SPIE.
    [23]Starman J, Star-Lack J, Virshup G, et al. Investigation into the optimal linear time-invariant lag correction for radar artifact removal[J]. Medical Physics,2011, 38:2398-2411.
    [24]Yang K, Huang S Y, Packard N J, et al. Noise variance analysis using a flat panel x-ray detector:A method for additive noise assessment with application to breast CT applications[J]. Medical Physics,2010,37:3527-3537.
    [25]Hsieh J, Gurmen O E and King K F. A recursive correction algorithm for detector decay characteristics in CT[C]. Medical Imaging 2000:Physics of Medical Imaging,2000,1:298-305.
    [26]Paige C C and Saunders M A. Lsqr-an Algorithm for Sparse Linear-Equations and Sparse Least-Squares[J]. Acm Transactions on Mathematical Software,1982, 8:43-71.
    [27]Evans J D, Politte D G, Whiting & R, et al. Noise-resolution tradeoffs in x-ray CT imaging:a comparison of penalized alternating minimization and filtered backprojection algorithms [J]. Med Phys,2011,38(3):1444-58.
    [28]Xu J Y and Tsui B M W. Electronic Noise Modeling in Statistical Iterative Reconstruction[J]. IEEE T Image Process,2009,18:1228-1238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700