用户名: 密码: 验证码:
基于土壤养分空间变异的烤烟变量施肥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精准施肥是精准农业的标志性技术。本文以烤烟精准施肥作为研究内容,对不同地形条件下烤烟精准养分管理中的土壤取样、施肥指标体系、分散经营条件下养分分区管理与适度规模经营的精准养分管理、变量施肥机设计等关键技术环节进行了研究,为精准农业技术应用提供科学依据。主要结论如下:
     精准施肥是精准农业的标志性技术。本文以烤烟精准施肥作为研究内容,对不同地形条件下烤烟精准养分管理中的土壤取样、施肥指标体系、分散经营条件下养分分区管理与适度规模经营的精准养分管理、变量施肥机设计等关键技术环节进行了研究,为精准农业技术应用提供科学依据。主要结论如下:
     1.土壤养分和pH值的块金效应为强到中等,变异来源主要为结构变异,满足地统计和插值分析的基本条件,适合精准养分管理。4种地形的有效变程平均值顺序为pH值>有机质>碱解氮>有效磷>速效钾,该规律和烤烟磷、钾养分过量投入相符合。同一土壤测试指标在不同地形条件数据分布和最优拟合模型不完全相同,同一指标同一地点2010、2013年的数据分布和最优拟合模型也不完全相同,模型的时空稳定性差,时空改变都需要规模采样,限制了其在指导施肥中的应用能力。
     2.用于养分管理的植烟土壤取样,基于Cochran公式,置信水平设定为90%,允许误差设定为15%时,可以满足施肥推荐的要求,此时,缓坡地、坝子地和平原的土壤样品代表面积分别为0.73hm2、1.01~1.56hm2、1.92hm2。用于精准养分管理的植烟土壤网格取样,根据半方差分析,缓坡地、坝子地和平原烟田的网格取样最大间距分布为58.2m、134.4~177.5m、234.0m。
     3.田间试验表明:黄壤烤烟养分吸收的主要问题是旺长期前磷钾养分吸收(4%、4%)偏低、成熟期氮素吸收(35.5%)偏高、导致干物质积累偏晚,百公斤商品烟叶的N、P2O5、K2O需求分别为4.51kg、0.29kg、5.31kg。水稻土烤烟氮磷钾养分吸收主要集中在40~80d;旺长期前磷钾养分吸收(6.1%、3.7%)偏低是养分吸收的主要问题,百公斤商品烟叶的N、P2O5、K20需求分别为4.25kg、0.41kg、6.29kg。农户调查表明:习惯施肥的主要问题是氮、磷、钾肥料投入高于烤烟需求量,而有机肥投入不足,N、P2O5、K2O盈余分别为35.7kg/hm2、103.5kg/hm2、169.5kg/hm2,碳亏缺438.0kg/hm2。
     4.根据贵州省黔北田间试验、农户调查、植烟土壤养分含量的频率分布、养分分级文献建立贵州黔北烟草施肥指标体系。把遵义市植烟土壤养分应用于黔北施肥指标体系,计算遵义市烟草平均养分推荐为:基肥N、P2O5、K2O推荐量分别为64.58kg/hm2、75.1kg/hm2、157.65kg/hm2;追肥N、P2O5、K2O推荐量分别为27.68kg/hm2、Okg/hm2、55.35kg/hm2。提出基肥配方为“10-11-24”,追肥配方保留原有农户习惯施肥的追肥配方“15-0-30”。
     5.提出无变量机具支持情况下分散经营土壤养分管理分区的基本步骤。即:土壤养分插值、以地块为单元统计土壤养分、依据施肥模型针对地块进行肥料养分推荐、聚类分析地块肥料养分形成针对地块的养分管理分区。规模经营且变量施肥机支持的情况下,以“大配方、小调整”模式进行烤烟养分管理。在一个区域内,使用相同的肥料配方,以氮素养分推荐量调整肥料用量;土壤养分插值用来计算养分推荐量,直接使用变量施肥机执行施肥处方,区别于人工施肥情况下简化操作单元而建立的养分管理分区。
     6.基于以上研究设计一款基于施肥处方地图的变量施肥机,主要包括处方生成模块和处方执行模块。处方生成模块根据土壤测试数据、边界地图、施肥模型自动计算养分推荐量,生成空间地理数字处方;处方执行模块核心硬件包括集GPS数据采集、科学计算、变量施肥控制的控制器终端,由排肥涡杆、外壳、驱动电机等部件组成的排肥器;处方执行模块软件负责驱动GPS、电机、速度传感器、并监听各部件状态,根据施肥机位置信息执行施肥处方。
     7.分散经营条件下的精准养分管理可以节约氮、磷肥料分别为10.7%、10.3%,增产增收5454.63元/hm2,扣除因增加钾肥0.5%和土壤测试成本,精准养分管理节本增效5140.9元/hm2。规模经营条件下应用变量施肥机的精准养分管理较农户习惯施肥可节省肥料4.6%,缩小因农田养分变异导致的作物长势差异,使株高的变异系数下降29.6%,提高作物产量和改善农产品品质(中等烟率增加13.05%),节本增效4310.65元/hm2,具有较好的经济和社会效益。
     创新点
     1.设计研制国内首款具有自主知识产权的烟草变量施肥机,针对土壤养分空间变异,在不同管理单元实现变量施肥,在同一管理单元施肥均匀,农田应用表明:该施肥机能够节省肥料、提高作物整齐度、增加产量、改善品质、增加农田收益,具有较好的经济和社会效益。
     2.通过研究烤烟养分吸收规律、养分推荐分级指标、土壤养分空间分布、农田养分分区管理,建立了以数据采集为基础、以决策平台为中心、以变量施肥机械为手段的精准施肥技术体系和管理平台。
Precision fertilization is a symbol technology for precision agriculture. Taking the precision fertilization in flue-cured tobacco cultivation as the research object, this paper developed some key technologies in different topography conditions, which included soil sampling, establishment of fertilization indicators system, the site specific nutrient management under the mode of diversified operation, precision fertilization management in scale agriculture, and the design of the variable rate fertilizer applicator machinery. It can provide scientific basis for the application of precision agriculture technology. The main conclusions were showed as follows:
     1. The nugget effect of soil nutrients and pH is for the strong to moderate. The structural Variation is the main source of variation, which meet the basic conditions analysis of statistics and interpolation and is suitable for precise nutrient management. The order of the effective range of4kinds of terrain is for pH value> organic matter> n> P> k, which is consistent with the rule for P, K excess investment. The same soil test index in different terrain conditions is not exactly the same for data distribution and the best fitting model. The data distribution and the best fitting model is not the same for the same index the same place in2010and2013. Because temporal stability of the model is poor, which limit its ability to guide the application of fertilizer, so it needs re-sampling when time and space change.
     2. Based on the Cochran formula, when the confidence level was90%and the permissible error was15%, the soil samples can meet the demands of fertilizer recommendations which represented tobacco acreage of0.73hm2,1.01~1.56hm2, and1.92hm2in gentle slope, plateau and plain fields, respectively. By using geo-statistical analysis, the maximum intervals of grid sampling for the3topographies that gentle slope, plateau and plain fields were58.2m,134.4~177.5m,234.0m, respectively.
     3. The main problems in nutrient absorption and dry matter accumulation of the flue-cured tobacco in yellow soil included that:the uptake of P and K nutrients before the fast growing period was lower (i.e.,4%and4%), the N absorption during mature period was higher (35.5%), and dry matter accumulation was later than that of high quality flue-cured tobacco. The demands of tobacco leaf per100kilograms for N, P2O5, and K2O were4.51kg,0.29kg, and5.31kg, respectively. The time of N, P and K nutrient absorption mainly concentrated on40~80d; the relatively low absorption rates of P and K (6.1%,3.7%) were the main problems before fast growing stage for paddy soil. The nutrient needs of N, P2O5, K2O for tobacco were4.25kg,0.41kg, and6.29kg per one hundred kilograms tobacco, respectively. Household survey showed that:nitrogen, phosphorus, potassium fertilizer is higher than the growth of flue-cured tobacco demand and lack of organic manure. The N、P2O5、K2O had surplus for35.7kg/hm2、103.5kg/hm、169.5kg/hm2, respectively, but SOC showed a deficiency of438.0kg/hm2.
     4. Based on the field experiment, household survey, the distribution of soil nutrient and nutrient classification literature in North Guizhou province, an index system was set up for tobacco fertilization. Through combining the nutrient conditions of tobacco soils in Zunyi with the index system, it calculated the average recommend nutrient needs of tobacco in Zunyi. That was, the amounts of N、P2O5、K2O as basal fertilizer were recommended as64.58kg/hm2、75.1kg/hm2、157.65kg/hm2, with a formula of10-11-24(N-P2O5-K2O); the additional fertilizers were27.68kg/hm2、0kg/hm2、55.35kg/hm2, with a formula of15-0-30(N-P2O5-K2O).
     5. On condition of diversified management, the basic steps of soil nutrient precise management and partition were put forward without the support of variable machine equipments, which included soil nutrition interpolation, soil nutrient statistics taking the separate plot as a unit, fertilizer formula recommended according to the fertilizer model, plot nutrient management based on cluster analysis of fertilizer nutrient. With the support of the variable rate fertilization machinery under the condition of the scale operation, the mode of flue-cured tobacco nutrient management can be summarized as "big formula, small adjustment", that is, to use the same fertilizer formula in an area, and to adjust the rate of fertilizer application according to the recommended N nutrient. The recommended nutrient rate can be calculated by the soil nutrient interpolation and be directly executed using the variable fertilizer machinery, which was different from the nutrient management by the artificial fertilization.
     6. A variable rate fertilizer applicator machine was designed based on the formula fertilization map. It mainly included two components, i.e., fertilizer formula generated module and execution module. The generated module can automatically calculate the recommended fertilizer rate based on soil testing data, map boundary and nutrient fertilization model and then generate digital geospatial formula; The execution module was composed of some core hardware, such as the control terminal combining GPS data acquisition, scientific computing, variable rate fertilization control, and the fertilizer applicator comprising vortex rod, shell, and motor parts; the execution software was responsible for driving GPS, motor, speed sensor, and monitoring each part's status, and executing the fertilizer formula according to the location information of the fertilizer applicator.
     7. For diversified management, the application of the steps in gentle slope fields showed that, compare with farmers'conventional fertilizer, N and P fertilizers through the precise nutrient management could be decreased by10.7%,10.3%, the production would be increased by5454.63yuan/hm2, and the net benefit would be increased by5140.9yuan/hm2taking off0.5%of K fertilizer amendment and soil test cost. For the scale operation, the variable rate fertilization management with machinery can play a great effects on the economic and social benefits, such as saving fertilizer input rate4.6%f, narrowing the difference of crop growth caused by variable farmland nutrient management, reducing the coefficient of variation of crop plant agronomic traits29.6%, increasing crop yield and improving the quality of agricultural products by13.05%, and improving production efficiency per unit farmland for4310.65yuan/hm2.
引文
1. 白由路,金继运,杨俐苹,梁鸣早.基于GIS的土壤养分分区管理模型研究.金继运,白由路.精准农业与土壤养分管理[M].北京:中国大地出版社.2001.
    2. 鲍士旦.土壤农化分析[M](第三版).北京:中国农业出版社.2000.
    3. 陈防,刘冬碧,万开元,陈树森,张过师,钟志祥.精准农业与农田精准养分管理现状及展望[J].湖北农业科学,2006,4:515-518.
    4. 陈桂芬,于合龙,曹丽英,马丽,王国伟.数据挖掘与精准农业智能决策系统[M].北京:科学出版社.2011.
    5. 陈建军.提高烟叶含钾量技术途径的探讨[J].中国烟草科学,1999,4:1-4.
    6. 陈江华,刘建利,李志宏.中国植烟土壤及烟草养分综合管理[M].北京:科学出版社.2008.
    7. 陈亚新,史海滨,聂光镛,李延林.渠床土壤入渗率的空间变异性及合理取样规则[J].灌溉排水,1990,9(3):3-9.
    8. 陈彦,吕新.基于FCM的绿洲农田养分管理分区研究[J].中国农业科学,2008,41(7):2016-2024.
    9. 陈志雄,Michel, V.封丘地区土壤水分平衡研究:Ⅰ.田间土壤湿度的空间变异[J].土壤学报,1989,4:309-315.
    10.单德鑫,杨书海,李淑芹,许景钢.15N示踪研究烤烟对氮的吸收及分配[J].中国土壤与肥料,2007,2:43-45.
    11.邓劲松,王珂,沈掌泉,许红卫.基于特征波段的SPOT-5卫星影像耕地信息自动提取的方法研究[J].农业工程学报,2004,20:145-148.
    12.杜娟,孙中豪,姚飞娟,刘星.GPS测速方法与精度分析[J].全球定位系统,2012,37(6):13-16.
    13.段丽杰.牛粪与秸秆协同好氧堆肥过程参数变化规律研究[J].农业资源与环境学报,2013,30(5):58-62.
    14.冯德锃,刘金涛,陈喜.山坡土壤化学性质的空间变异影响[J].山地学报,2011,4:427-432.
    15.冯恭衍,陈立人,朱伟琪.二千分之一大比例尺土壤详查中的土壤取样数量问题[J].土壤通报,1981,3:22-24.
    16.冯勇刚,石俊雄.贵州烟草平衡施肥研究.贵阳:贵州科技出版社.2005.
    17.高峻,黄元仿,李保国,张世熔,张凤荣.农田土壤颗粒组成及其剖面分层的空间变异分析[J].植物营养与肥料学报,2003,9:151-157.
    18.贵州省土壤普查办公室.贵州省土壤.贵阳:贵州科技出版社.1994.
    19.郭金如,林葆.我国肥料研究史话[J].土壤通报,1985,5:237-239.
    20.郭燕,许自成,毕庆文,王海明,黎根,赵会纳.恩施烟区土壤磷素与烤烟磷含量的关系[J].土壤通报,2010,2:403-407.
    21.黄德明.十年来我国测土施肥的进展[J].植物营养与肥料学报,2003,9(4):495-499.
    22.侯彦林.通用施肥模型—原始性创新施肥模型[J].中国基础科学,2000,4:31-33.
    23.侯彦林.通用施肥模型及其应用[J].农业环境科学学报,2011,30(10):1917-1924.
    24.侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004,35:493-501.
    25.侯彦林,刘兆荣.生态平衡施肥模型理论与应用[J].土壤通报,2000,1:34-36,50.
    26.侯彦林,闫晓燕,任军,王新民.区域生态平衡施肥模型建立方法和应用[J].土壤通报,2003,34(1):33-35.
    27.侯彦林.“生态平衡施肥”的理论和技术体系[J].生态学报,2000,4:653-658.
    28.胡国松,赵元宽,曹志洪,赵兴,赵振山,陈江华,张新,周秀如,李仲林.我国主要产烟省烤烟元素组成和化学品质评价[J].中国烟草学报,1997,3:36-43.
    29.胡国松.烤烟营养原理.北京:科学出版社.2000.
    30.黄绍文,金继运,杨俐苹,程明芳.县级区域粮田土壤养分空间变异特征研究.第七届全国青年土壤暨第二届全国青年植物营养科学工作者学术讨论会,中国北京,2000,pp.117-125.
    31.黄绍文.土壤养分空间变异与分区管理技术研究[博士学位论文].北京:中国农业科学院.2001.
    32.黄泽春,屠乃美,朱宗第,宋兴宜,郭祥.大田期烤烟根系生长与分布研究[J].中国烟草学报,2012,18(1):35-39.
    33.黄镇海,郭福成,张淑贤,王银波.作物施肥手册.行政院农业委员会,台湾省政府农林厅.1996.
    34.姜城,杨俐苹,金继运,张维理.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,7(3):262-270.
    35.姜城.不同经营体制下土壤养分空间变异规律及管理技术研究[博士学位论文].北京:中国农业科学院.2000.
    36.姜怀龙,李贻学,赵倩倩.县域土壤有机质空间变异特征及合理采样数的确定[J].水土保持通报,2012,32(4):143-146.
    37.金继运.“精准农业”及其在我国的应用前景[J].植物营养与肥料学报,1998,4:1-7.
    38.金耀青.配方施肥的方法及其功能—对我国配方施肥工作的述评[J].土壤通报,1989,20:46-48.
    39.雷志栋,杨诗秀,许志荣,G瓦肖尔.土壤特性空间变异性初步研究[J].水利学报,1985,9(9):10-21.
    40.李长兴,沈晋.考虑土壤特性空间变异的流域产流模型[J].水利学报,1989,10:1-8.
    41.李春俭,张福锁,李文卿,赵正雄,习向银,石秋梅,晁逢春,路永宪,陶芾,秦燕青,巨晓棠,江荣风.我国烤烟生产中的氮素管理及其与烟叶品质的关系[J].植物营养与肥料学报,2007,13(2):331-337.
    42.李春俭.烤烟养分资源综合管理理论与实践.北京:中国农业大学出版社.2006.
    43.李仁岗.肥料效应函数.北京:农业出版社.1987.
    44.李翔,潘瑜春,赵春江,王纪华,鲍艳松,刘良云,王锦地.基于空间连续性聚类算法的精准农业管理分区研究[J].农业工程学报,2005,21(8):78-82.
    45.李翔,潘瑜春,赵春江,王纪华,鲍艳松,王锦地.基于多年产量数据的精准农业管理分区提取与尺度效应评价[J].中国农业科学,2005,38(9):1825-1833.
    46.李艳,史舟,吴次芳,李锋,程街亮.基于模糊聚类分析的田间精准管理分区研究[J].中国农业科学,2007,40(1):114-122.
    47.李艳,史舟,吴次芳,李洪义,李锋.基于多源数据的盐碱地精确农作管理分区研究[J].农业工程学报,2007,23(8):84-89.
    48.梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究[J].土壤学报,1993,30:69-78.
    49.梁文举,施春健,姜勇.长期定位试验地耕层土壤氮素空间变异性及其应用[J].水土保持学报,2005,19:79-83.
    50.刘聪,周清,屈金莲,朱玉琼.不同地形条件下样点密度对土壤养分空间变异的影响[J].湖南农业大学学报:自然科学版,2013,39(1):80-85.
    51.刘成祥,周鸣铮.对Truog-Ramamoorthy测土施肥方法的研究与讨论[J].土壤学报,1986,23(3):287-291.
    52.刘国顺,江厚龙,杨永锋,胡宏超,刘清华.基于烤烟品质确定烟田的养分管理分区[J].植物营养与肥料学报,2011,4:996-1004.
    53.刘宏斌,李志宏,张云贵,张维理,林葆.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692-698.
    54.刘明强,宇振荣,刘云慧.作物养分定量化模型原理及方法比较分析[J].土壤通报,2006,37:1-2.
    55.刘建刚,褚庆全,王光耀,陈阜,张耀耀.基于DSSAT模型的氮肥管理下华北地区冬小麦产量差的模拟[J].农业工程学报,2013,29(23):124-129.
    56.刘青丽,石俊雄,张云贵,王晶君,李志宏.应用15N示踪研究不同有机物对烤烟氮素营养及品质的影响[J].中国农业科学,2010,43(22):4642-4651.
    57.刘世梁,郭旭东,连纲,傅伯杰,王静.黄土高原土壤养分空间变异的多尺度分析—以横山县为例[J].水土保持学报,2005,10:107-110.
    58.刘卫群,郭群召,汪庆昌,张新要,郭红祥.不同施氮水平对烤烟干物质、氮素积累分配及产质的影响[J].河南农业科学,2004,8:25-28.
    59.刘彦中,阮培贵.钾在烟株中的积累和分配[J].烟草科技,2000,2:39-41.
    60.龙永根,刘方,张巧香,凌明阁.施用不同肥料对小白菜产量和品质的影响[J].山地农业生物学报,2013,32(4):310-313.
    61.路永宪王国英姜帆李春俭.研究植物体内矿质养分循环的方法[J].植物生理学通讯,2003,39(4):359-362.
    62.栾双,范志新,曹亦夫,丁伟,候雪坤,程岩.寒冷地区烤烟氮磷钾的吸收动态[J].中国烟草学报,2001,2:17-21.
    63.罗国安,姚政,徐四新.精准养分管理的应用效果研究[J].农业网络信息,2004,S1:51-54.
    64.罗华元,王绍坤,常寿荣,程昌新,彭漫江.烤烟钾含量与土壤pH、有机质和速效钾含量的关系[J].中国烟草科学,2010,3:29-32.
    65.马成林,吴才聪,张书慧,杨印生,李洪伟,韩云霞.基于数据包络分析和人工神经网络的变量施肥决策方法研究[J].农业工程学报,2004,20:152-155.
    66.马新明,张娟娟,席磊,刘合兵,高项飞.基于叶面积指数(LAI)的小麦变量施氮模型研究[J].农业工程学报,2008,24:22-26.
    67.潘成忠,上官周平.土壤空间变异性研究评述[J].生态环境,2003,12:371-375.
    68.潘瑜春,刘巧芹,陆洲,周艳兵,李淑华.离群样点对土壤养分空间变异分析的影响研究[J].土壤学报,2010,47(4):767-771.
    69.庞新华,朱文泉,潘耀忠,贾斌.基于高分辨率遥感影像的耕地地块提取方法研究[J].测绘科学,2009,34:48-49.
    70.秦耀东,徐义评.田间试验中土壤参数的合理取样[J].北京农业大学学报,1991,17(1):45-52.
    71.全国土壤普查办公室.中国土壤普查技术.北京:中国农业出版社.1992.
    72.沈善敏.中国土壤肥力.北京:中国农业出版社.1998.
    73.盛建东,肖华,武红旗,陈冰,王军,杨新建,田建华,杨朔,钱文东,杨艳.不同取样间距农田土壤全量养分空间变异特征研究[J].土壤通报,2006,37(6):1062-1065.
    74.史宏志,邸慧慧,赵晓丹,刘国顺,马永建,王维超,段杰.豫中烤烟烟碱和总氮含量与中性香气成分含量的关系[J].作物学报,2009,35(7):1299-1305.
    75.史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998,2:34-36.
    76.宋晓宇,王纪华,刘良云,黄文江,沈涛,喻铮铮.基于Quickbird遥感影像的农田管理分区划分研究[J].中国农业科学,2007,40:1996-2006.
    77.苏德成.烟草生长发育过程中的氮素.国家烟草专卖局科技教育司.跨世纪烟草农业科技展望和持续发展战略研讨会论文集.北京:中国商业出版社.1999.
    78.孙向平,李国学,肖爱平,冷鹃,廖丽萍.施用猪粪堆肥对玉米产量及土壤理化性质的影响分析[J].中国麻业科学,2013,(5):258-264.
    79.谭宗琨.BP人工神经网络在玉米智能农业专家系统中的应用[J].农业网络信息,2005,10:9-11.
    80.唐华俊,伊范朗斯特.中国土地资源及其农业应用.北京:气象出版社.2004.
    81.唐近春.全国第二次土壤普查与土壤肥料科学的发展[J].土壤学报,1989,26:234-240.
    82.汪丽,刘雷,杨文钰,刘卫国.种植密度与施钾量对烤烟品质的影响[J].华北农学报,2007,B8:106-110.
    83.王海江,崔静,陈彦,吕新.基于模糊聚类的棉田土壤养分管理分区研究[J].棉花学报,2010,4:339-346.
    84.王海江,彭陶,吕新,陈彦.小尺度下滴灌棉田养分管理分区研究[J].中国土壤与肥料,2011,3:78-82.
    85.王海江,吕新.基于GIS技术的新疆棉花施肥专家系统[J].农业工程学报,2006,22(10):167-170.
    86.王晖.凉山烟区紫色土土壤养分和烤烟品质特点及其关系分析[博士学位论文].郑州:河南农业大学.2007.
    87.王金武,刘亚华,王金峰,何剑南.全椭圆齿轮行星系液态肥深施机构优化设计与试验[J].农业机械学报,2012,43(10):60-65,59.
    88.王林,许自成,卢秀萍,肖汉乾.烤烟烟碱含量与土壤有机质、氮素含量的关系分析[J].中国土壤与肥料,2007,6:58-60,87.
    89.王鹏,曾玲玲,王发鹏,周建朝,张维理,李志宏.黄壤上烤烟氮素积累、分配及利用的研究[J].植物营养与肥料学报,2009,3:677-682.
    90.王世济,刘炎红,崔权仁,刘小平,韩永镜,陈其峰,赵第锟皖南烟区烤烟干物质和养分的积累研究[J].烟草科技,2004,7:40-43.
    91.王世济,崔权仁,赵第锟,刘小平,武家美.烤烟干物质和氮磷钾吸收积累规律研究[J].安徽农业科学,2003,5:770-772.
    92.王小彬,王燕,代快,武雪萍,赵全胜,张丁辰,冯宗会,蔡典雄.旱地农田不同耕作系统的能量/碳平衡[J].生态学报,2011,31(16):4638-4652.
    93.王欣,许自成,肖汉乾.湖南烟区烤烟钾含量与土壤钾素的分布特点之间的关系[J].安全与环境学报,2007,5:83-87.
    94.王新中,刘国顺,张正杨,刘清华,王振海.基于GIS的烟田土壤养分管理分区划分[J].烟草科技,2011,8:68-72,83.
    95.王新中.GIS支持下豫中典型烟田土壤养分空间变异及精准管理[博士学位论文].郑州:河南农业大学.2009.
    96.王兴仁,陈新平.施肥模型在我国推荐施肥中的应用[J].植物营养与肥料学报,1998,1:67-74.
    97.王彦亭,谢剑平,李志宏.中国烟草种植区划.北京:科学出版社.2010.
    98.吴次芳.浙江省区域地质条件与土壤微量元素分布的关系及其在成土母质类型划分上的意义[J].土壤通报,1992,2:61-63.
    99.吴平,印莉萍,张立平.植物营养分子生理学.北京:科学出版社.2001.
    100.吴晓磊,王大庆,徐博,聂颖,王宏燕.漫岗丘陵区黑土村级农田土壤养分空间变异研究[J].土壤通报,2010,8:825-829.
    101.武常青,金丹丹,王晓也,崔健国,张吉立,王鹏.不同施氮量对烤烟钾素积累、分配及利用率的影响研究[J].黑龙江八一农垦大学学报,2010,6:12-14.
    102.武雪萍,钟秀明,刘增俊.饼肥在植烟土壤中的矿化速率和腐殖化系数分析[J].中国土壤与肥料,2007,(5):32-36.
    103.夏文建,周卫,梁国庆,王秀斌,孙静文,李双来,刘光荣.稻麦轮作农田氮素循环的DNDC模型分析[J].植物营养与肥料学报.2012,18(1):77-88.
    104.谢宝妮,常庆瑞,秦占飞.县域土壤养分离群样点检测及其合理采样数研究[J].干旱地区农业研究,2012,30(2):56-61.
    105.许卫红,高克异,王珂,周斌,J.S.Bailey.稻田土壤养分空间变异与合理取样数研究[J].植物营养与肥料学报,2006,12(1):37-43.
    106.许自成,郭燕,邵惠芳,毕庆文,汪健,王海明,黎根.恩施烟区土壤氮素和烤烟烟碱含量的分布特点及关系分析[J].中国生态农业学报,2009,5:880-884.
    107.许自成,王林,肖汉乾.湖南烟区烤烟磷含量与土壤磷素的分布特点及关系分析[J].浙江大学学报:农业与生命科学版,2007,3:290-297.
    108.薛绪掌,陈立平,孙治贵,赵春江.基于土壤肥力与目标产量的冬小麦变量施氮及其效果[J].农业工程学报,2004,20(3):59-62.
    109.颜丽,关连珠,栾双,焦庆明.土壤供钾状况及土壤湿度对我国北方烤烟烟叶含钾量的影响研究[J].土壤通报,2001,2:84-87,98.
    110.杨龙祥,杨明,李忠环,李跃平,徐兴阳.不同品种烤烟大田期几种营养元素积累与分配研究初报[J].云南农业大学学报,2004,4:428-432,439.
    111.杨玉玲,田长彦,盛建东,文启凯.灌淤土壤有机质、全量氮磷钾空间变异性初探[J].干旱地区农业研究,2002,20:26-30.
    112.杨卓亚,毛达如.应用正交多项式趋势系数建立综合施肥模型的理论和技术[J].土壤通报,1993,4:180-183.
    113.杨卓亚,毛达如.综合推荐施肥系统的构建[J].土壤,1994,26(5)264-268.
    114.尹兰香.同安区耕地土壤化学性质空间变异特征及插值模型效果的研究[硕士学位论文].福州:福建农林大学.2006.
    115.于合龙,陈桂芬,赵兰坡,赵兰坡,高强.吉林省黑土区玉米精准施肥技术研究与应用[J].吉林农业大学学报,2008,30(5):753-759,768.
    116.于英杰.基于传感器定位的变量施肥控制系统研制[博士学位论文].吉林:吉林大学.2010.
    117.于永强.基于GIS和地统计学的烟田土壤养分空间变异特征研究[J].河南科学,2010,6:684-688.
    118.詹林庆,胡蕾,武伟,刘洪斌.丘陵地区不同尺度下土壤养分空间变异特征的研究[J].西南大学学报:自然科学版,2008,9:129-135.
    119.张春华,王宗明,宋开山,张柏,刘殿伟,任春颖,黄健,张慧琳.吉林省伊通县农田土壤养分空间变异特征[J].农业系统科学与综合研究,2010,2:203-208.
    120.张法升,刘作新,张颖,苗永刚,曲威,亢振军.农田土壤有机质空间变异的尺度效应[J].中国科学院研究生院学报,2009,26:350-356.
    121.张福锁,陈新平,马文奇.“现代农业”时代谈化肥[J].磷肥与复肥,2003,1:1-3.
    122.张福锁,龚元石,李晓林.土壤与植物营养研究新动态.北京:中国农业出版社.1995.
    123.张仁椒,陈雪芸,李春英,卢晓华,熊德中.土壤有效磷水平对烤烟生长及磷素营养的影响[J].福建农林大学学报:自然科学版,2008,2:117-121.
    124.张仁椒,洪晓薇,李春英,熊德中.土壤有效氮含量对烤烟代谢及氮素营养的影响[J].福建农林大学学报:自然科学版,2007,4:342-346.
    125.张睿,王秀,马伟,周建军,姜凯,范鹏飞,冯青春.变量施肥抛撒机撒肥机构研究[J].农机化研究,2013,35(11):153-155,163.
    126.张睿.智能型变量施肥关键技术研究[博士后论文].北京:中国农业科学院.2012.
    127.张书慧,齐江涛,廖宗建,徐岩.基于CPLD的变量施肥控制系统开发与应用[J].农业工程学报,2010,8:200-204.
    128.张铁婵.耕地土壤养分空间变异与地力评价研究[博士学位论文].杨凌:西北农林科技大学.2010.
    129.张维理,梁鸣早.农业信息技术在我国的发展前景和机遇[J].土壤肥料.1998,3:3-6.
    130.张维理.中国土壤肥料信息系统及其在养分资源管理上的应用[J].农业科技通讯,2002,11:4.
    131.赵春江.精准农业研究与实践.北京:科学出版社.2009.
    132.赵莉荣.不同成土母质条件下土壤养分空间变异研究[硕士学位论文].重庆:西南大学.2010.
    133.赵良菊,肖洪浪,郭天文,包兴国,杨文玉.甘肃省灌漠土土壤养分空间变异特征[J].干旱地区农业研究,2005,23(1):70-74,102.
    134.赵汝东.北京地区耕地土壤养分空间变异及养分肥力综合评价研究[硕士学位论文].保定:河北农业大学.2008.
    135.赵伟,谢德体,刘洪斌,王晓东,丁声源.精准农业中土壤养分分析的适宜取样数量的确定[J].中国生态农业学报,2008,16(2):318-322.
    136.郑聪,许自成,苏永士,陈彦春,汪孝国,秦璐.三门峡烟区烤烟总氮与土壤氮素含量的分布特点及关系分析[J].江西农业学报,2009,8:64-67.
    137.郑宪滨,朱尊权.不同供钾水平下烤烟体内钾的循环,累积和分配[J].植物营养与肥料学报,2000,6(2):166-172.
    138.中国农业科学院烟草研究所.中国烟草栽培学.上海:上海科学技术出版社.2005.
    139.中华人民共和国国家统计局.中国统计年鉴1982.北京:中国统计出版社.1983.
    140.中华人民共和国国家统计局.中国统计年鉴2012.北京:中国统计出版社.2013.
    141.钟晓兰,张德远,李江涛,袁兰,程小强,陈水根.施钾对烤烟钾素吸收利用效率及其产量和品质的影响[J].土壤,2008,40(2):216-221.
    142.周鸣铮.测土施肥的科学基础[J].土壤通报,1984,4:156-161.
    143.周鸣铮.中国的测土施肥[J].土壤通报,1987,18(1):7-13.
    144.周鸣铮.土壤肥力测定与测土施肥.北京:农业出版社.1988
    145.庄卫东.东北黑土漫岗区大豆变量施肥播种技术研究[博士学位论文].大庆:黑龙江八一农垦大学.2011.
    146.朱兆良,张绍林,徐银华.平均适宜施氮量的含义[J].土壤,1986,6:316-317.
    147.朱兆良.关于推荐施肥的方法论——“区域宏观控制与田块微调相结合”的理念.中国植物营养与肥料学会2010年学术年会论文集.2010,p.571-574.
    148. Anderson R., Nelson, L.A. A family of models involving intersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients[J]. Biometrics,1975,31:303-318.
    149. Anon. Preface:Use of precision agriculture by the Australian grains industry[J]. Crop and Pasture Science,2009,60:795-798.
    150. Bekele, A., Hudnall, W.H. Spatial variability of soil chemical properties of a prairie-forest transition in Louisiana[J]. Plant and Soil.2006,280:7-21.
    151. Bhatti, A., Mulla, D., Frazier, B. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images[J]. Remote Sensing of Environment.1991, 37:181-191.
    152. Bongiovanni R., J. Lowenberg-Deboer. Precision Agriculture and Sustainability[J]. Precision Agriculture.2004,5(4):359-387.
    153. Bouma, J.,P.A. Finke, Origin and nature of soil resource variability. In:Soil Specific Crop Management. (Eds.) Robert, P.C., R.H. Rust and W.E. Larson. ASA, CSSA, SSSA, Madison, Winsconsin.1993,pp:3-14.
    154. Brewer,R. Fabric and Mineral Analysis of Soils. New York:John Wiley.1964.
    155. Brouwer J., Bouma, J., Stein, A. Methods for comparing spatial variability patterns of millet yield and soil data[J]. Soil Science Society of America Journal.1997,61:861-870.
    156. Bullock D.G, Kravchenko, A.N. Correlation of corn and soybean grain yield with topography and soil properties[J]. Agronomy Journal.2000,92:75-83.
    157. Cahn, M., Brouer, B., Hummel, J. Spatial analysis of soil fertility for site-specific crop management[J]. Soil Science Society of America Journal.1994,58:1240-1248.
    158. Cambardella C. A., Moorman T.B., Novak J.M. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal.1994,58:1501-1511.
    159. Campbell J.B. Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units[J]. Soil Science Society of America Journal.1978,42:460-464.
    160. Cao Qiang, Zhenling Cui, Xinping Chen, Raj Khosla, Thanh H. Dao, Yuxin Miao. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming[J]. Precision Agriculture.2012,13(1):45-61.
    161. Cattle S.R., A.J. Koppi, A.B. McBratney. The effect of cultivation on the properties of a Rhodoxeralf from the wheat/sheep belt of New South Wales[J]. Geoderma.1994,63(3):215-225.
    162. Chan C. W., J. K. Schueller, W. M. Miller, J. D. Whitney, J. A. Cornell. Error Sources Affecting Variable Rate Application of Nitrogen Fertilizer[J]. Precision Agriculture.2004,5(6):601-616.
    163. Chan C. W., J. K. Schueller, W. M. Miller, J. D. Whitney, T. A. Wheaton, J. A. Cornell. Error Sources on Yield-Based Fertilizer Variable Rate Application Maps[J]. Precision Agriculture. 2002,3(1):81-94.
    164. Chen Liming, Xu Liming. Simulation and Design of Mixing Mechanism in Fertilizer Automated Proportioning Equipment Based on Pro/E and CF. IFIP Advances in Information and Communication Technology[M]. Springer Netherlands,2011,p.505-516.
    165. Christopher N. Boyer, B. Wade Brorsen, John B. Solie, William R. Raun. Profitability of variable rate nitrogen application in wheat production[J]. Precision Agriculture.2011,12(4):473-487.
    166. Cox M.S., Gerard, P.D. Soil management zone determination by yield stability analysis and classification[J]. Agronomy Journal.2007,99:1357-1365.
    167. Dane J., Reed, R., Hopmans, J. Estimating soil parameters and sample size by bootstrapping[J]. Soil Science Society of America Journal.1986,50:283-287.
    168. Darry Warncke,Jon Dah,Lee Jacobs and Carrie Laboski. Fertilizer recommendations for field crops in Michigan.5,Extension bulletin E2904.2004.
    169. David C.Jochinke,Bernard J.Noonon,Nicholas G.Wachsmann d,Robert M.Norton. The adoption of precision agriculture in an Australian broadacre cropping system—Challenges and opportunities[J].Field Crops Research.2007,104:68-76.
    170. Dhillon N.S., a, J.S. Samrab, U.S. Sadanaa, D.R. Nielsenc. Spatial variability of soil test values in a typic ustochrept[J]. Soil Technology.1994,7(2):163-171.
    171. Di, H.J., Trangmar, B., Kemp, R. Use of geostatistics in designing sampling strategies for soil survey[J]. Soil Science Society of America Journal.1989,53:1163-1167.
    172. Dobermann A., C.Witt, D.Dawe, S. Abdulrachman, H.Gines, R. Nagarajan, S.Satawathananont, T.Son, P.Tan, GWang. Site-specific nutrient management for intensive rice cropping systems in Asia[J]. Field Crops Research.2002,74:37-66.
    173. Duivenbooden N., Wit, C.T., Keulen, H. Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling[J]. Nutrient Cycling in Agroecosystems.1995,44:37-49.
    174. Dunn J. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation. Systems, Man and Cybernetics, IEEE Transactions on,1974,p.310-313.
    175. Edward Nash, Peter Korduan, Ralf Bill. Applications of open geospatial web services in precision agriculture:a review[J]. Precision Agriculture.2009,10(6):546-560.
    176. Ehlert D., J. Schmerler, U. Voelker. Variable Rate Nitrogen Fertilisation of Winter Wheat Based on a Crop Density Sensor[J]. Precision Agriculture.2004,5(3):263-273.
    177. Ettema C.H., Wardle, D.A. Spatial soil ecology. Trends in Ecology & Evolution.2002,17:177-183.
    178. Fleming K. L., D. G. Westfall, D. W. Wiens, M. C. Brodahl. Evaluating Farmer Defined Management Zone Maps for Variable Rate Fertilizer Application[J]. Precision Agriculture. 2000,2(2):201-215.
    179. Franzen D W,Cihacek L J,Hofman V L. Variability of soil nitrate and phosphate under different Landscapes.Proceedings of the 3th in international conference on precision agriculture.Minneapolits,Minnesota,ASA,CSSA,SSSA.1996,pp:521-529.
    180. Franzen D., Kitchen, N., Potash, Institute, P., University, S.D.S., Board, U.S., Research, F.f.A. Developing management zones to target nitrogen applications. Potash & Phosphate Institute.1999.
    181. Gamma design software. GS+ user's guide version 9. Michigan USA.4.67-88.2008.
    182. Ganesh C Bora, John F Nowatzk and David C Roberts. Energy savings by adopting precision agriculture in rural USA[J]. Energy, Sustainability and Society.2012,2:22-26.
    183. Gorsevski, P.V., Gessler, P.E., Jankowski, P. Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard[J]. Journal of geographical systems. 2003,5:223-251.
    184. Hans Grinsted Jensen, Lars-Bo Jacobsen, Soren Marcus Pedersen, Elena Tavella. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark[J]. Precision Agriculture.2012,13(6):661-677.
    185. Harmsen K. A modified Mitscherlich equation for rainfed crop production in semi-arid areas:1. Theory[J]. Netherlands Journal ofAgricultural Science,2000,48:237-250.
    186. Hermann Auernhammer. Precision farming — the environmental Challenge[J]. Computers and Electronics in Agriculture.2001,30:31-43.
    187. Hermann J. Heege. Site-Specific Fertilizing. Precision in Crop Farming. Springer Netherlands, 2013,193-271.
    188. Retrieved July 5,2013, from http://en.wikipedia.org/wiki/Precision_agriculture.
    189. Retrieved Feb 9,2013, from http://www.nercita.org.cn/index/products/list.aspx?typeid=1
    190. Jacopo Primicerio, Salvatore Filippo Di Gennaro, Edoardo Fiorillo, Lorenzo Genesio, Emanuele Lugato, Alessandro Matese, Francesco Primo Vaccari. A flexible unmanned aerial vehicle for precision agriculture[J]. Precision Agriculture.2012,13(4):517-523.
    191. Jafari M., A. Hemmat, M. Sadeghi. Development and performance assessment of a DC electric variable-rate controller for use on grain drills[J].Computers and Electronics in Agriculture. 2010,73(1):56-65.
    192. James A. Larson, Roland K. Roberts, Burton C. English, Sherry L. Larkin, Michele C. Marra, Steven W. Martin, Kenneth W. Paxton, Jeanne M. Reeves. Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production[J]. Precision Agriculture. 2008,9(4):195-208.
    193. Jeff Jacobsen,Grant Jackson,Clain Jones. Fertilizer gurdelines for montana crops.3,EB161.2005.
    194. Jim Gerwing,Ron Geldermen. South Dakota Fertilizer recommendation guede.9,EC750.2005.
    195. John P. Fulton, Scott A. Shearer, Steve F. Higgins, Timothy P. McDonald. A method to generate and use as-applied surfaces to evaluate variable-rate fertilizer application[J]. Precision Agriculture. 2013,14(2):184-200.
    196. Jurgen Kiihn, Alexander Brenning, Marc Wehrhan, Sylvia Koszinski, Michael Sommer. Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture[J]. Precision Agriculture.2009,10(6):490-507
    197. Karaivazogloua N.A., N.C. Tsotsolisb, C.D. Tsadilas. Influence of liming and form of nitrogen fertilizer on nutrient uptake, growth, yield, and quality of Virginia (flue-cured) tobacco[J]. Field Crops Research.2007,100(1):52-60
    198. Khosla R., D. G. Westfall, R. M. Reich, J. S. Mahal, W. J. Gangloff. Spatial Variation and Site-Specific Management Zones. Geostatistical Applications for Precision Agriculture, Springer Netherlands,2010, p.195-219.
    199. Kima Y.J., H.J. Kimc, K.H. Ryud, J.Y. Rhee. Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production[J]. Biosystems Engineering.2008,100(4): 498-510.
    200. Koch, B., Khosla, R., Frasier, W., Westfall, D., Inman, D. Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones[J]. Agronomy Journal.2004, 96:1572-1580.
    201. Kutter T., S. Tiemann, R. Siebert, S. Fountas. The role of communication and co-operation in the adoption of precision farming[J]. Precision Agriculture.2011,12(1):2-17.
    202. Li Chunan, Guifen Chen, Guangwei Zeng, Jiao Ye. The Study of Soil Fertility Spatial Variation Feature Based on GIS and Data Mining. IFIP Advances in Information and Communication Technology.2013, Springer Netherlands,211-220.
    203. Li Maogang, Yan Shi, Xingxing Wang, Haibo Yuan. Target Recognition for the Automatically Targeting Variable Rate Sprayer. IFIP Advances in Information and Communication Technology. 2011,346:20-28.
    204. Li Shanshan, Shaoliang Peng, Weifeng Chen, Xiaopei Lu. Practical land monitoring in precision agriculture with sensor networks[J]. Computer Communications,2013,36(4):459-467.
    205. Li Yu, R.L. Kushwaha. A digital control system for variable rate nitrogen fertilization[J].Computers and Electronics in Agriculture.1994,10(3):245-258.
    206. Liu D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., Li, F., Duan, H. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China[J]. Agriculture, Ecosystems & Environment.2006,113:73-81.
    207. Maleki M.R., L. Van Holm, H. Ramon, R. Merckx, J. De Baerdemaeker, A.M. Mouazen. Phosphorus Sensing for Fresh Soils using Visible and Near Infrared Spectroscopy[J]. Biosystems Engineering.2006,95(3):425-436.
    208. Malekia M.R., A.M. Mouazena, B. De Ketelaerea, H. Ramona, J. De Baerdemaeker. On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor[J].Biosystems Engineering.2008,99(1):35-46.
    209. Malekia M.R., H. Ramona, J. De Baerdemaekera, A.M. Mouazen. A study on the time response of a soil sensor-based variable rate granular fertiliser applicator[J]. Biosystems Engineering. 2008,100(2):160-166.
    210. Marc Van Meirvenne. Is the Soil Variability within the Small Fields of Flanders Structured Enough to Allow Precision Agriculture[J]? Precision Agriculture,2003,4(2):193-201.
    211. Mariangela Diacono, Pietro Rubino, Francesco Montemurro. Precision nitrogen management of wheat. A review[J]. Agronomy for Sustainable Development.2013,33(1):219-241.
    212. Matheron, G Les variables regionalisees et leur estimation. Paris:Masson.1965.
    213. Mazloumzadeh S. M., M. Shamsi, H. Nezamabadi-pour. Fuzzy logic to classify date palm trees based on some physical properties related to precision agriculture[J]. Precision Agriculture. 2010,11(3):258-273.
    214. Mazzetto F., A. Calcante, A. Mena, A. Vercesi. Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture[J]. Precision Agriculture.2010,11(6): 636-649.
    215. McCann, B., Pennock, D., Van Kessel, C., Walley, F.,1996. The development of management units for site-specific farming. P.295-302. In P.C. Roberts, R.H. Rust, and W. E. Larson (ed.) Precision Agriculture. Proc. Int. Conf.3rd. St. Paul, MN.23-26 June 1996. ASA, CSSA, and SSSA, Madison, WI.
    216. McCants C.B., W.G Woltz. Growth and Mineral Nutrition of Tobacco Original Research Article[J]. Advances in Agronomy.1967,19:211-265.
    217. McGrath, D., Zhang, C. Spatial distribution of soil organic carbon concentrations in grassland of Ireland[J]. Applied Geochemistry.2003,18:1629-1639.
    218. Meirvenne Van,M.,and GHofman. Spatial variability of soil nitrate nitrogen after potatoes and its change during winter[J].Plant and Soil.1989,120:103-110.
    219. Mikko Hautala, Mikko Hakojarvi. An analytical C3-crop growth model for precision farming[J]. Precision Agriculture.2011,12(2):266-279.
    220. Miller, M.P., Singer, M.J., Nielsen, D.R. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Science Society of America Journal.1988,52:1133-1141.
    221. Ministry of agriculture,fisheries and food. Fertiliser recommendations for agricultural and horticultural crops. RB209,2000.
    222. Mohanty, B., Kanwar, R. Spatial variability of residual nitrate-nitrogen under two tillage systems in central Iowa:A composite three-dimensional resistant and exploratory approach[J]. Water resources research.1994,30:237-252.
    223. Monte O'Neal, Jane R. Frankenberger, Daniel R. Ess, James M. Lowenberg-Deboer. Profitability of On-Farm Precipitation Data for Nitrogen Management Based on Crop Simulation[J]. Precision Agriculture.2004,5(2):153-178.
    224. Mortensen, D.A., Johnson, C.K., Doran, J.W., Shanahan, J.F., Wienhold, B.J. Site-specific management zones based on soil electrical conductivity in a semiarid cropping system[J]. Agronomy Journal.2003,95:303-315.
    225. Mueller, M., Segl, K., Kaufmann, H. Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery[J]. Pattern Recognition. 2004,37:1619-1628.
    226. Ntsikane Maine, James Lowenberg-DeBoer, Wilhelem Thomas Nell, Zerihun Gudeta Alemu. Impact of variable-rate application of nitrogen on yield and profit:a case study from South Afric[J]. Precision Agriculture.2010,11(5):448-463.
    227. Ovalles, F., Collins, M. Soil-landscape relationships and soil variability in north central Florida[J]. Soil Science Society of America Journal.1986,50:401-408.
    228. Pasuquina J.M.,M.F.Pampolinoa, C.Witta, A. Dobermannb, T. Oberthura, M.J. Fisherc, K. Inubushid. Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management[J].Field Crops Research.2014,156(1):219-230.
    229. Pau Arago Galindo, Carlos Granell, Paulo Guilherme Molin, Joaquin Huerta Guijarro. Participative site-specific agriculture analysis for smallholders[J]. Precision Agriculture.2012,13(5):594-610.
    230. Pierre Roudier, Bruno Tisseyre, Herve Poilve, Jean-Michel Roger. A technical opportunity index adapted to zone-specific management[J]. Precision Agriculture.2011,12(1):130-145.
    231. Riitters, K.H., O'neill, R., Hunsaker, C., Wickham, J.D., Yankee, D., Timmins, S., Jones, K., Jackson, B. A factor analysis of landscape pattern and structure metrics[J]. Landscape ecology. 1995,10:23-39.
    232. Robert P. C. Precision agriculture:a challenge for crop nutrition management[J]. Plant and Soil. 2002,247(1):143-149.
    233. Roberts D. C., B. W. Brorsen, J. B. Solie, W. R. Raun. Is data needed from every field to determine in-season precision nitrogen recommendations in winter wheat[J]? Precision Agriculture.2013, 14(3):245-269.
    234. Robertson M. J., R. S. Llewellyn, R. Mandel, R. Lawes, R. G V. Bramley, L. Swift, N. Metz, C.O'Callaghan. Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects[J]. Precision Agriculture.2012, (13):181-199.
    235. Rossi, R.E., Mulla, D.J., Journel, A.G., Franz, E.H. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological monographs.1992,62:277-314.
    236. Ruspini, E.H. Anew approach to clustering[J]. Information and control.1969,15:22-32.
    237. Santos D,Murphy SLS,Taubner H,Smuclcer AJM. Uniform separation of concentric surface layers from soil aggregates[J]. Soil Sci.Soc.Am.J.1997,61:720-724.
    238. Schepers, J.S., Luchiari, A., Johnson, S.H., Liebig, M.A., Shanahan, J.F., Schepers, A.R. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years[J]. Agronomy Journal.2004,96:195-203.
    239. Shaver T. M., R. Khosla, D. G. Westfall. Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize[J]. Precision Agriculture.2011,12(6):892-904.
    240. Singh R., Chaudhary, F. Evaluation of fertilizer response by inverse quadratic model[J]. Indian Journal Of Agricultural Sciences.1986,12:873-877.
    241. Siza D. Tumbo, Masoud Salyani, William M. Miller, Roy Sweeb, Sherry Buchanon. Evaluation of a variable rate controller for aldicarb application around buffer zones in citrus groves[J]. Computers and Electronics in Agriculture.2007,56(2):147-160.
    242. Solie,J., Raun,W., Stone, M. Submeter spatial variability of selected soil and bermudagrass production variables[J]. Soil Science Society of America Journal.1999,63:1724-1733.
    243. Stafford John V. Implementing Precision Agriculture in the 21st Century[J].J.agric Engng Res. 2000,76:267-275.
    244. Stanford, G, Hunter, A.S. Nitrogen Requirements of Winter Wheat (Triticum aestivum, L.) Varieties 'Blueboy' and 'Redcoat' [J]. Agronomy Journal.1973,65:442-447.
    245. Stenger, R., Priesack, E., Beese, F. Spatial variation of nitrate-N and related soil properties at the plot-scale[J].2002, Geoderma.105:259-275.
    246. Sudduth, K., Drummond, S., Birrell, S., Kitchen, N. Analysis of spatial factors influencing crop yield.Precision agricluture, Madison, USA:American society of agronomy,1996,p.129-139.
    247. Sun Li-na, Yao-hua ZHANG, Tie-heng SUN, Zong-qiang GONG, Xin LIN, Hai-bo LI. Temporal-spatial distribution and variability of cadmium contamination in soils in Shenyang Zhangshi irrigation area, China[J]. Journal of Environmental Sciences.2006,18(6):1241-1246.
    248. Sun, B., Zhou, S., Zhao, Q. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China[J]. Geoderma.2003,115:85-99.
    249. Sylvain Villettea, Emmanuel Pironb, Denis Micletb, Richard Martina, Gawain Jonesa, Jean-Noel Paolia, Christelle Geea. How mass flow and rotational speed affect fertiliser centrifugal spreading: Potential interpretation in terms of the amount of fertiliser per vane[J]. Biosystems Engineering. 2012,111(1):133-138
    250. Tening, A., Omueti, J., Tarawali, G., Mohamed Saleem, M. Potassium status of some selected soils under different land use systems in the subhumid zone of Nigeria[J].Communications in Soil Science & Plant Analysis.1995,26:657-672.
    251. Tey Yeong Sheng, Mark Brindal. Factors influencing the adoption of precision agricultural technologies:a review for policy implications[J].Precision Agriculture.2012,13(6):713-730
    252. Thompson A. N., J. N. Shaw, P. L. Mask, J. T. Touchton, D. Rickman. Soil Sampling Techniques for Alabama, USA Grain Fields[J]. Precision Agriculture.2004,5(4):345-358.
    253. Tola E., T. Kataoka, M. Burce, H. Okamoto, S. Hata. Granular fertiliser application rate control system with integrated output volume measurement[J].Biosystems Engineering.2008,101(4): 411-416.
    254. Torbett J. Colby, Roland K. Roberts, James A. Larson, Burton C. English. Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production[J]. Precision Agriculture.2007,8(3):127-137.
    255. Trangmar, B.B., Yost, R.S., Uehara, G Application of geostatistics to spatial studies of soil properties[J]. Advances in Agronomy.1986,38:45-94.
    256. Wallender, W.W. Sample volume statistical relations for water content, infiltration and yield[J]. Trans.Am.Soc.Agrie.Eng.1987,30:1043-1051.
    257. Warrick,A.W.,Nielsen,D.R. Spatial variability of soil physical properties in the field.In:Hillel,D.(Ed.),Applications of Soil Physics.Academic Press,NewYork,1980, pp.319-344.
    258. Webster, R. Quantitative spatial analysis of soil in the field[J]. Advances in soil science.1985, 3:1-70.
    259. Webster, R., Burgess, T. Spatial variation in soil and the role of kriging[J]. Agricultural Water Management.1983,6:111-122.
    260. Webster, R., Nortcliff, S. Improved estimation of micro nutrients in hectare plots of the Sonning series[J]. Journal of Soil Science.1984,35:667-672.
    261. White, J., Norvell, W., Welch, R. Soil zinc map of the USA using geostatistics and geographic information systems[J]. Soil Science Society of America Journal.1997,61:185-194.
    262. White,R.E.,R.A.Haigh,and J.H.Macduff. Frequency distributions and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grasslend[J].Fert.Res.1987,11:193-208.
    263. Wilcke.W,Kaupenjohann.M.Difference in concentrations and fractions of aluminium and heavy metals between aggregate interior and exterior[J]. Soil Sci,1997.162:323-332.
    264. Wild, A. The potassium status of soils in the savanna zone of Nigeria[J]. Experimental Agriculture. 1971,7:257-270.
    265. Wilding, L., Drees, L. Spatial variability and pedology[J]. Developments in Soil Science.1983, 11:83-116.
    266. Yana,J., Lee, C.K., Umeda,M., Kosaki,T. Spatial variability of soil chemical properties in a paddy field[J]. Soil Science and Plant Nutrition.2000,46:473-482.
    267. Yost, R., Fox, R., Uehara, G Geostatistical analysis of soil chemical properties of large land areas. I. Semi-variograms[J]. Soil Science Society of America Journal.1982,46:1028-1032.
    268. Yuan Jin, Cheng-Liang Liu, Yan-Ming Li, Qing-bing Zeng, Xuan-F Zha. Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator[J]. Computers and Electronics in Agriculture.2010,70(1):33-41.
    269. Zhang Chunhua, John M. Kovacs. The application of small unmanned aerial systems for precision agriculture:a review[J]. Precision Agriculture.2012,13(6):693-712.
    270. Zhang Naiqian,Maohua Wang,Ning Wang. Precision agriculture--a worldwide overview[J].Computers and Electronics in Agriculture.2002,36:113-132.
    271. Zhao, Y, Peth, S., Krummelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, C., Peng, X. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland[J]. Ecological Modelling.2007,205:241-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700