用户名: 密码: 验证码:
六盘山叠叠沟典型植被蒸散及水文要素的坡面尺度效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国西北干旱半干旱地区,植被覆盖率低和生态环境恶劣严重限制着区域经济和社会发展。尽快恢复植被覆盖是改善生态环境的关键举措。然而在以往植被恢复过程中存在着植被种类选择不当、在不适宜立地造林和造林密度过大等问题。事实上,一个地区的水资源总量及其空间分配的异质性在很大程度上决定着所能承载的植被类型、格局、数量和结构。为给合理恢复植被提供依据,除认识植被蒸散耗水特性外,还需掌握特定地点的地形、土壤厚度及含水量等因子的空间变化及其对水文循环、水资源形成及植被生长影响的尺度效应。为此,本文在六盘山北侧半干旱区叠叠沟小流域内选取了一系列典型坡面和典型植被样地,研究植被蒸散及组分的时空变化,同时分析立地因子、植被结构等水文要素的坡面变化及空间尺度效应,主要结论如下:
     1)华北落叶松液流速率存在优势度差异
     不同优势度华北落叶松的液流速率有明显差异。优势度大的树木获取光照和水分的能力更强,其液流活动在一天内启动早、结束晚、到达峰值快,峰值更大;其瞬时液流速率对太阳辐射和饱和水汽压差变化的响应更敏感,但对土壤含水量的响应敏感性较弱。这导致其日均液流速率明显高于优势度小的树木。但不同优势度树木间的液流速率相对差异较稳定。相关分析表明,液流速率与优势度(相对树高)、树高呈极显著正相关关系(P<0.01),与冠长和胸径显著正相关(P<0.05),而与冠幅和边材面积正相关但不显著(P>0.05)。利用建立的液流速率(Js)与优势度(h)之间的线性关系(Js=0.0051h+0.0494,R2=0.95)计算了样地内所有单株的液流速率及其平均值。该值比不考虑优势度影响的常用算法的结果低16%。因此,建议今后在利用样树液流速率测定结果经尺度扩展估计林分液流速率时,增加考虑优势度等树形因子的影响。
     2)华北落叶松林蒸腾响应潜在蒸散和土壤可用水分的关系
     华北落叶松林的日蒸腾量随根区土壤可用水分的变化遵循逻辑斯蒂增长曲线,即:随土壤水分增多,日蒸腾量先快速近线性增大;当土壤水分达到某个阈值后,日蒸腾量趋于平稳,基本不再变化。不同潜在蒸散条件下,日蒸腾量对土壤水分变化的响应模式非常相似,但决定响应曲线的土壤水分阈值及日蒸腾量最大值存在差异,两者均随潜在蒸散升高而增大(P<0.01)。基于日蒸腾量对土壤水分和潜在蒸散的响应关系,建立了同时考虑土壤供水能力和大气蒸发潜力的复合模型(T=(-0.05PET2+0.65PET)×(1-EXP(-5.39REW))),能很好地(R2=0.92)解释华北落叶松林的日蒸腾量变化。
     3)典型植被蒸散及水量平衡特征
     冠层截留率(量)存在明显的植被类型差异。以2012年7~10月份(降水量为366mm)的总截留率来评价,最大的是白桦林,为15%(56mm);其次是沙棘灌丛、华北落叶松林、山桃林和杂灌丛,变化在11~12%(40~44mm);最低的是虎榛子灌丛,为9%(31mm)。
     林下蒸散的植被类型差异在生长季初较小,月蒸散量变化在38.64~49.84mm,在7、8月份的峰值期间差异较大,月蒸散量变化在60.59~104.93mm。变化明显的是阳坡草地、山桃林、虎榛子灌丛和半阳坡草地,不明显的是华北落叶松林和沙棘灌丛。对林下蒸散影响最大的气象因子是气温,其次是潜在蒸散、太阳辐射强度和空气湿度。
     华北落叶松林在2011、2012年的冠层截留分别占总蒸散的18%、12%,林木蒸腾占25%、22%,林下蒸散占57%、65%。生长季内,各组分占蒸散的比例随时间变化的规律不同:冠层截留比例变化在0~32%(2011年)、6~24%(2012年),但整体趋势平稳;林木蒸腾比例(6~51%、7~33%)呈逐渐降低趋势,林下蒸散比例(39~69%、53~83%)则呈逐渐升高趋势。
     2011、2012年生长季降水量分别为424、526mm,华北落叶松林蒸散占降水的比例分别为106%、103%,产流量16.4、165.3mm,消耗外界输入的水分分别为126.4、12.2mm。阳坡草地蒸散占降水的73%,产流量分别为111.4、238.2mm;半阳坡草地蒸散占降水的70%、68%,产流量分别为139.0、259.9mm。
     4)华北落叶松林分结构的坡面差异及尺度效应
     华北落叶松冠层叶面积指数(LAI)和地上生物量存在坡向、坡位差异。冠层LAI、地上生物量均表现为阴坡高于半阴坡,并且整体上随坡位下降均呈增加趋势。土壤厚度、坡面汇流和土壤水分差异能较好地解释林分结构的坡位差异。
     冠层LAI和地上生物量的坡面变化表现出明显的尺度效应。冠层LAI的坡面平均值在阴坡上随坡长每增加100m,对应升高0.22,高于半阴坡的0.16,可见其尺度效应在阴坡强于半阴坡;地上生物量的坡面平均值在阴坡上随坡长每增加100m,对应增加4.92t·hm-2,低于半阴坡的6.28t·hm-2,可见其尺度效应在阴坡弱于半阴坡。
     林分结构在不同坡位处的观测值对整个坡面平均值的代表性有很大差异。本文拟合了不同坡位处冠层LAI、地上生物量的观测值与整个坡面平均值的比值随离开坡顶水平距离变化的关系,可据此将特定坡位样地的观测值换算为整个坡面的平均值,从而减少野外调查中的样地数量,提高坡面参数的估算精度。
     5)华北落叶松林蒸散与产流的坡面差异及尺度效应
     华北落叶松林蒸散和产流具有明显的坡向、坡位差异。蒸散表现为阴坡高于半阴坡,产流则相反;随坡位下降蒸散呈增加趋势,产流则减小。蒸散在阴坡上的坡面尺度效应(坡长每增加100m,蒸散的坡面平均值对应增加28.3mm)强于半阴坡(19.5mm/100m);与之相反,产流在半阴坡上的坡面尺度效应(34.7mm/100m)强于阴坡(16.8mm/100m)。拟合了不同坡位处林分蒸散及其组分、产流与整个坡面平均值的比值随离开坡顶水平距离变化的关系,可据此将特定坡位样地的相应特征值换算为整个坡面的平均值。
Low coverage of vegetation and harsh environment severely limit the economic and socialdevelopment of the regionsin northwest China. Especially in the arid and semi-arid areas,it isthe key to rebuild the vegetation for the purpose of eco-enviroment improvement. In the pastwork of vegetation restoration, there existedmany mistakes, such as selectingunfitvegetation,afforestation in unsuitable area or with astand densitylager than the carryingcapacity of the soil water. In fact, limited water resources and its strong heterogeneityallocating in space determinein a great degreethe vegetation type, pattern and structure. Toprovide a reasonable basis for vegetation restoration, it is necessary to understand the variationand scale effect of topography, soil thickness and water content and other site factors in space,and the current distribution and variation of vegetation structure and scale effect, as well as therelationship between vegetation and site factors. To this end, we selected a series of slopes andplots in a semi-arid region northwest of the Liupan Mountains, to study the temporal andspatial variation of evapotranspiration and its components in typical vegetation, and to quantifythe slope variation and spatial scale effect of the hydrological factors, such as the siteconditions and forest structure,etc. The main conclusions are as follows:
     1. Difference in sap flow density among Larix principis-rupprechtii Mayr trees ofdifferent degree of dominance
     The sap flow density (Js) in trees of higher degree of dominance started earlier in themorning but ended later at night than that in trees of lower degree of dominance. In addition,the maximum of Jsduring the daytime appeared earlier and was higher in higher trees. Thus thedaily average of Jsin higher trees was apparently higher as well. Furthermore, the Jsin highertrees was more sensitive to the solar radiation and the vapor pressure deficit on a5-min timescale, while on daily scale to the soil drought, higher trees showed less sensitive, implying astronger ability for obtaining light and water. In general, however, no significant difference was found in the pattern of Jsresponse to environment conditions among sample trees, and therelative difference in Jswas relatively stable. Correlation analysis indicated that the mostimportant factors positively affecting the Jswere the degree of dominance (relative height) andthe tree height (P<0.01), then were the canopy length and diameter at breast height (P<0.05),and then the canopy width and sapwood area (P>0.05). In an improved approach, the Jsforthe forest stand was taken as the average of Jsfor all individual trees in the stand which wascalculated by using the linear relation between Jsand degree of dominance. It was16%lessthan the value calculated by the average of Jsfor the five sample trees in the widely used basicapproach. Therefore it is proposed that the degree of dominance should be taken into accountin the up-scaling approach for the stand Jsor transpiration estimate in future.
     2.Coupling effects of soil moisture and evaporative demandon the larch transpiration
     Daily transpiration(T)of the larch plantation varied from0.08to2.18mm·day-1for thewholegrowing season.In any given soil watercondition, the T displayed scattered, andmuchmore scattered in better conditions, showing the coupling effects of evaporative demand(PET) and soil water (REW). A logistic relationship(T=Tmax·(1-exp(k·REW)) was derived todescribe the T varying with the rising REW. Additionally, theTmax(the maximum of T under agiven PET condition) increasedwith the PET (Tmax=a·PET2+b·PET). After combining these twofunctions together, a more general model covering the whole variation range of PET and REWwas determined as T=(-0.05·PET2+0.65·PET)·(1-exp(-5.39·REW). This model fitted themeasured data well and could explain92%of the T variation in the larch plantation, and thuscan be used to describe the joint influence of REW and PET on T.
     3. Characteristics of evapotranspiration and water balance in several kinds of vegetation
     Canopy interception were different among various kinds of typical vegetation. During theperiod of July to October,2012,with a cumulative precpitation of366mm, the interception washighest in the birch forest (15%of the precipitation),then wasthe sea buckthorn shrubs, larchplantation, mountain peach plantation and miscellaneous shrubs(11-12%,40-44mm), thelowest9%(31mm)was the ostryopsis shrubs.
     The difference of the evapotranspiration under the canopy (38.64-49.84mm per month)among vegetation was lower in the beginning of the growing season, but higher in the peakperiod,60.59-104.93mm per month. Obvious change of the evapotranspiration was found inthe sunny slope grassland, mountain peach plantation,ostryopsis shrubsand semi-sunny slopegrassland, whereas not in the larch plantation or the sea buckthorn shrubs. Temperature was themost influential factor, then was the potential evapotranspiration, solar radiation and humidity.
     The canopy interceptionwas18%,12%of the total evapotranspiration in the growingseason of2011and2012, respectively in the larch plantation. The tree transpirationtookaproportion of25%,22%; meanwhile the evapotranspiration,57%,65%, respectively. Theseasonal change of the ratio of each component to the total evapotranspiration was different.The ratio of interception changed from0to32%,6%to24%, in2011and2012, respectively,with a comparatively smooth tendency; the ratio of transpiration changed from6%to51%,7%to33%, with a gradual decrease; however the ratio of theevapotranspiration under the canopychanged from39%to69%,53%to8%, with a gradual increase during the growing season.
     The cumulative amount of precipitation was424,526mm in2011and2012, respectively.The evapotranspiration of the larch plantationaccount for106%,103%of the precipitation; thewater yield was16.4,165.3mm and external inputs of water for use was126.4,12.2mmin2011and2012, respectively. The evapotranspiration of sunny slope grasslandaccounted for73%of the precipitation;the water yield was111.4,238.2mm. The evapotranspiration ofsemi-sunny slope grasslandaccounted for70%of the precipitation in2011,68%in2012andthe water yield was139.0,259.9mm, respectively.
     4.Slope variation and scale effect of the forest structure
     Obvious distinctions were found in the canopy leaf area index (LAI) and abovegroundbiomass among slope directions and positions. The averagesof LAI and aboveground bimasswere higher on the shady slopethan on the semi-shady slope.And along the slope, both of themperformed an increase with the position decreasing,whichcould bewell related tothe soil depthor moisture conditions in different slope positions.
     Scale effect occurred in the slope variation of the forest stucture. Theslope average ofcanopy LAI increased0.22per100mincrease in the slope length on the shady slope, whichwas higher than0.16on thesemi-shady slope. Therefore, the scale effect of the LAI wasstronger on the shady slope. The slope average of aboveground biomass increased4.92t·hm-2per100m increase in the slope length on the shady slope, which was lower than6.28t·hm-2on the semi-shady slope, implying a stronger scale effect on the semi-shady slope.
     Furthermore, obvious differencewas obeseverd in the values measured in different slopepositions for representatingthe entire slope. Relationships between the ratio of plot value toslope average value of the canopy LAI or aboveground biomass with the horizontal distancefrom the slope top was fitted.Based on this, values of vegetation structure obtained at a specificposition of a slope can be translated into an average for the entire slope.It is very helpful fortheefficiency and accuracy of the slope parameter estimates.
     5. Slope variation and scale effect of the forest evapotranspiration and water yield
     Obvious distinctions were found in the forest evapotranspiration (ET) and water yield (Y)among slope directions and positions. The ET was higher on the shady slope than on thesemi-shady slope, whereas the Y was lower on the shady slope. With thepositon decreasingalong the slope, the ET showed a gradual increase, whereas the Yperformed in a converse way.The scale effect of the ET was stronger onthe shady slope (28.3mm/100m, i.e. the slopeaverage of forest ET increased28.3mm per100m increase in the slope length) than on thesemi-shady slope (19.5mm/100m). In contrast, the scale effect of the Y was weaker on theshady slope (16.8mm/100m) than on the semi-shady slope (34.7mm/100m).Relationshipsbetween the ratio of plot value to slope average value of the ET or the Y with the horizontaldistance from the slope top was fitted.Based on it, the slope average can be estimated upscalingfrom the value measured on any one specific plot on the slope.
引文
Allen RG, Pereira LS, Raes D, et al.Crop evapotranspiration-Guidelines for computing crop waterrequirements. FAO Irrigation and Drainage,1998,56,1-15.
    Arias D, Calvo-Alvarado J, Dohrenbusch A. Calibration of LAI-2000to estimate leaf area index (LAI) andassessment of its relationship with stand productivity in six native and introduced tree species in CostaRica. Forest Ecology and Management,2007,247,185-193.
    Behera S K, Srivastava P, Pathre U V, et al. An indirect method of estimating leaf area index in Jatrophacurcas L. using LAI-2000Plant Canopy Analyzer. Agricultural and Forest Meteorology,2010,150(2),307-311.
    Bernier PY, Bréda N, Granier A, et al. Validation of a canopy gas exchange model and derivation of a soilwater modifier for transpiration for sugar maple (Acer saccharum Marsh) using sap flow densitymeasurements. Forest Ecology and Management,2002,163,185-196.
    Bindi M, Bellesi S, Orlandini S, et al. Influence of water deficit stress on leaf area development andtranspiration of Sangiovese graprvines grown in pots. American Journal of Enology and Viticulture,2005,56(1),68-72.
    Black TA. Evapotranspiration from Douglas fir stands exposed to soil water deficits. Water ResourceResearch,1979,15(1),164-170.
    Bl schl G, Sivapalan M. On the Representative Elementry Area(REA) Concept and Its Utility for DistrbutedRainfall-runoff Modelling. Hydrological Process,1995.
    Bréda N, Cochard H, Dreyer E, et al. Field comparison of transpiration, stomatal conductance andvulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annales desSciences de Forestiere,1993,50,571-582.
    Browm S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. ForestEcology and Management,1999,123,81-90.
    Chen J M, Black T A. Defining leaf area index for non-flat leaves. Plant Cell Environ,1992,15,421-429.
    Clausnitzer F, K stner B, Schw rzel K, et al. Relationships between canopy transpiration, atmosphericconditions and soil water availability-Analyses of long-term sap-flow measurements in an old Norwayspruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology,2011,151,1023-1034.
    Dantec V, Dufrene E, Saugier B. Inter annual and spatial variation in maximum leaf area index of temperatedeciduous stands. Forest Ecology and Management,2000,134,71-81.
    Denmead OT, Shaw RH. Availability of soil water to plants as affected by soil moisture content andmeteorological conditions. Agronomy Journal,1962,385-390.
    Du AP. The hillslope hydrological effect of vegetation and simulation in the small watershed of Diediegou,Liupan Mountains. Doctoral Dissertation, the Chinese Academy of Forestry,2009,36-39,97-99.
    Eriksson H, Eklundh L, Hall K, et al. Estimating LAI in deciduous forest stands. Agricultural and ForestMeteorology,2005,129,27-37.
    Ewers BE, Mackay DS, Gower ST, et al. Tree species effects on stand transpiration in northern Wisconsin.Water Resource Research,2002,38,1-11.
    Feng YJ, Ma CM, Wang YH, et al. Relationship between the characteristics of transpiration of Larixprincipi-rupprechtii forest and soil water potential. Science of Soil and Water Conservation,2010,8(1),93-98.
    Ford CR, Goranson CE, Mitchell RJ, et al. Modeling canopy transpiration using time series analysis: A casestudy illustrating the effect of soil moisture deficit on Pinus taeda. Agricultural and Forest Meteorology,2005,130,163-175.
    Gash J H C. An analytical model of rainfall interception by forests. Q J R Meterorol Soc,1979,105,43-55.
    Genet A, Wemsdorfer H, Jonard M, et al. Ontogeny partly explains the apparent heterogeneity of publishedbiomass equations for Fagus sylvatica in central Europe. Forest Ecology and Management,2011,1188-1202.
    Goldstein G, Andrade J L, Meinzer F C, et al. Stem water storage and annual patterns of water in tropicalforest canopy trees. Plant, Cell and Environment,1998,21,397-406.
    Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands.Agricultural and Forest Meteorology,2000,100,291-308.
    Granier A, Bréda N. Modelling canopy conductance and stand transpiration of an oak forest from sap flowmeasurements. Annales des Sciences Forestiéres,1996,53,537-546.
    Granier A, Lousteau D, Breada N. A genetic model of forest canopy conductance dependent on climate, soilwater availability and leaf area index. Ann For Sci,2000,57,755-765.
    Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. TreePhysiology,1987,3,309-320.
    Granier A, Biron P, Lemoine D. Water balance, transpiration and canopy conductance in two beech stands.Agricultural and Forest Meteorology,2000,100,291-308.
    Granier A, Huc R, Barigah ST. Transpiration of natural rain forest and its dependence on climatic factors.Agricultural and Forest Meteorology,1996,78,19-29.
    Hui D F, Wang J, Le X, et al. Influences of biotic and abiotic on the relationship between tree productivityand biomass in China. Forest Ecology and Management,2012,72-80.
    Irvine J, Perks MP, Magnani F, et al. The response of Pinus sylvestris to drought: stomatal control oftranspiration and hydraulic conductance. Tree Physiology,1998,18,393-402.
    K stner B, Biron P, Siegwolf R, et al. Estimates of vapour flux and canopy conductance of Scots pine at thetree level utilizing different xylem sapflow methods. Theoretical Applied Climatology,1996,53,105-113.
    Kume T, Takizawa H, Yoshifuji N, et al. Impact of soil drought on sap flow and water status of evergreentrees in a tropical monsoon forest in northern Thailand. Forest Ecology and Management,2007,238,220-230.
    Lagergren F, Lindroth A. Variation in sap flow and stem growth in relation to tree size, competition andthinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management,2004,188(1-3),51-63.
    Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden.Agricultural and Forest Meteorology,2002,112,67-85.
    Lecoeur J, Sinclair TR. Field pea transpiration and leaf growth in response to soil water deficits. CropScience,1996,36,331-335.
    Liu JL. A study on the hillslope ecohydrological processes and vegetation carrying capacity in the smallcatchment of Diediegou, Liupanhan Mountains. Doctoral dissertation, the Chinese Academy of Forestry,2008,58-61.
    Liu J L, Wang Y H, Guan W, et al. Stem sap flux velocity of individual trees of Larix principi-rupperchtii inrainy season in the north of Liupan Mountain. Journal of Huazhong Agricultural University,2008,27(3),434-440.
    Lu P, Urban L, Zhao P. Granier`s thermal dissipation probe (TDP) method for measuring sap flow in trees:theory and practice. Acta Botanica Sinica,2004,46(6),631-646.
    Lundblad M, Lindroth A. Stand transpiration and sapflow density in relation to weather, soil moisture andstand characteristics. Basic and Applied Ecology,2002,3(3),229-243.
    Mitchell P J, Veneklaas E, Lambers H,et al. Partitioning of evapotranspiration in a semi-arid eucalyptwoodland in south-western Australia. Agricultural and Forest Meteorology,2009,149(1),25-37.
    Mokany K, Raison R J, Prokushkin A. Critical analysis of root: shoot ratios in terrestrial biomes. GlobalChange Biology,2006,12,84-96.
    Nasahara K N, Muraoka H, Nagai S, et al. Vertical integration of leaf area index in a Japanese deciduousboard-leaved forest. Agricultural and Forest Meteorology,2008,148,1136-1146.
    O’Brien J J, Oberbauer S F, Clark D B. Whole tree xylem sap flow responses to multiple environmentalvariables in a wet tropical forest. Plant, Cell and Environment,2004,27,551-567.
    Oren R, Pataki D E. Transpiration in response to variation in microclimate and soil moisture in southeasterndeciduous forests. Oecologia,2001,127,549-559.
    Phillips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse-and ring-porous treespecies. Plant, Cell and Environment,1996,19,983-990.
    Propastin P, Panferow O. Retrieval of remotely sensed LAI using Landsat ETM+data and groundmeasurements of solar radiation and vegetation structure: Implication of leaf inclination angle.International Journal of Applied Earth Observation and Geoinformation,2013,25,38-46.
    Qiu Y, Fu B J, Wang J, et al. Spatial variability of soil moisture content and its relation to environmentalindices in a semi-arid gully catchment of the Loess Plateau, China. Journal of Arid Environments,2001,49,723-750.
    Raz-Yaseef N, Yakir D, Schiller G, et al. Dynamics of evapotranspiration partitioning in a semi-arid forest asaffected by temporal rainfall patterns. Agriclutural and Forest Meteorology,2012,157(15),77-85.
    Rutter AJ. Studies of the water relations of Pinus sylvestris in plantation conditions. V. Responses tovariation in soil water conditions. Journal of Applied Ecology,1967,4(1),73-81.
    Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth-What keeps trees growing beyond acertain height? Bioscience,1997,47,235-242.
    Sadras VO, Milroy SP. Soil-water thresholds for the responses of leaf expansion and gas exchange: a review.Field Crop Research,1996,47,253-266.
    Sch fer K V R, Oren R, Tenhunen J D. The effect of tree height on crown level stomatal conductance. Plant,Cell and Environment,2000,23,365-375.
    Schmidt U, Hanspeter T, Kaupenjohann M. Using a boundary line approach to analyze N2O flux data fromagricultural soils. Nutrient Cycling in Agricultural Ecosystems,2000,57,119-129.
    She DL, Xia YQ, Shao MA. Transpiration and canopy conductance of Caragana korshinskii trees in responseto soil moisture in sand land of China. Agroforest Syst,2013,87,667-678.
    Sinclair TR, Holbrook NM, Zwieniecki MA. Daily transpiration rates of woody species on drying soil. Treephysiology,2005,25,1469-1472.
    Sinclair TR, Ludlow MM. Influence of soil water supply on the plant water balance of four tropical grainlegumes. Australian Journal of Plant Physiology,1986,13(3),329-341.
    Sonnentag O, Chen J M, Roberts D A, et al. Mapping tree and shrub leaf area indices in an ombrotrophicpeatland through multiple endmember spectral unmixing. Remote Sensing of Environment,2007,109(3),342-360.
    Sonnentag O, Talbot J, Chen J M, et al. Using direct and indirect measurements of leaf index to characterizethe shrub canopy in an ombrotrophic peatlead. Agricultural and Forest Meteorology,2007,144,200-212.
    Sumayao CR, Kanemasu ET, Hodges T. Soil moisture effects on transpiration and net carbon dioxideexchange of sorghum. Agricultural Meteorology,1977,18(6),401-408.
    Sun L, Guan W, Wang YH, et al. Simulations of Larix principis-rupperchtii stand mean canopy stomatalconductance and its responses to environmental factors. Chinese Journal of Ecology,2011,30(10),2122-2128.
    Sun L, Xiong W, Guan W, et al. Use of storage water in Larix principis-ruprechtii and its response to soilwater content and potential evapotranspiration: a modeling analysis. Chinese Journal of Plant Ecology,2011,35(4),411-421.
    Ungar ED, Rotenberg E, Raz-Yaseef N,et al. Transpiration and annual water balance of Aleppo pine in asemiarid region: Implications for forest management. Forest Ecology and Management,2013,298,39-51.
    WangYH, Bonell M, Feger KH, et al. Changing forestry policy by integrating water aspects intoforest/vegetation restoration in dryland areas in China. Agriculture Water&Ecology,2012,26(1),59-67.
    Wang YH, Xiong W, Yu PT,et al. Study on the evapotranspiration of forest and vegetation in dryland.Science of Soil and Water Conservation,2006,4(4),19-26.
    Ward EJ, Bell, DM, Clark JS, et al. Hydraulic time constants for transpiration of loblolly pine at a free-aircarbon dioxide enrichment site. Tree Physiology,2012,33,123-134.
    Watson D J. Comparative physiological studies on the growth of field crops. Ⅰ. Variation in netassimilation rate and leaf area between species and varieties and within and between years. Annals ofBotany,1947,11,41-76.
    Welles J M, Norman J M. Instrument for indirect measurement of canopy architecture. Agron J,1991,83,818-825.
    Wen Y G, Chen F, Liu S R, et al. Relationship between species diversity and biomass of eucalyptusplantation in Guangxi, south China. Research Article,2009,4(2),146-152.
    Wullschleger S D, Wilson K B, Hanson, P J. Environmental control of whole-plant transpiration, canopyconductance and estimates of decoupling coefficient for large red maple trees. Agricultural and ForestMeteorology,2000,104,157-168.
    Xia YQ, Shao MA. Soil water carrying capacity for vegetation: a hydrologic and biogeochemical processmodel solution. Ecological Modelling,2008,214,112-124.
    Xiong W, Wang YH, Yu PT, et al. Variation of sap flow among individual trees and scaling-up for estimationof transpiration of Larixprincipis-rupprechtii stand. Scientia Silvae Sinicae,2008,44(1),34-40.
    Xiong W, Wang YH, Xu DY. Regulations of water use for transpiration of Larix principi-rupprechtiiplantation and its response on environmental factors in southern Ningxia hilly area. Scientia SilvaeSinicae,2003,39(2),1-7.
    Zhang Z, Lin L, Sun YC, et al. Effects of global warming on Liupan Mountain Region’s climate of Ningxia.Journal of Arid Land Resources and Environment,2007,21(8),64-67.
    曹云,黄志刚,欧阳志云等.南方红壤区杜仲(Eucommia ulmoides)树干液流动态.生态学报,2006,26(9),287-295.
    曹恭祥.宁夏六盘山华北落叶松人工林与华山松天然次生林蒸散特征对比研究.内蒙古农业大学硕士学位论文,2010.
    曹群根.毛竹林冠层对降水的截留作用.福建林学院学报,1991,11(1),37-43.
    曾德慧,裴铁璠,范志平等.樟子松林冠截留模拟实验研究.应用生态学报,1996,7(2),134-138.
    曾杰,郭景唐.太岳山油松人工林生态系统降雨的第一次分配.北京林业大学学报,1997,19(3),21-27.
    常学向,赵文智.黑河中游沙枣树干液流的动态变化及其与林木个体生长的关系.中国沙漠,2004,24(4),473-478.
    常学向,赵文智.荒漠绿洲农田防护树种二白杨生长季节树干液流的变化.生态学报,2004,24(7),1436-1441.
    陈德祥,李意德,骆土寿等.海南岛尖峰岭鸡毛松人工林乔木层生物量和生产力研究.林业科学研究,2004,17(5),598-604.
    陈丽华,王礼先.北京市生态用水分类及森林植被生态用水定额的确定.水土保持研究,2002.8(4),161-164
    陈夏,桑卫国.暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态.植物生态学报,2007,31(3),431-436.
    丁贵杰,王鹏程.马尾松人工林生物量及生产力变化规律研究Ⅱ.不同林龄生物量及生产力.林业科学研究,2002,15(1),54-60.
    杜阿朋,王彦辉,管伟等.六盘山叠叠沟小流域的土壤石砾含量坡面分布特征.水土保持学报,2009,23(5),76-80.
    杜阿朋,于澎涛,王彦辉等.六盘山北侧叠叠沟小流域土壤物理性质空间变异的研究.林业科学研究,2006,19(5),547-554.
    杜阿朋.六盘山叠叠沟小流域坡面植被水文影响与模拟.中国林业科学研究院博士学位论文,2009.
    樊后保,李燕燕,苏兵强等.马尾松-阔叶树混交异龄林生物量与生产力分配格局.生态学报,2006,26(8),2463-2473.
    冯金朝,陈荷生,康跃虎等.腾格里沙漠沙坡头地区人工植被蒸散耗水与水量平衡的研究.植物学报,1995,37(10),815-821.
    冯永健,马长明,王彦辉等.华北落叶松人工林蒸腾特征及其与土壤水势的关系.中国水土保持科学,2010,8(1),93-98.
    冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定.林业科学,1982,18(2),127-134.
    郭德亮,樊军,米美霞.黑河中游绿洲区不同土地利用类型表层土壤水分空间变异的尺度效应.应用生态学报,2013,24(5),1199-1208.
    郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究.中国林业科学研究院博士学位论文,2005.
    韩士杰,周玉梅,王琛瑞等.红松幼苗对CO2浓度升高的生理生态反应.应用生态学报,2001,12(1),27-30.
    郝佳,熊伟,王彦辉等.华北落叶松人工林叶面积指数实测值与冠层分析仪读数值的比较和动态校正.林业科学研究,2012,25(2),231-235.
    何志斌,赵文智,常学礼.荒漠绿洲过渡带植被空间异质性的可塑性面积单元问题.植物生态学报,2004,28(5),616-622.
    黄德青,于兰,张耀生等.祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究.草业学报,2011,20(3),20-27.
    黄玫,季劲钧.中国区域植被叶面积指数时空分布——机理模型模拟与遥感反演比较.生态学报,2010,30(11),3057-3064.
    黄志霖,傅伯杰,陈利顶.黄土丘陵区不同坡度、土地利用类型与降水变化的水土流失分异.中国水土保持科学,2005,3(4),11-18.
    江泽慧,范少辉,冯慧想等.华北沙地小黑杨人工林生物量及其分配规律.林业科学,2007,43(11),16-20.
    李德生.山东泰安黄前水库流域主要植被类型的水文特征研究.北京林业大学博士学位论文.2007.
    李根,周光益,吴仲民.南岭小坑木荷群落地上生物量.林业科学,2012,48(3),143-147.
    李根柱,王贺新,朱教君.辽东次生林区主要阔叶林型叶面积株数季节动态.生态学杂志,2008,27(12),2049-2055.
    李银芳,杨戈.梭梭固沙林水分平衡研究.II.白梭梭人工积雪固沙林的水分状况.干旱区研究,1996,13(3),51-56.
    林业部科技司.森林生态系统定位研究方法.北京:中国科学技术出版社,1994,98-100.
    宁夏六盘山自然保护区.六盘山水文考察报告,2005.
    宁夏林业厅自然保护区办公室.六盘山自然保护区科学考察.宁夏:宁夏人民出版社,1989.
    刘国华,马克明,傅伯杰等.岷江干旱河谷主要灌丛类型地上生物量研究.生态学报,2003,23(9),1757-1764.
    刘建立,王彦辉,管伟等.六盘山北侧生长季内华北落叶松树干液流速率研究.华中农业大学学报:自然科学版,2008,27(3),434-440.
    刘申,罗艳,黄钰辉等.鼎湖山五种植被类型群落生物量及其径级分配特征.生态科学,2007,26(5),387-393.
    刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律.林业出版社,1996.
    刘晓静,赵平,王权等.树高对马占相思整树水分利用的效应.应用生态学报,2009,20(1),13-19.
    刘延惠,王彦辉,于澎涛等.六盘山主要植被类型的生物量及其分配.林业科学研究,2011,24(4),443-452.
    刘志理,戚玉娇,金光泽.小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局.林业科学,2013,49(8),58-64.
    吕晓涛,唐建维,何有才等.西双版纳热带季节雨林的生物量及其分配特征.植物生态学报,2007,31(1),11-22.
    吕瑜良,刘世荣,孙鹏森等.川西亚高山不同暗针叶林群落类型的冠层降水截留特征.应用生态学报,2008,18(11),2398-2405.
    马玲,饶兴权,赵平等.马占相思整树蒸腾的日变化和季节变化特征.北京林业大学学报,2007,29(1),67-73.
    马履一,王华田,林平.北京地区几个造林树种耗水特性比较研究.北京林业大学学报,2003,25(2),1-7.
    马文红,方精云,杨元合等.中国北方草地生物量动态及其与气候因子的关系.中国科学:生命科学,2010,40(7),632-641.
    毛学刚,范文义,李明泽等.黑龙江长白山森林生物量的时空变化分析.植物生态学报,2011,35(4),371-379.
    梅婷婷,王传宽,赵平等.木荷树干液流的密度特征.林业科学,2010,46(1),40-46.
    明安刚,贾宏炎,陶怡等.桂西南28年生米老排人工林生物量及其分配规律.生态学杂志,2012,31(5),1050-1056.
    潘志刚,冯水,林鸿盛.马占相思引种,生长及利用.热带林业,1996,24,144-152.
    漆良华,张旭东,周金星等.马尾松飞播林生物量与生产力的变化规律与结构特征.林业科学研究,2007,20(3),344-349.
    綦俊谕,蔡强国,蔡乐等.岔巴沟、大理河与无定河水土保持减水减沙作用的尺度效应.地理科学进展,2011,30(1),95-102.
    时忠杰.六盘山香水河小流域森林植被的坡面生态水文影响.中国林业科学研究院博士学位论文,2006,32-33.
    孙林,管伟,王彦辉等.华北落叶松冠层平均气孔导度模拟及其对环境因子的响应.生态学杂志,2011,30(10),2122-2128.
    孙宝刚,陈飞,王健敏等.不同径级云南松各部位生物量及其分布规律.林业科学研究,2012,25(1),71-76.
    孙浩,杨民益,熊伟等.人为改造措施对六盘山两种典型林分土壤物理性质及其水文功能的影响.水土保持学报,2013,27(6),103-107.
    孙良英,张世彪.荒漠化土地土壤生产潜力监测方法.中国沙漠,1999,19(3),261-264.
    孙鹏森,马履一.水源保护树种耗水特性研究与应用.中国环境科学出版社,2002.
    谭俊磊,马明国,车涛等.基于不同郁闭度的青海云杉冠层截留特征研究.地球科学进展,2009,24(7),825-833.
    童鸿强,王玉杰,王彦辉等.六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征.林业科学研究,2011,24(1),13-20.
    王安志,裴铁藩.长白山阔叶红松林蒸散量的测算.应用生态学报.2002,13(12),1547-1550.
    王建国,樊军,王全九等.黄土高原水蚀风蚀交错区植被地上生物量及其影响因素.应用生态学报,2011,22(3),556-564.
    王俊玲.六盘山林区华北落叶松群落物种多样性、生产力及个体生长量的研究.兰州大学硕士学位论文,2008,15-16.
    王希群,马履一,贾忠奎等.叶面积指数的研究和应用进展.生态学杂志,2005,24(5),537-541.
    王占印,于澎涛,王双贵等.宁夏六盘山区辽东栎林的空间分布及林分特征.林业科学研究,2011,24(1),97-102.
    魏晶,吴刚,邓红兵.长白山高山冻原植被生物量的分布规律.应用生态学报,2004,15(11),1999-2004.
    熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(20),1-7.
    熊伟,王彦辉,于澎涛等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,2008,44(1),34-40.
    杨晓勤,李良.不同林龄华北落叶松人工林土壤蒸发特征及地表径流研究.山东林业科技,2013,(1),48-50.
    张春梅,焦峰,温仲明等.延河流域自然与人工植被地上生物量差异及其土壤水分效应的比较.西北农林科技大学学报(自然科学版),2011,39(4),132-138.
    张国斌,李秀芹,佘新松等.安徽岭南优势树种(组)生物量特征.林业科学,2012,48(5),136-140.
    张宁南,徐大平, Morris J等.雷州半岛加勒比松人工林旱季液流特征与耗水量研究.林业科学研究,2007,20(5),591-597.
    张忠华,胡刚,祝介东等.喀斯特常绿落叶阔叶混交林物种多度与丰富度空间分布的尺度效应.生态学报,2012,32(18),5663-5672.
    赵平,饶兴权,马玲等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度.植物生态学报,2006,30(4),655-665.
    赵平,饶兴权,马玲等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异.生态学报,2006,26(12),4050-4058.
    郑钰,李晓文,崔保山等.云南纵向岭谷区道路网络对生态系统影响的尺度效应.生态学报,2009,29(8),4267-4277.
    朱志诚,贾东林,岳明.艾蒿群落生物量初步研究.中国草地,1997,(5),6-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700