用户名: 密码: 验证码:
六盘山四种典型森林植被的水文过程与主要元素通量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维持元素在森林生态系统内的流动和平衡是一种重要的森林生态服务功能,这涉及元素的输入、输出及转换过程,也涉及在植被、土壤等不同分库的储存与流动通量。养分循环和水文循环有着密切关系,格外需要开展养分和水文循环的同步观测与研究。
     本文在我国西北干旱缺水地区的宁夏六盘山区,选择具有典型代表性的华北落叶松人工林、华山松次生林、桦木次生林、野李子灌丛样地,不同程度地同步观测了2011年生长季(5月24日至10月20日)的水文过程及伴随降水转化发生的主要营养元素循环过程,计算了伴随降水输入、冠层雨水转化、枯落物层和主根系层(0-30cm)的渗漏(产流)输出过程发生的主要营养元素通量变化,得到了主要元素的循环与平衡特征。主要结论为:
     在2011生长季的降雨量为724.3mm的情况下,四种林分的冠层截留量(率)分别为:桦木林(145.6mm,20.11%)>华北落叶松林(124.9mm,17.25%)>华山松林(102.3mm,14.13%)>野李子灌丛(86.2mm,11.91%);林下降水量(率)为:野李子灌丛(631.8mm,88.09%)>华山松林(622.0mm,85.87%)>华北落叶松林(599.4mm,82.75%)>桦木林(578.7mm,79.89%);枯落物层渗漏水量(率)为:野李子灌丛(525.0mm,72.48%)>华山松林(424.3mm,58.59%)>华北落叶松林(407.2mm,56.22%)>桦木林(368.3mm,50.85%);0-30cm土层渗漏水量(率)为:华山松林(275.9mm,38.09%)>华北落叶松林(244.2mm,33.72%)。
     华北落叶松林的生长季总蒸散为482.5mm,其分量和占降雨量比例分别为植被截持124.9mm(17.25%)、林木蒸腾204.5mm(28.23%)、林下蒸散153.1mm(21.14%));华山松林的生长季总蒸散为477.1mm,其分量和占降雨量的比例分别为植被截持102.3mm(14.13%)、林木蒸腾222.9mm(30.77%)、林下蒸散151.9mm(20.98%))。两个样地各蒸散分量对总蒸散的贡献均为林木蒸腾>林下蒸散>植被截持。
     在2011生长季,0-100cm土层的蓄水量(mm)变化为:华北落叶松林(+63.39)>桦木林(-4.85)>华山松林(-5.47)>野李子灌丛(-10.50),即除华北落叶松林样地土壤蓄水增加外,其余三种林分样地均有所减少。
     2011年生长季的水量平衡计算表明,该年生长季降水量可充分满足华北落叶松林和华山松林的蒸散耗水需要,其林地产水量(0-30cm土层的净流出量)表现为华山松林样地(252.7mm)>华北落叶松林样地(178.3mm)。
     伴随2011年生长季大气降水输入的元素通量(kg/hm2)分别是:TOC为53.17、NH4+-N为3.04、NO3--N为4.27、PO43-为0.00、K+为8.91、Ca2+为47.51、Mg2+为6.01。在林外降水转为林下降水(穿透水和干流)过程中,发生了林冠对各离子不同的淋溶或吸附作用,从而产生了不同的通量变化。几个样地的TOC、PO43-、K+通量(kg/hm2)明显增大,分别增大到华北落叶松林的132.28、11.16、55.53,华山松林的106.56、14.64、44.83,桦木林的66.52、12.47、40.09,野李子灌丛的79.49、5.01、39.52;而NH4+-N、NO3--N、Ca2+通量(kg/hm2)均有不同程度的降低,分别降低到华北落叶松林的2.40、2.15、32.38,华山松林的2.36、1.92、27.95,桦木林的2.08、2.14、28.75,野李子灌丛的2.29、2.09、34.97;Mg2+通量(kg/hm2)在华北落叶松和华山松中分别增加为7.37、6.28,在桦木林和野李子灌丛中分别减少为5.44、5.40。
     样地枯落物层对各元素的通量发挥着“源”或“汇”的不同作用,使元素通量(kg/hm2)发生不同变化。在林下降水转化为枯落物渗漏水后,NH4+-N、NO3--N通量在几种样地内都是降低,分别变化为华北落叶松林的1.22、1.55,华山松林的1.40、1.82、桦木林的1.55、1.69,野李子灌丛的1.79、2.31。Ca2+、Mg2+通量在几个样地内均为增加,分别增到华北落叶松林的40.76、8.71,华山松林的56.52、12.26,桦木林的48.58、12.30,野李子灌丛的75.55、12.60。TOC通量在2个松林样地内表现为降低,分别降到华北落叶松林的90.76,华山松林的104.90;但在另外2个样地表现为增加,分别增至桦木林的84.35、野李子灌丛的129.35。PO43-通量变化在不同样地有所差异,分别降到华北落叶松林的2.97、华山松林的4.62、桦木林的6.56,而在野李子灌丛增大到14.23。K+通量在华北落叶松林内降低到51.59,而在其他三种林分表现为增加,分别增大到华山松林的54.31、桦木林的48.84、野李子灌丛的57.80。
     主根系层土壤(0-30cm)对枯落物渗漏水携带的各元素通量(kg/hm2)具有不同的调控作用,表现为对TOC、PO43-、K+的净吸附固定的“汇”作用,其通量分别降低到华北落叶松林的43.04、0.00、12.67,华山松林的66.33、0.00、23.23;但对NH4+-N、NO3--N、Ca2+、Mg2+通量表现为净淋出的“源”作用,分别增大到华北落叶松林的1.76、17.17、121.07、23.27,华山松林的1.66、14.68、114.94、28.80。
     相对于林外降水而言,华北落叶松林和华山松林的主根系层土壤(0-30cm)渗漏水中TOC、NH4+-N通量都低于林外降水,说明森林生态系统起着吸收固定的“汇”作用;而NO3--N、K+、Ca2+、Mg2+的通量均高于林外降水,说明森林生态系统起着释放输出的“源”作用。
     将0-30cm矿质土层和枯落物层合在一起看作林地时,计算了生长季内林地输出和林地获得的差值,即林地的净平衡。在4种植被中,C均为负值,即存在固碳效应,其中天然林固C功能好于人工林。
     对华北落叶松和华山松林0-30cm矿质土层的生长季元素净平衡分析表明,C为负值,说明发生了固碳作用;N、P、K、Ca、Mg均为正值,说明发生了迁移流失。
Maintaining the flow and balance of nutrients in forest ecosystem is an importantecosystem service of forests, which involves the elements input, output and conversionprocesses, but also involves the storage and flow fluxes within the pools of vegetation and soil.The nutrient cycling is closely related to the hydrological cycle, thus it needs particularly asimultaneous observation and study on the cycling of both nutrients and water.
     In this study, the representative stand plots of Larix principis-rupprechtii plantation,secondary forest of Pinus armandii, secondary forest of Betula platyphylla, and the shrubcommunity of Prunus salicina were selected in the Liupan Mountains, located in the drylandregion of Ningxia in Northwest China. The simultaneous observation of hydrological processesand flows of main nutrients with rainwater were carried out in the growing season of2011(May24to October20). The varying fluxes of main nutrients with rainfall input, conversion ofrainfall within canopy layer, leaching from humus layer and soil layer of main root zone werecalculted. Thus, the main charateristics of the element cycling and balancing in the suduiedforest ecosystems were described. The main conclusions are:
     The rainfall in growing season of2011was amounted to724.3mm.. The canopyinterception depth (rate) in the4forests studied were in the order of: Betula platyphyllasecondary forest (145.6mm,20.11%)> Larix principis-rupprechtii plantation (124.9mm,17.25%)> Pinus armandii secondary forest (102.3mm,14.13%)> Prunus salicina shrub (86.2mm,11.91%). The depth (rate) of rainfall under canopy were in the order of: Prunus salicinashrub (631.8mm,88.09%)> Pinus armandii secondary forest (622.0mm,85.87%)> Larixprincipis-rupprechtii plantation (599.4mm,82.75%)> Betula platyphylla secondary forest(578.7mm,79.89%). The humus leakage depth (rate) showed: Prunus salicina shrub (525.0mm,72.48%)> Pinus armandii secondary forest (424.3mm,58.59%)> Larixprincipis-rupprechtii plantation (407.2mm,56.22%)> Betula platyphylla secondary forest (368.3mm,50.85%). The0-30cm soil leakage depth (rate) showed: Pinus armandii secondaryforest (275.9mm,38.09%)> Larix principis-rupprechtii plantation (244.2mm,33.72%)。
     According to the measurement, the growing season evapotranspiration of Larixprincipis-rupprechtii plantation was482.5mm, with the the components depth (and ratio torainfall) of vegetation interception124.9mm (17.2%of), tree transpiration204.5mm (28.2%),floor evapotranspiration153.1mm (21.1%). The growing season evapotranspiration of Pinusarmandii secondary forest was477.1mm, with the component depth (and ratio to rainfall) ofvegetation interception102.3mm (14.1%), tree transpiration222.9mm (30.8%), floorevapotranspiration151.9mm (21.0%). For both stand plots, the contribution of components ofevapotranspiration is in the order of: tree transpiration> floor evapotranspiration> vegetationinterception.
     The change of soil water storage (mm) in0-100cm within the growing season of2011was: Larix principis-rupprechtii plantation (+63.39)> Betula platyphylla secondary forest(-4.85)> Pinus armandii secondary forest (-5.47)> Prunus salicina shrub (-10.50). This meansthat the soil water storage was dexreased for all forest plots except the Larixprincipis-rupprechtii plantation which showed an increase.
     The calculation of water balance in growing season of2011indicated that the rainfallamunt can fully meet the demand of evapotranspiration in the plots of Larixprincipis-rupprechtii plantation and Pinus armandii secondary forest. The water yield (i.e., thenet output from soil layer of0-30cm) performanced as Pinus armandii secondary forest (252.7mm)> Larix principis-rupprechtii plantation (178.3mm).
     The input flux with opeh field rainfall in the growing season2011for TOC、NH4+-N、NO3--N、PO43-、K+、Ca2+、Mg2+was53.17、3.04、4.27、0.00、8.91、47.51、6.01kg/hm2respectively. During the rainfall conversion to canopy rainfall (the sum of throughfall andstemflow), the elements/ions were leached from or absorbed by the canopy in different degree,resulting in various change of their fluxes. The flux (kg/hm2) of TOC, PO43-, K+was increasedto132.28,11.16,55.53in the Larix principis-rupprechtii plantation; to106.56,14.64,44.83in the Pinus armandii secondary forest; to66.52,12.47,40.09in the Betula platyphylla secondaryforest; and to79.49,5.01,39.52in the Prunus salicina shrub. The flux (kg/hm2) of NH4+-N,NO3--N, Ca2+was decreased to2.40,2.15,32.38in the Larix principis-rupprechtii plantation;to2.36,1.92,27.95in the Pinus armandii secondary forest; to2.08,2.14,28.75in the Betulaplatyphylla secondary forest; and to2.29,2.09,34.97in the Prunus salicina shrub. The flux(kg/hm2) of Mg2+flux was increased to7.37and6.28in the Larix principis-rupprechtiiplantation and Pinus armandii secondary forest, but decreased to5.44in the Betula platyphyllasecondary forest and5.40in the Prunus salicina shrub.
     The humus layer of stand plots plays a role of "source" or "sink" for the flux of theelements/ions studied, so that their fluxes were changed variously. After the canopy rainfallwas converted to humus leakage, the flux (kg/hm2) of NH4+-N and NO3--N was decreased in allthe plots, i.e., decreased to1.22and1.55in the Larix principis-rupprechtii plantation,1.40and1.82in the Pinus armandii secondary forest,1.55and1.69in the Betula platyphylla secondaryforest,1.79and2.31in the Prunus salicina shrub. The flus (kg/hm2) of Ca2+and Mg2+wasincreased in all plots, i.e., increased to40.76and8.71in the Larix principis-rupprechtiiplantation,56.52and12.26in the Pinus armandii secondary forest,48.58and12.30in theBetula platyphylla secondary forest,75.55and12.60in the Prunus salicina shrub. The flux ofTOC (kg/hm2) was behaviored differently, i.e., decreased to90.76in the Larixprincipis-rupprechtii plantation and104.90in the Pinus armandii secondary forest; whileincreased to84.35in the Betula platyphylla secondary forest and129.35in the Prunus salicinashrub. The flux (kg/hm2) of PO43-was decreased to2.97in the Larix principis-rupprechtiiplantation, to4.62in the Pinus armandii secondary forest, and to6.56in the Betula platyphyllasecondary forest, but increased to14.23in the Prunus salicina shrub. The flux (kg/hm2) of K+was decreased to51.59in the Larix principis-rupprechtii plantation, but increased to54.31inthe Pinus armandii secondary forest,48.84in the Betula platyphylla secondary forest, and57.80in the Prunus salicina shrub.
     The soil layer of main root zone (0-30cm) plays a different regulating role to the flux ofelements/ions carried by humus leakage. This soil layer serves as a “sink” for the flux (kg/hm2)of TOC, PO43-and K+through the absorption or fixation, they were decreased to43.04,0.00,12.67in the Larix principis-rupprechtii plantation; to66.33,0.00,23.23in the Pinus armandiisecondary forest. However, this soil layer serves as a “source” for the flux (kg/hm2) of NH4+-N,NO3--N, Ca2+, Mg2+, they were increased to1.76,17.17,121.07,23.27in the Larixprincipis-rupprechtii plantation, and to1.66,14.68,114.94,28.80in the Pinus armandiisecondary forest.
     Compared to the elements/ions flux with rainfull, The flux with soil leakage from themain root zone (0-30cm) in both the Larix principis-rupprechtii plantation and the Pinusarmandii secondary forest were lowered for TOC and NH4+-N, showing a “sink” effect throughabsorption or fixiation; while increased for the flux of NO3—N, Ca2+and Mg2+, showing a“source” effect.
     When looking the mineral soil layer of0-30cm and the humus layer together as the forestfloor, the difference between the floor output and floor input was calculated, i.e the net elementbalance of forest floor. Within all the4plots studied, the performance of C is negative,meaning a C fixation which was better in natural forests than in plantation. The net elementbalance of the0-30cm soil layer in the growing season of2011showed to be negative for C,but positive for N, P, K, Ca, Mg in both the Larix principis-rupprechtii plantation and thePinus armandii secondary forest. This indicates a C fixiation and net loss of nutrient elementsappeared in the mineral soil layer.
引文
[1]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998(6):14-22.
    [2]张建列,李庆夏.国外森林水文研究概述[J].世界林业研究,1988,4:41-47.
    [3] Asdak C, Jarvis P G, Van Gardingen P, et al. Rainfall interception loss in unlogged and logged forestareas of Central Kalimantan, Indonesia[J]. Journal of Hydrology,1998,206(3):237-244.
    [4] Schellekens J, Scatena F N, Bruijnzeel L A, et al. Modelling rainfall interception by a lowland tropicalrain forest in northeastern Puerto Rico[J]. Journal of Hydrology,1999,225(3):168-184.
    [5]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,19(3):97-113
    [6] Liu S R. Hydrological and Ecological Variations of Chinese Forest Ecosystems[M]. Beijing: ChinaForestry Press,1996.58-65.
    [7]王兵,夏良放.大岗山人工针一阔混交林与常绿阔叶林水文动态变化研究[J].林业科学研究,2002,15(1):13-20.
    [8]王彦辉.几个树种的林冠降雨特征[J].林业科学,2001,37(4):2-9.
    [9]余新晓,张志强,陈丽华等.森林生态水文[M].中国林业出版社,2004,72-75.
    [10] Rutter A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests.Derivation of the Model from observations in a plantation of Corsican pine[J]. AgriculturalMeteorology,1971,9:367-384.
    [11] GashJ.H.C., Wrightl.R., LloydC.R.. Comparative estimates of intereeptiong loss from three Coniferousforests in Great Britain[J]. Journal of Hydrology,1980,48:89-105.
    [12] Teklehaimanot Z. Rainfall interception and boundary conductance in relation to tree spacing[J]. Hydrol,1991,123:261-278.
    [13] Viville D. Intereeption on amountainous deelining spruce stand in the Strengbach catehlnent(Voges,France)[J]. Journal of Hydrology,1993,144:273-282.
    [14]孙浩,杨民益,余杨春等.宁夏六盘山几种典型水源涵养林林分结构与水文功能的关系[J].中国水土保持科学,2014,12(1):10-18.
    [15] Kimmins J P. Some Statistical Aspects of Samplinhg Throughfall Precipitation in Nutrient CyclingStudies in British Columbian Coastal Forests[J]. Ecology,1973,54(5):1008-1019.
    [16]时忠杰,王彦辉,熊伟等.单株华北落叶松树冠穿透降雨的空间异质性[J].生态学报,2006,26(9):2877-2556.
    [17]李振新,郑华,欧阳志云等.眠江冷杉针叶林下穿透雨空间分布特征的研究[J].生态学报,2004,24(5):1015-1021.
    [18]周择福,张光灿,刘霞等.树干茎流研究方法及其述评[J].水土保持学报,2004,18(3):137-140.
    [19] Aboal J K, Morales D, Hemandez M, et al. The measurement and modeling of the variation of steamflow in a laurel forest in Tenerife, Canary Islands[J]. Journal of Hydrology,1999,221:161-175.
    [20]庞学勇,包维楷,张咏梅.岷江上游中山区低效林改造对枯落物水文作用的影响[J].水土保持学报,2005,19(4):119-123.
    [21]王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报,2000,14(4):71-80.
    [22]马雪华.森林水文学[M].北京:中国林业出版社,1993,43-45.
    [23]刘世荣,温远光.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996,89-91.
    [24] Carlyle-Moses D E, Flores-Laureano J S, Price A G. Throughfall and throughfall spatial variability inMadrean oak forest communities of northeastem Mexico[J]. Journal of Hydrology,2004,297:124-135.
    [25] Dunin F X. Extrapolation of ‘point’measurements of evaporation: some issues of scale[J]. Vegetatio,1991,(1):39-47.
    [26] Riekerk H, Korhnak L V. Rainfall and runoff chemistry of Florida pine flatwoods[J]. Water, Air, andSoil Pollution,1992,(1):59-68.
    [27] Will R E, Wilson S M, Zou C B, et al. Increased vapor pressure deficit due to higher temperature leadsto greater transpiration and faster mortality during drought for tree seedlings common to theforest–grassland ecotone[J]. New Phytologist,2013,200(2):366-374.
    [28]康文星,田大伦,文仕知等.杉木人工林水量平衡和蒸散的研究[J].植物生态学与地植物学学报,1992,16(2):187-196.
    [29] Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropicsand subtropics[M]. Routledge,2014,213-215.
    [30]王玉杰,王云琦.重庆缙云山典型林分林地土壤入渗特性研究[J].水土保持研究,2006,13(2):193-256.
    [31]王震洪,段昌群,侯永平等.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报,2006,30(3):392-403.
    [32]程琴娟,蔡强国,郑明国.黄土土壤结皮对产流临界雨强的影响分析[J].地理科学,2007,27(5):678-682.
    [33]秦耀东著.土壤物理学[M].北京:高等教育出版社,2003,97-110.
    [34]吴刚,吴祥云.土壤入渗特性影响因素研究综述[J].中国农学通报,2008,24(7):494-499.
    [35]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,5:76-78.
    [36] Bronstert A., Bárdossy A.2003. Uncertainty of runoff modelling at the hillslope scale due to temporalvariations of rainfall intensity[J]. Physics and Chemistry of the Earth.28:283-288.
    [37]张建云,王国庆,贺瑞敏等.黄河中游水文变化趋势及其对气候变化的响应[J].水科学进展,2009,20(2):153-158.
    [38] Bronstert A. Floods and climate change: interactions and impacts[J]. Risk Analysis,2003,23(3):545-557.
    [39] Bergkamp G. A hierarchical view of the interactions of runoff and infiltration with vegetation andmicrotopography in semiarid shrublands[J]. Catena,1998,33(3):201-220.
    [40]曹丽娟,刘晶淼.陆面水文过程研究进展[J].气象科技,2005,33(2):97-103.
    [41]于维忠.论流域产流[J].水利学报,1985,2(2):1-11.
    [42]黄新会,王占礼,牛振华.水文过程及模型研究主要进展[J].水土保持研究,2004,11(4):105-108.
    [43]鲁如坤,史陶钧.金华地区降雨中养分含量的初步研究[J].土壤学报,1979,16(1):81-84.
    [44] de Vries W, Solberg S, Dobbertin M, et al. The impact of nitrogen deposition on carbon sequestration byEuropean forests and heathlands[J]. Forest Ecology and Management,2009,258(8):1814-1823.
    [45] Lindberg S E, Lovett G M, Richter I DD, et al. At mospheric deposition and canopy interactions ofmajor ions in a forest[J]. Science,1986,231:141-145.
    [46] Puckett L J. Estimates of ion sources in deciduous and coniferous through-fall[J]. Atmos Environ,1990,24:545-556.
    [47]鲍文,包维楷,丁德蓉.森林植被对降水水化学的影响[J].生态环境,2004,13(1):112-115.
    [48]周国逸,小仓纪雄.酸雨对重庆几种土壤中元素释放的影响[J].生态学报,1996,16(3):251-257.
    [49] Strand L T, Abrahamsen G, Stuanes A O. Leaching from organic Matter-Rich soil by rain of differentqualities[J]. Journal of Environment Quality,2002,31(2):547-556.
    [50] Kooijman A M, Bakker C. Species replacement in the bryophyte layer in mires: the role of water type,nutrient supply and interspcific interactions[J]. Journal of Ecology,1995,83(1):1-8.
    [51] Lin T, Hamburg SP, King H B, et al. Through-fall Patterns in a Subtropical Rain Forest of fNortheasternTaiwan[J]. Journal of Environment Quality,2000,29(4):1196-1193.
    [52]樊后保.杉木林截留对降水化学的影响[J].林业科学,2000,36(4):2-8.
    [53] Potter C S, Ragsdale H L, Swank W T. Atmospheric deposition and foliar leaching in a regeneratingsouthern Appalachian forest canopy[J]. Journal of Ecology,1991,79:97-115.
    [54]田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版),1999,17(l):l-5.
    [55] Veneklaas E J. Nutrient fluxes in bulk precipitation and through-fall in two montane tropical rain forests,Colombia[J]. The Journal of Ecology,1990,78(4):974-992.
    [56] Johnson D W, Hanson P J, Todd D E. The effects of through-fall manipulation on soil leaching in adeciduous forest[J]. Journal of Environment Quality,2002,31(1):204-216.
    [57] Dave M M, Alan G G, Andrew M G. Patterns of canopy interception and through-fall along atopographic sequence for black spruce dominated forest ecosystems in northwestern Ontario[J].Research Forest,2003,33(6):1046-1060.
    [58]周光益,曾庆波,黄全等.热带山地雨林林冠对降水的影响分析[J].植物生态学报,1995,19(3):201-207.
    [59]蔡玉林,李飞,李家永等.红壤丘陵区人工林降水化学研究[J].自然资源学报,2003,18(l):99-104.
    [60]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.
    [61]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168-172.
    [62] Robertson G P, Tiedje J M. Denitrifieation and nitrous outside Produetion in successiona andold-growth Miehigan forests[J]. Soil Science Soeiety of America,1984,(48):383-389.
    [63] Arthur M A, Fahey T J. Controls on soil solution chemistry in a subalPine forest in North-CentralColorado[J]. soil Science Society of America,1993,57(4):1122-1130.
    [64]陈放鸣,林小伍.近代森林一环境问题与森林养分循环研究进展(综述)[J].安徽农业大学学报,1994,21(l):67-70.
    [65] Miller H G, Miller J D. Transformations in rainwater chemistry on passing through forested ecosystems,In: Coughtrey P M, Unworth M. Pollutant Transport and Fate in Ecosystems. Blackwell ScientificPublication[J]. Oxford,1987:171-180.
    [66]乔治w·布朗(美)著(李昌哲,张理宏译).森林与水质[M].中国林业出版社,1994.
    [67] Soulsby C, Reynolds B. Influence of soil hydrological pathways on stream aluminium Chemistry atLlyn Brianne,mid-Wales[J]. Environ-Pollut,1993,81:51-60.
    [68] Neal C. Modeling the long-term impacts of atmospheric pollution deposition and repeated forestrycycles on stream water chemistry for a holm oak forest in northeastern Spain[J]. Journal of hydrology,1995,168:51-71.
    [69] Stottlemyer R, Troendle C A. Nutrient concentration patterns in Streams draining alpine and Subalpincatchments,Fraser Experimental Forest,Colorado[J]. Journal of hydrology,1992,140(l/4):179-208.
    [70] Pinol J, Avila A, Roda F. The seasonal variation of streamwater chemistry in three forestedMediterranean catchments[J]. Journal of hydrology,1992,140(l/4):119-141.
    [71]周梅.兴安落叶松原始林区降水输入养分特征分析[J].内蒙古农业大学学报,2000,21(l):48-51.
    [72]魏晓华,王虹,朱春全.蒙古栋生态系统的养分分析[J].吉林林学院学报,1990,6(1):310-316.
    [73]田大伦,周志华.杉木林生态系统水文过程中有机化合物的动态研究[M].北京:中国林业出版社,1993,67-71.
    [74]陈步峰,周光益,曾庆波等.热带山地次生雨林的水化学特征及其与降雨量关系的研究.见:蒋有绪.中国森林生态系统结构与功能规律研究[J].北京:中国林业出版社,1996,348-354.
    [79] Duvigeaud P.温带落叶松矿质元素的生物循环[J].植物生态学译丛(第一集).北京:科学出版社,1974,1(1).
    [77]森林生态学[M].中国林业出版社,1982.56-58.
    [78]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报,2002,26(1):89-95.
    [79]赵广亮,王继兴,王秀珍等.油松人工林密度与养分循环关系的研究[J].北京林业大学学报,2006,28(4):39-44.
    [80]肖洋,陈丽华,余新晓.北京密云2种人工林氮磷钾的生物循环特征[J].中国水土保持科学,2010,8(4):45-50.
    [81] Feldpausch T R, Rondon M A, Fernandes E C M, et al. Carbon and nutrient accumulation in secondaryforests regenerating on pastures in central Amazonia[J]. Ecological Applications,2004,14(sp4):164-176.
    [82]严昌荣,陈灵芝,黄建辉等.中国东部主要松林营养元素循环的比较研究[J].植物生态学报,1999,23(4):351-360.
    [83]项文化,田大伦,闫文德等.杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累[J].生态学报,2003,23(4):695-702.
    [84] Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution tocarbon sequestration in temperate forests[J]. Nature,1999,398(6723):145-148.
    [85] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levelsof light, CO2, nutrients and water: a quantitative review[J]. Functional Plant Biology,2000,27(12):1191-1191.
    [86] Eamus D, Jarvis P G. The direct effects of increase in the global atmospheric CO2concentration onnatural and commercial temperate trees and forests[M]. Academic Press,1989.109-115.
    [87] Ceulemans R, Janssens I A, Jach M E. Effects of CO2Enrichment on Trees and Forests: Lessons to beLearned in View of Future Ecosystem Studies[J]. Annals of Botany,1999,84(5):577-590.
    [88] Finzi A C, Moore D J P, DeLucia E H, et al. Progressive nitrogen limitation of ecosystem processesunder elevated CO2in a warm-temperate forest[J]. Ecology,2006,87(1):15-25.
    [89] Moorhead D L, Sinsabaugh R L. Simulated patterns of litter decay predict patterns of extracellularenzyme activities[J]. Applied Soil Ecology,2000,14(1):71-79.
    [90] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to thebiosphere[M]. Princeton University Press,2002,245-251.
    [91] Taylor P G, Townsend A R. Stoichiometric control of organic carbon–nitrate relationships from soils tothe sea[J]. Nature,2010,464(7292):1178-1181.
    [92] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbialbiomass?[J]. Biogeochemistry,2007,85(3):235-252.
    [93] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408(6812):578-580.
    [94] Lindberg S E, Lovett G M, Richter D D, et al. Atmospheric deposition and canopy interactions of majorions in a forest [J]. Science,1986,231:141-145.
    [95] Wang Y H. Responses of Acidified Forest Ecosystem Under Environmental Changes[M]. Huawen Press,Beijing,2001,191-243.
    [96]李海军,张毓涛,张新平等.天山中部天然云杉林森林生态系统降水过程中的水质变化[J].生态学报,2010,30(18):4828-4838.
    [97]王登芝,聂立水,李吉跃.北京西山地区油松林水文过程中营养元素迁移特征[J].生态学报,2006,26(7):2101-2107.
    [98]刘阳,杨新兵,陈波.冀北山地山杨桦木林生态系统水化学特征研究[J].生态环境学报,2011,20(11):1665-1669.
    [99]田大伦,项文化,杨晚华.第2代杉木幼林生态系统水化学特征.生态学报,2002(22)6:859-865.
    [100]莫菲.六盘山洪沟小流域森林植被的水文影响与模拟[D].北京:中国林业科学研究院,2008,20-22.
    [101]王占印.六盘山植被特征及其对水分条件的响应[D].北京:中国林业科学研究院,2009,25-27.
    [102]时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响[D].北京:中国林业科学研究院,2006,30-32.
    [103]赵传燕,沈卫华,彭焕华等.青海云杉林叶面积指数空间分布模拟——以祁连山区排露沟流域为例[J].兰州大学学报,自然科学版,2009(5):68-72.
    [104]郝佳.宁夏六盘山华北落叶松人工林密度对多功能的影响[D].北京:中国林业科学研究院,2012,24-26.
    [105]刘延惠,王彦辉,于澎涛等.六盘山主要植被类型的生物量及其分配[J].林业科学研究,2011,24(4),443-452.
    [106] Li HT, Wang SN, Gao LP, Yu GR. The carbon storage of the subtropical forest vegetation in centralJiangxi Province[J]. Acta Ecologica Sinica,2007,27(2),693-704.
    [107]刘延惠.六盘山香水河小流域典型植被生长固碳及耗水特征[D].中国林业科学研究院,2011,50-56.
    [108]时忠杰,王彦辉,于澎涛.宁夏六盘山林区几种主要森林植被生态水文功能研究[J].水土保持学报,2005,19(3):134-138.
    [109]田大伦.杉木林生态系统定位研究方法[M].北京,科学出版社,2004,320-341.
    [110]杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    [111]宋会兴,苏智先,彭远英.山地土壤肥力与植物群落次生演替关系研究[J].生态学杂志,2005,24(12):1531-1533.
    [112]游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究[J].江西农业大学学报,2005,27(3):357-360.
    [113]田大伦,陈书军,樟树人工林土壤水文-物理性质特征分析[J].中南林学院学报,2005,25(2):1-6.
    [114]王政权,王庆成.森林土壤的物理性质空间异质性研究[J].生态学报,2000,20(6):945-950.
    [115]吴长文,王礼先.林地土壤的人渗及其模拟分析[J].水土保持研究,1995,2(l):71-75.
    [116]北京林业大学.土壤学[M].北京:中国林业出版社,1993,130-134.
    [117]庞学勇,刘世全等.川西高山针叶林植物群落演替对土壤性质的影响[J].水土保持学报,2003,17(4):42-45.
    [118]北京林学院主编.土壤学(上册)[M].北京:中国林业出版社,1982,203-246.
    [119]王强,阮晓,李兆慧等.植物自毒作用及针叶林自毒作用研究进展[J].林业科学,2007,43(6):134-142.
    [120]张庆费,由文辉,宋永昌.浙江天童植物群落演替对土壤化学性质的影响[J].应用生态学报,1999,10(1):19-22.
    [121] Zhang G, Zeng G M, Jiang Y M,et al. Modelling and measurement of two-layer-canopy interceptionlosses in a subtropical evergreen forest of central-south China[J]. Hydrology and Earth System SciencesDiscussions,2006,10(1):65-77.
    [122] Whitehead D, Kelliher F M. A canopy water balance model for a Pinus radiata stand before and afterthinning[J]. Agricultural and Forest Meteorology,1991,55(1-2):109-126.
    [123]常志勇,包维楷,何丙辉等.岷江上游油松与华山松人工混交林对降雨的截留分配效应[J].水土保持学报,2006,20(6):37-40.
    [124] Lankreijer H, Hendriks M J, Klaassen W. A comparison of models simulating rainfall interception offorests[J]. Agricultural and Forest Meteorology,1993,64(3-4):187-199.
    [125]徐丽宏,时忠杰,王彦辉等.六盘山主要植被类型冠层截留特征[J].应用生态学报,2010,21(10):2487-2493.
    [126]时忠杰,王彦辉,徐丽宏等.六盘山华山松林降雨再分配及其空间变异特征[J].生态学报,2009,29(1):76-84.
    [127]王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律研究[J].北京林业大学学报,1998,20(6):25-29.
    [128]王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000,15(3):1-7.
    [129]万师强,陈灵芝.暖温带落叶阔叶林冠层对降水的分配作用[J].植物生态学报,1999,23(6):557-561.
    [130]张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68.
    [131]肖洋,陈丽华,余新晓等.北京密云水库油松人工林对降水分配的影响[J].水土保持学报,2007,21(3):154-157.
    [132]薛建辉,郝奇林,吴永波等.3种亚高山森林群落林冠截留量及穿透雨量与降雨量的关系[J].南京林业大学学报(自然科学版),2008,32(3):9-13.
    [133]任引,薛建辉.武夷山甜槠常绿阔叶林林分降水分量特征[J].林业科学,2008,44(2):41-45.
    [134]张新建,袁凤辉,陈妮娜等.长白山阔叶红松林能量平衡和蒸散[J].应用生态学报,2011,22(3):607-613.
    [135] Bonan GB.Forests and climate change: Forcings,feed-backs and the climate benefits offorests[J].Science,2008,320:1444-1449.
    [136]赵平,孙谷畴,倪广艳等.成熟马占相思水力导度对水分利用和光合响应的季节性差异[J].应用生态学报,2013,24(001):49-56.
    [137] Pfautsch S,Bleby TM,Rennenberg H.Sap flowmeasurements reveal influence of temperature andstandstructure on water use of Eucalyptus regnans forests[J].Forest Ecology andManagement,2010,259:1190-1199.
    [138] Baldocchi DD,Law BE,Anthoni PM.On measuring and modeling energy fluxes above the floor ofa homoge-neous and heterogeneous conifer forest[J].Agricultural and Forest Meteorology,2000,102:187-206.
    [139]刘志军,张万军,曹健生等.太行山石质山地石榴中幼龄林林地蒸散规律研究[J].应用生态学报,2003,14(6):879-881.
    [140] Staudt K,Serafimovich A,Siebicke L,et al.Vertical structure of evapotranspiration at a forest site:A case study[J].Agricultural and Forest Meteorology,2010,151:709-729.
    [141] Giambelluca TW,Scholz FG,Bucci SJ,et al.Evapotranspiration and energy balance of Braziliansavannas with contrasting tree density[J]. Agricultural and Forest Meteorology,2009,149:1365-1376.
    [142]郭瑞萍,莫兴国.森林、草地和农田典型植被蒸散量的差异[J].应用生态学报,2007,18(8):1751-1757.
    [143]熊伟,王彦辉,徐德应.宁夏山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):2-7.
    [144]王孟本,李洪建,柴宝峰等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [145] Rutter A.J. Studies on the water relations of pinus sylvcrstris in plantation conditions[J].PartV.Responses to variation in soil water conditions.J.Appl.Ecol.,1967,4:73-81.
    [146] Irvine,J..Perks,M.P, et a1.,The response of pinus sylverstris to drought: stomatal control oftranspiration and hydraulic conductance[J].Tree Physiol.,1998.18:393-402.
    [147] Lagergren F, Lindroth A.Traspiration response to soil moisture in pine and spruce tress inSweden[J].Agriculture and For.Meteor.,2002,112:67-85.
    [148]刘世荣,温远光等.中国森林生态系统水文生态功能规律[M].中国林业出版社,1996,58-62.
    [149] Misson, L., D. P. Rasse, C. Vincke, et al. Predicting transpiration from forest stands in Belgium for the21st century[J]. Agricultural and Forest Meteorology,2002,111:265–282.
    [150] Landsberg, J.J., S.T. Gower. Applications of physiological ecology to forest management[J]. AcademicPress,1997,125-160.
    [151]曹恭祥,王绪芳,熊伟等.宁夏六盘山人工林和天然林生长季的蒸散特征[J].应用生态学报,2013,24(008):2089-2096.
    [152]彭方仁.海岸带复合农林系统植物蒸腾耗水规律研究[J].南京林业大学学报,1999,23(6):19-22.
    [153]黄辉,孟平,张劲松等.华北低丘山地人工林蒸散的季节变化及环境影响要素[J].生态学报,2011,3(13):3569-3580.
    [154]刘晨峰,张志强,孙阁等.基于涡度相关法和树干液流法评价杨树人工林生态系统蒸发散及其环境响应[J].植物生态学报,2009,33(4):706-718.
    [155] HANSON R L. Evapotranspiration and droughts[J]. U.S. GeologicalSurvey Water Supply Paper,1988,2375:99-104.
    [156] SONG J. Phenological influences on the albedo of prairie grassland andcrop fields[J]. InternationalJournal of Biometeorology,1999,42(3):153-157.
    [157]范晓梅,刘光生,王一博等.长江源区高寒草甸植被覆盖变化对蒸散过程的影响[J].水土保持通报,2010,30(6):17-26.
    [158]莫康乐.永定河沿河沙地杨树人工林水量平衡研究[D].北京林业大学,2013,78-81.
    [159]张志强,余新晓.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116.
    [160]章家恩,饶卫民.农业生态系统的服务功能与可持续利用对策探讨[J].生态学杂志,2004,23(4):99-102.
    [161]陈晓燕.大青山前山区主要植被类型土壤水分动态和植被承载力研究[D].呼和浩特市:内蒙古农业大学,2010,98-101.
    [162]郭忠升,吴钦孝.森林植被对土壤入渗速率的影响[J].陕西林业科技,1996(3):27-31.
    [163]何丙辉,田大伦.杉木人工林土壤水分动态研究[J].西南农业大学学报,1995,17(4):334-337.
    [164]张胜利,雷瑞德.秦岭火地塘林区森林生态系统水量平衡研究[J].水土保持通报,2000,20(6):18-22.
    [165]郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究[D].中国林科院博士论文,2007,100-104
    [166]杜阿朋.六盘山叠叠沟小流域坡面植被水文影响与模拟[D].中国林科院博士论文,2009,49-52.
    [167]闫文德,田大伦.会同第二代杉木林集水区水质生态效应[J].中南林学院学报,2003,23(2):6-10.
    [168] Cai Y L, Li F, Li J Y, et al. A study on rainfall chemistry of artificial forests in red earth hilly area[J].Journal of Natural Resoures,2003,18(1):99-104.
    [169] Vorobeichik E L, Pishchulin P G. Effect of individual trees on pH and the content of heavy metals inforest litters upon industrial contamination[J]. Eurasian Soil science,2009,8:927-939.
    [170]周梅,余新晓,王广山等.国外森林环境水化学研究综述[J].中国水土保持科学,2003,12(4):78-82.
    [171] Foster N W. Temporal variation in nitrate and nutrient cations in drainage waters from a deciduousforest[J]. Journal of environmental quality,1989,18(3):238-244.
    [172]蒋有绪.中国森林生态系统结构与功能规律研究[M].北京:中国林业出版社,1996,348-354.
    [173]刘菊秀,张德强,周国逸等.鼎湖山酸沉降背景下主要森林类型水化学特征初步研究[J].应用生态学报,2003,14(8):1223-1228.
    [174]周国逸,闫俊华.鼎湖山大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报,2001,21(12):2002-2012.
    [175]张胜利,李光录.秦岭火地塘森林生态系统不同层次的水质效应[J].生态学报,2007,27(5):1838-1834.
    [176] McDowell W H. Internal nutrient fluxes in a Puerto Rican rain forest. Journal of Tropical Ecology,1998,14(4):521-536.
    [177]罗艳,周国逸,张德强等.鼎湖山三种主要林型水文学过程中总有机碳浓度对比[J].生态学报,2004,24(12):2973-2978.
    [178] McDowell, W.H., Likens, et al, composition, and flux of dissolved organic carbon in the HubbardBrook Valley[J].Ecol.Monogr.1988,58,177-195.
    [179] Dalva, M., Moore. T.R.. Sources and sinks of dissolved organic carbon in a forested swampcatchment[J]. Biogeochemistry,1991,15:1-19.
    [180] Edmonds, R.L., Thomas, T.B., Blew R.D.. Biogeochemistry of an old-growth forested[J], OlympicNational Park, Washington, Water Resour.Bull,1995,31:409-419.
    [181] Chestnut T J, McDowell W H. C and N dynamics in the riparian and hyporheic zones of a tropicalstream, Luquillo Mountains, Puerto Rico[J]. Journal of the North American Benthological Society,2000,19(2):199-214.
    [182] Quideau S A, Bockheim J G. Biogeochemical cycling following planting to red pine on a sandy prairiesoil[J]. Journal of Environmental Quality,1997,26(4):1167-1175.
    [183] Moore, T.R., Jackson, R.J.. Dynamics of dissolved organic carbon in forested and disturbedcatchments, Westland, New Zealand.2. Larry River[J]. Water resources research,1989,25:1331-1339.
    [184] Inagaki, M.,Sakai, M., Ohnuki, Y.. The effects of organic carbon on acid rain in a temperate forest inJapan[J]. Water, Air,&Soil Pollution,1995,85:2345-2350.
    [185] Currie, W.S., Aber, J.D., McDowell, W.H., et al, Vertical transport of dissolved organic C and N underlong-term N amendments in pine and hardwood forest[J]. Biogeochemistry,1996,80:1-35.
    [186] Chiung Pin Liu,Bor Hung Sheu. Dissolved organic carbon in precipitation, throughfall, stemflow, soilsolution, and stream water at the Guandaushi subtropical forest in Taiwan[J]. Forest Ecology andManagement,2003,172:315-325.
    [187]尹光彩,周国逸,张德强等.鼎湖山针阔叶混交林水文学过程中总有机碳动态[J].应用生态学报,2005,16(9)B:1655-1660.
    [188] Currie W S, Aber J D, Mcdowell W H,et al. Vertical transport of dissolved organic C and N underlong-term N amendments in pine and hardwood forests[J]. Biogeochemistry,1996,35(3):471-505.
    [189] Inagaki M, Sakai M, Ohnuki Y. The effects of organic carbon on acid rain in a temperate forest inJapan. Water Air Soil Pollution,1995,85(4):2345-2350.
    [190] Inagaki M, Sakai M, Ohnuki Y. The effects of organic carbon on acid rain in a temperate forest inJapan[J]. Water Air Soil Pollution,1995,85(4):2345-2350.
    [191] PEICHL M, MOORE T R, ARAIN M A, et al. Concentrations and fluxes of dissolved organic carbonin an age-sequence of white pine forests in Southern Ontario, Canada[J]. Biogeochemistry,2007,86:1-17.
    [192] DON A, KALBITZ K. Amounts and degradability of dissolved organic carbon from foliar litter atdifferent decomposition stages[J]. Soil Biology and Biochemistry,2005,37:2171-2179.
    [193] James BR, Riha S J. pH buffering in forest soil organic horizons: Relevance to acid precipitation[J].Journal of environmental quality,1986,15:229-234.
    [194]郭杏妹.酸化作用对华南红壤中有机质稳定性的影响研究[D].广州:华南师范大学,2008.
    [195] Chiwa M, Crossley A, Sheppard L J, et al. Throughfall chemistry and canopy interactions in a Sitkaspruce plantation sprayed with six different simulated polluted mist treatments[J]. EnvironmentalPollution,2004,127(1):57-64.
    [196] Wu G,Wei J,Deng H B,et a1.Nutrient cycling in all Alpine tundra ecosystem on ChangbaiMountmn,Noaheast China[J].Applied Soil Ecology,2006,32(2):199-209.
    [197]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [198] Elser JJ, Stemer RW, Gorokhova E. Biological stoichimometry from genes to ecosystems [J].EcologyLetters,2000,3(6),540-550.
    [199]韩文轩,吴漪,汤璐瑛等.北京及周边地区植物叶的碳氮磷元素计量特征[J].北京大学学报(自然科学版),2009,45(5),855-859.
    [200]甘秋妹,孙海龙,郑红等.大兴安岭不同退化阶段土壤和植物C、N、P浓度及其化学计量特征[J].森林工程,2013,29(3),1-5.
    [201]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1),2-6.
    [202]谢会成,葛云,孙居文等.华北落叶松人工林叶内营养元素含量的变异[J].福建林学院学报,2005,25(2):163-166.
    [203] Boerner R.E. Foliar nutrient dynamics and nutrient use of four deciduous tree spccics in relation to sitefertility[J].Applicd Ecology,1984,21:1029-1040.
    [204]夏菁,魏天兴,陈佳澜等.黄土丘陵区人工林养分循环特征[J].水土保持学报,2010,24(3):89-93.
    [205]赵勇,樊巍,吴明作等.太行山丘陵区刺槐人工林主要养分元素分配及循环特征[J].中国水土保持科学,2009,7(5):111-116.
    [206]张楠阳.黄土高原不同人工生态林对土壤营养元素影响的研究[D].西北农林科技大学,2010,58-60.
    [207] Batjes N H. Total carbon and nitrogen in the soils of theworld[J]. European Journal of Soil Science,1996,47,151-163.
    [208]马炜,孙玉军,郭孝玉等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17),4659-4667.
    [209]方晰,田大伦.杉木人工林C库与C吸存的动态研究[J].广西植物,2006,26(5):516-522.
    [210]王卫霞,史作民,罗达等.我国南亚热带几种人工林生态系统碳氮储量[J].生态学报,2013,33(3),0925-0933.
    [211]莫德祥,吴庆标,林宁等.桂东南柳杉人工林碳氮储量及其分配格局[J].生态学杂志,2012,31(4),794-799.
    [212]巨文珍,王新杰,,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J].生态学报,2011,31(4):1139-1148.
    [213]张春娜,延晓冬,杨剑虹.中国森林土壤氮储量估算[J].西南农业大学学报(自然科学版),2004,26(5),572-575.
    [214]骆土寿,陈步峰,陈永富等.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科学研究,2000,13(2),123-128.
    [215] Finer L, Mannerkoski H, Piirainen S, et al. Carbon and nitrogen pools in an old-growth, Norwayspruce mixed forest in eastern Finland and changes associated with clear-cutting [J]. Forest Ecologyand Management,2003,174(1/3),51-63.
    [216]周玉荣,于枕良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5),518-522.
    [217] Dixon R K. Carbon pools and flux of global forest ecosystems [J]. Science,1994,263,185-189.
    [218] Agren GI. The C∶N∶P stoichiometry of autotrophs-theory and observations [J]. Ecology Letters,2004,7(3),185-191.
    [219]刘增文,王乃江,李雅素等.森林生态系统稳定性的养分原理[J].西北农林科技大学学报:自然科学版,2007,34(12),129-134.
    [220]刘延惠,王彦辉,于澎涛等.六盘山南部华北落叶松人工林土壤有机碳含量[J].林业科学,2012,48(12):1-9.
    [221]郭剑芬,杨玉盛,陈光水等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [222] Wang SQ,Yu GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen andphosphorus elements [J]. Acta Ecologica Sinica,2008,28(8),3937-3947.
    [223] Camargo PB, Trumbore S, Martinelli L,et al. Soil carbon dynamics in regrowing forest of easternAmazonia [J]. Global Change Biology.1999,5,693-702.
    [224] Post WM, Pastor J, Zinke PJ, etal. Global patterns of soil nitrogen storage [J].Nature,1985,317,613-616.
    [225]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8),3937-3947.
    [226] Chapin F S. The mineral nutrition of wild plants [J]. Ann. Rer. Ecol. Syst.1980(1):233-260.
    [227]王彦辉.酸化森林生态系统对环境变化的响应[M].华文出版社(华夏英才基金资助出版),北京,2001,82-85.
    [228] Cassens-Sasse E. Witterungsbedingte saisonale Versauerungsschübe im Boden zweierWald kosysteme[D]. Forschungszentrum Wald kosysteme, Waldsterben,1987,69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700