用户名: 密码: 验证码:
基于长期耕作和秸秆还田的农田土壤碳库演变、固碳减排潜力和碳足迹分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于山东农业大学农学试验站的保护性耕作和秸秆还田长期定位试验地(始于2002年),于2007~2012年系统的探讨了小麦-玉米一年两熟种植条件下的土壤有机碳库演变(2002~2012)及其固碳机理、温室气体排放量估算(2007~2012)及排放机理,并利用转变耕作方式和实行轮耕进一步探讨长期保护性耕作对土壤有机碳库演变、温室气体排放变化和产量变化的影响,综合评价长期保护性耕作和秸秆还田条件下的土壤固碳潜力、温室气体减排潜力以及作物生产力水平。以期为该地区选择适宜、合理的耕作方式和轮耕组合来提高土壤碳库水平、增强土壤“碳汇”能力、选择合理的农业管理措施减缓农业源温室气体排放和提高作物生产力水平,对该地区农业经济效益、社会效益和生态效益的协同发展具有重要意义。主要研究结果如下:
     1.长期耕作和秸秆还田的土壤有机碳库演变及其固碳机理
     试验期间,经过长期的耕作和秸秆还田,4种保护性耕作措施免耕(NTP)、深松(STP)、耙耕(HTP)和旋耕(RTP)处理和对照常规耕作(CTP)处理的土壤有机碳(SOC)水平显著高于其长期无秸秆还田的处理(NTA、STA、HTA、RTA和CTA),且保护性耕作各处理较对照常规耕作处理在0~30cm土层呈现较为明显的SOC分层和表层聚集特点,常规耕作处理土壤中的SOC水平在三个土层中较为平均。各处理土壤总有机碳(TOC)中,活性有机碳(LOC)约占TOC的22.38~39.14%,稳态碳约占60.86~77.62%,RTP处理土壤TOC中所含LOC比例最高(39.14%),STP处理最低(22.38%)。经过10年连续的耕作和秸秆输入,各耕作措施的秸秆还田处理的土壤SOC库平均比无秸秆还田处理高约4.6t ha-1(2011年),原因是各耕作措施的秸秆还田处理SOC的周年累积速率(-0.27~1.34t ha-1yr-1)显著的高于无秸秆还田处理(-0.41~0.75t ha-1yr-1),且与持续的秸秆输入显著相关(R2=0.78, P<0.01)。免耕配合秸秆还田处理(NTP)能够显著的增加土壤有机碳库水平,在2002~2011年,有约13.37t ha-1的碳(C)被固定。其次为深松处理(STP),而旋耕处理在有无秸秆还田的条件下均表现为土壤的C损失,土壤中的C约以每年0.27t ha-1(RTP)和0.41t ha-1(RTA)的速率被消耗,近10年约损失掉4.08和2.74t ha-1的C,而秸秆还田在一定程度上能减缓这种损失速率。
     通过固碳机理可以看出,造成各处理SOC库差异的原因为各处理大团聚体数量、团聚体稳定性、团聚体关联的碳含量以及稳态碳差异,NTP和STP处理之所以能够维持较高的SOC库水平,是因为其大团聚体数量(79.19%和81.67%)、团聚体稳定性(1.89mm和1.82mm)和团聚体关联的碳库(9.6g kg-1和7.36g kg-1)以及总有机碳中稳态碳比例(71.6%和77.6%)显著高于其它处理,这导致两个处理的土壤SOC库中来自团聚体的稳定的SOC约占75.9%和65.4%,显著的高于其它处理。由回归分析得出,大团聚体关联的C库是决定土壤有机碳库水平的关键(R=0.71, P<0.05)。
     2.不同耕作措施条件下温室气体排放量估算及排放差异机理
     各耕作措施条件下的土壤表现为CH4的净吸收汇和N2O的净排放源,通过与CH4和N2O的排放相关微生物菌群的回归分析可知,CH4的吸收与土壤中CH4氧化菌(MOB,R2=0.64, P<0.01)和产CH4菌(MPB, R2=0.66, P<0.01)的数量极显著相关,且CH4氧化菌(MOB)相对于产CH4菌(MPB)为优势菌群,所以各处理表现为CH4的净吸收汇。而N2O的排放是由硝化细菌(R2=0.62, P<0.01)和反硝化细菌(R2=0.64, P<0.01)共同主导的结果。
     试验期间(2007.10~2012.10),各年份之间的CH4吸收通量和N2O排放通量波动性较大,不同耕作措施处理之间的CH4和N2O排放通量差异显著。试验期间CH4的总吸收通量以RT处理最高,达到10.05t ha-1,显著的高于其它处理,NT处理最低,只有6.29t ha-1,而CH4的温室效应表现为NT>HT>CT>ST>RT。造成排放差异的主要原因是因为与CH4吸收相关的CH4氧化菌(MOB)数量RT>CT>ST>NT,且排放大小主要受土壤温度、水分、pH值和NH4+-N含量的主导。各处理N2O的总排放通量为NT>CT>HT>ST>RT,温室效应表现为NT>CT>HT>ST>RT。造成各处理N2O排放差异的主要原因为硝化细菌数量的显著差异(NT>CT>RT>ST),且排放大小主要与土壤温度、水分、pH值和NO3--N有关。
     3.小麦-玉米一年两熟农田不同耕作措施的碳足迹分析
     在小麦-玉米一年两熟制中的碳足迹主要由化肥、农药、机械、灌溉等组成。在小麦季,各耕作处理之间的碳足迹差异显著,最高的是深松处理(ST),为812.8kg Ce ha-1yr-1,其次是常规耕作(CT),碳足迹为803.8kg Ce ha-1yr-1,免耕措施碳足迹最低,只有787.2kg Ce ha-1yr-1。碳足迹差异主要取决于由于农业机械进行耕地、收获和秸秆还田造成的碳足迹。在小麦季各处理碳足迹的组成中,化肥投入造成的碳足迹比例最大,占到75.2~77.6%,而由于农业机械所消耗柴油而造成的碳足迹则只占约8.1~8.3%。
     玉米季碳足迹中,由于玉米季不进行土壤耕作,且化肥、农药投入和灌溉量相同,所以各处理总的碳足迹都为621.2kg Ce ha-1yr-1。在其组成中,化肥投入造成的碳足迹比例最大,达到73.5%,其次是由于农业机械所消耗柴油而造成的碳足迹,占到13.8%。
     在小麦-玉米一年两熟体系下,不同耕作措施的粮食碳成本以免耕处理(NT)最高,为0.169kg Ce kg-1,深松处理(ST)最低,为0.144kg Ce kg-1。
     4.长期保护性耕作方式转变为轮耕后土壤温室气体排放、有机碳库和产量的变化
     长期旋耕(RT)、耙耕(HT)和免耕(NT)后进行深松(ST),使旋耕/深松(RT/ST)、耙耕/深松(HT/ST)和免耕/深松(NT/ST)这三种轮耕方式的土壤CH4吸收通量较原耕作方式增加了23.6、14.7和26.1%,但增加土壤“碳汇”能力的同时,土壤N2O的排放也分别较原耕作方式增加了10.2、12.9和78.3%。但轮耕后,NT/ST、RT/ST和HT/ST处理的CH4和N2O的总排放通量只增加了约1.08、0.06和0.17kg ha1,总温室效应增加了约0.23、0.02和0.05kg CO2ha1。
     通过与龙口不同耕作措施长期定位试验点的对比发现,长期单一的保护性耕作和秸秆还田后,免耕(NT)处理的30cm土层SOC库显著高于其它处理,泰安和龙口的不同耕作措施长期试验点在试验期间(10年和6年)土壤有机碳库分别增长了13.37和9.51t ha-1,而两试验点的旋耕处理(RT)都表现为C的净损失,试验期间每年每公顷约损失0.27和0.33t的C。但在泰安定位试验点实行轮耕后,HT/ST、RT/ST处理的0~30cm的土壤有机碳库累积量较原处理增加,其中RT/ST处理从原处理C的净损失变为每年每公顷约固定3.66t的C,但NT/ST处理土壤C的周年累积速率降低24.4%。
     泰安和龙口定位试验点经过实行连续10年和6年的单一的耕作措施后,并没有表现出明显的增产效果,作物周年生产力水平反而呈逐年下降趋势,但在泰安定位试验点实行轮耕措施后, HT/ST、RT/ST和NT/ST处理的小麦产量轮耕后分别较HT、RT和NT处理平均增长了47.9、37.7和64.9%,玉米产量平均增长9.4、15.5和19.4%,作物周年生产力的增长率逐年增加。
Long-term tillage and crop residue inputs are important factors that impact soil organiccarbon (SOC) pool, soil aggregation level and greenhouse gas (GHG) emissions. Anappropriate tillage method is of significant to increase regional SOC pool level and mitigateGHG emissions and to develop the conservational and sustainable agriculture in the NorthChina Plain. This study evaluated the effects of long-term tillage and crop residuemanagement on SOC pool, GHG emissions, carbon footprint, and their changes after sometillage convertions, which aimed to assess the potentials of carbon sequestration andmitigation GHG emissions under different tillage and residue systems through the carbonsequestration mechanism that including soil aggregate stability, distribution, associated carbonand labile organic carbon (LOC) pool, and the emission mechanism including the GHGemission related bacteria population (methanogens, methane-oxidizing bacteria, nitrobacteriaand denitrifying bacteria). The research was conducted in North China between2007and2012. The treatments were five tillage systems that included conventional tillage (CT),subsoiling (ST), harrow tillage (HT), rotary tillage (RT) and no-till (NT), combination withcrop residue retention (P) or residue removal (A). The results are as follows:
     1. Soil organic carbon pool change by a long-term tillage and residue managementsystem and its carbon sequestration mechanism
     Soil organic carbon (SOC) contents of the0~30cm depth layer under no tillage (NTP),subsoiling (STP), harrow tillage (HTP), rotary tillage (RTP), conventional tillage (CTP) withcrop residue input were significant higher than that of no residue input treatments (NTA、STA、HTA、RTA and CTA). The soils under NTP, STP, HTP and RTP treatments gatheredmore SOC to the0~10cm layer compared to the CTP treatment, and their SOC pool wereincreased during the experiment. The labile organic carbon (LOC) proportion in TOC was 22.38~39.14%under all treatments, and the stabled carbon proportion was60.86~77.62%.The highest LOC proportion in TOC was the RTP treatment (39.14%), and the lowest onewas STP (22.38%). The levels of SOC pool under different tillage with residue inputtreatments were higher4.6t C ha-1than those of no residue input treatments after10-yrscontinued crop residue input and tillage, becacse the annual accumulation rate under thetillage treatments with residue input (-0.27~1.34t C ha-1yr-1) were significant higher thanthose of no residue input treatments (-0.41~0.75t C ha-1yr-1), and the SOC pool level wassignificant correlated with the input rate of crop residue biomass (R2=0.78, P<0.01). In thisstudy, SOC pool under NTP treatment was significant increased and approximately13.37t Cha-1was sequestrated from2002to2012, similarly, approximately9.59t C ha-1wassequestrated in the STP treatment. However, the soil under RTP and RTA treatments wereoccured C lost and approximately0.27t C ha-1and0.41t C ha-1were lost each year, the cropresidue returned to field could mitigate this rate of C lost.
     The analysis of carbon sequestration mechanism showed that the differences of SOC poolunder different tillage and residue management systems were from the changes of soilaggregate proportion, stability, associated carbon and stabled SOC pool levels. Higher levelsof SOC pool were mearsured at the NTP and STA treatments, because they had the higherproportion (79.19%and81.67%), stability (1.89mm and1.82mm), associated C content(9.6g kg-1and7.36g kg-1) of soil aggregate and stabled C pool proportion (71.6%and77.6%).Therefore, the soil macro-aggregate associated C pool contribution proportion to TOC underthe NTP and STA treatments (75.9%and65.4%) were significant higher than othertreatments. The regression analysis also showed that there was a significant positivecorrelation between the soil macro-aggregate associated C pool and soil SOC level (R=0.71,P<0.05).
     2. Estimation emission fluxes of GHG under different tillage systems and their emissionmechanism
     The soil was observed a sink of CH4uptake and emission source of N2O under differenttillage systems. The regression analysis of the CH4uptake related bacteria showed that theCH4uptake flux was correlated with the population of methane-oxidizing bacteria (MOB,R2=0.64, P<0.01) and methanogens (MPB, R2=0.66, P<0.01). Maybe the dominant bacterium in soil was MOB that leaded to the observation a sink of CH4uptake. The population ofnitrobacteria (R2=0.62, P<0.01) and denitrifying bacteria (R2=0.64, P<0.01) were drived theN2O emission in this study.
     Total emission flux of CH4and N2O during the experiment (2007.10~2012.10) waslargely fluctuated in different years. The highest total flux was observed at RT treatment with10.05t ha-1, the lowest was NT treatment (6.29t ha-1). The global warming potential (GWP)of CH4was ordered NT>HT>CT>ST>RT due to the difference of MOB population(RT>CT>ST>NT), the population general related with soil temperature, moisture, pH andNH4+-N contents. Meanwhile, total emission flux of N2O was NT>CT>HT>ST>RT and theGWP of N2O was NT>CT>HT>ST>RT, the reasons may was the difference of nitrobacteriapopulation (NT>CT>RT>ST) that general related with soil temperature, moisture, pH andNH4+-N contents.
     3. Footprints under different tillage systems in a wheat-maize cropping system
     The footprint constitute in a wheat-maize cropping system including chemical fertilizer,agricultural chemicals, diesel, seed and irrigation. The highest proportion in footprintconstitute was chemical fertilizer (73.5~77.6%), while the diesel proportion was only8.1~13.8%. In wheat period, the highest footprint was observed at ST treatment (812.8kg Ceha-1yr-1), the lowest one was NT treatment (787.2kg Ce ha-1yr-1), while the footprints inmaize period under different tillage methods were621.2kg Ce ha-1yr-1due to the equal inputof chemical fertilizer, agricultural chemicals, diesel, seed and irrigation.
     The highest carbon cost in a wheat-maize cropping system was observed at NT treatment(0.169kg Ce kg-1), the lowest one was observed at ST treatment (0.144kg Ce kg-1).
     4. Changes of soil organic carbon pool, greenhouse gas emission and crop yield by along-term single tillage and rotational tillage system
     Long-term single tillage (RT, HT, NT) convertion to rotational tillage systems (RT/ST,HT/ST, NT/ST) increased the ablity of CH4uptake sink, the CH4uptake flux was increased23.6%,14.7%and26.1%after these convertions respectively, while the N2O flux was emitedlargely than the original treatments (increased10.2%,12.9%and78.3%, respectively). Thetotal emission flux of CH4and N2O under NT/ST, RT/ST and HT/ST treatments wereincreased1.08,0.06and0.17kg ha1, respectively, and the GWP of CH4and N2O was increased0.23,0.02and0.05kg CO2ha1, respectively, compared with the treatments of NT,RT and HT.
     In comparison to the experiment site of Longkou, higher SOC pool level of0~30cmdepth was measured at long-term single NT treatment, this tillage method at two experimentsites (Tai’an and Longkou) were locked13.37and9.51t C ha-1in10-yrs and6-yrs,respectively. However, RT treatments of two experiment sites were lost0.27and0.33t C ha-1each year. The C accumulation after HT and RT treatments convertion to HT/ST and RT/STwere increased, especially the latter, which observation of C lost converted to C accumulation.The C accumulation rate under NT/ST treatment was decreased24.4%than that of NTtreatment.
     The yields of wheat and maize were not improved under continued long-term singletillage system not only at Tai’an but also at Longkou, sometimes the yields were presented thedecreased trendences. After convertion to HT/ST, RT/ST and NT/ST treatments, the wheatyield was improved47.9,37.7and64.9%, respectively, and the mazie yield was improved9.4,15.5and19.4%, respectively. The total yield in a wheat-maize cropping system was observeda gradual increase trend after these rotational tillage systems.
引文
白小琳,张海林,陈阜.耕作措施对双季稻田CH4与N2O排放的影响.农业工程学报,2010,26(1):282-289.
    鲍士旦.土壤农化分析.中国农业出版社,2000.
    陈安磊,王凯荣,谢小立,刘迎新.不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应.应用生态学报,2007,18(12):2733-2738.
    陈茜,梁成华,杜立宇,陈新之,王峰.不同施肥处理对设施土壤团聚体内颗粒有机碳含量的影响.土壤,2009,41(2):258-263.
    陈全胜,李凌浩,韩兴国,阎志丹,王艳芬,张焱,熊小刚,陈世苹,张丽霞,高英志,唐芳,杨晶,董云社.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报,2004,24(4):831-836.
    陈全胜,李凌浩,韩兴国,阎志丹.水分对土壤呼吸的影响及机理.生态学报,2003,25(5):972-978.
    陈苇,卢婉芳,段彬伍, Wassmann R., Lantin R.S..稻草还田对晚稻稻田甲烷排放的影响.土壤学报,2002,39(2):170-176.
    陈晓侠,梁爱珍,张晓平.土壤团聚体固碳的研究方法.应用生态学报,2012,23(7):1999-2006.
    陈智,蒋先军,罗红燕,李楠,李航.土壤微生物生物量在团聚体中的分布以及耕作影响.生态学报,2008,28(12):5964-5969.
    戴珏,胡君利,林先贵,朱安宁,尹睿,张华勇,王俊华.免耕对潮土不同粒级团聚体有机碳含量及微生物碳代谢活性的影响.土壤学报,2010,47(5):924-930.
    董玉红,欧阳竹.有机肥对农田土壤二氧化碳和甲烷通量的影响.应用生态学报,2005,16(7):1303-1307.
    樊杰,李平星,梁育填.个人终端消费导向的碳足迹框架:支撑我国环境外交的太排放研究新思路.地理科学进展,2010,25(1):61-68.
    范如芹,梁爱珍,杨学明,张晓平,时秀焕,贾淑霞,陈学文.耕作与轮作方式对黑土有机碳和全氮储量的影响.土壤学报,2011,48(4):788-796.
    方华军,杨学明,张晓平,梁爱珍,申艳.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布.生态学报,2006,26(9):2847-2854.
    冯虎元,程国栋,安黎哲.微生物介导的土壤甲烷循环及全球变化研究.冰川冻土,2004,26(4):411-419.
    高会议,郭胜利,刘文兆,车升国,李淼.不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响.土壤学报,2010,47(5):931-938.
    耿远波,章申,董云社,孟维奇,齐玉春,陈佐忠,王艳芬.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,2001,56(1):44-53.
    宫秀杰,钱春荣,于洋.深松免耕技术对土壤物理性状及玉米产量的影响.玉米科学2009,17(5):134-137.
    韩召迎,孟亚利,徐娇,吴悠,周治国.区域农田生态系统碳足迹时空差异分析-以江苏省为案例.农业环境科学学报,2012,31(5):1034-1041.
    郝瑞军,李忠佩,车玉萍,方海兰.好气与淹水条件下水稻土各粒级团聚体有机碳矿化量.应用生态学报,2008,19(9):1944-1950.
    何进,李洪文,高焕文.中国北方保护性耕作条件下深松效应与经济效益研究.农业工程学报,2006,22(10):62-67.
    侯贤清,贾志宽,韩清芳,王维,丁瑞霞,聂俊峰,李永平.轮耕对宁南旱区冬小麦花后旗叶光合性能及产量的影响.中国农业科学,2011,44(15):3108-3117.
    胡立峰,李琳,陈阜,叶桃林,杨光立.不同耕作制度对南方稻田甲烷排放的影响.生态环境,2006,15(6):1216-1219.
    胡荣桂.氮肥对旱地土壤甲烷氧化能力的影响.生态环境,2004,13(1):74-77.
    黄明,吴金芝,李友军,姚宇卿,张灿军,蔡典雄,金轲.不同耕作方式对旱作区冬小麦生产和产量的影响.农业工程学报,2009,25(1):50-54.
    黄东迈,朱培立,王志明,余晓鹤.旱地和水田有机碳分解速率的探讨与质疑.土壤学报,1998,35(4):482-491.
    黄国宏,肖笃宁,李玉祥,陈冠雄,杨玉成,赵长伟.芦苇湿地温室气体甲烷(CH4)排放研究.生态学报,2001,21(9):1494-1497.
    黄山,芮雯奕,彭现宪,刘武仁,张卫建.稻田转变为旱地下土壤有机碳含量及其组分的变化特征.环境科学,2009,30(4):1146-1151.
    黄耀,刘世梁,沈其荣,宗良纲.环境因子对农业土壤有机碳分解的影响.应用生态学报,2002,13(6):709-714.
    黄耀,刘世梁,沈其荣,宗良纲.农田土壤有机碳动态模拟模型的建立.中国农业科学,2001,34(5):532-536.
    黄益宗,张福珠.化感物质对土壤N2O释放影响的研究.环境科学学报,1999,19(5):479-482.
    焦燕,黄耀.影响农田氧化亚氮排放过程的土壤因素.气候与环境研究,2003,8(4):457-466.
    孔凡磊,陈阜,张海林,黄光辉.轮耕对土壤物理性状和冬小麦产量的影响.农业工程学报,2010,26(8):150-155.
    孔凡磊,张海林,孙国峰,黄光辉,陈阜.轮耕措施对小麦玉米两熟制农田土壤碳库特性的影响.水土保持学报,24(2):150-154,183.
    李虎,王立刚,邱建军.农田土壤N2O排放和减排措施的研究进展.中国土壤与肥料,2007(5):1-5.
    李辉信,袁颖红,黄欠如,胡锋,潘根兴.不同施肥处理对红壤水稻土团聚体有机碳分布的影响.土壤学报,2006,43(3):422-429.
    李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2000.
    李琳,李素娟,张海林,陈阜.保护性耕作下土壤碳库管理指数的研究.水土保持学报,2006,20(3):106-109.
    李明峰,董云社,耿元波,齐玉春.草原土壤的碳氮分布与CO2排放通量的相关性分析.环境科学,2004,25(2):7-11.
    李阳兵,魏朝富,谢德体,高明.岩溶山区植被破坏前后土壤团聚体稳定性研究.中国农学通报,2005,21(10):232-234.
    李振高,骆永明,腾应.土壤与环境微生物研究法.北京:科学出版社.2008,101-102.
    李正才,傅懋毅,杨校生.经营干扰对森林土壤有机碳的影响研究概述.浙江林学院学报,2005,22(4):469-474.
    李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化.土壤学报,2007,44(2):244-251.
    梁爱珍,张晓平,杨学明, Mc Laughlin N.,申艳,李文凤.耕作对东北黑土团聚体粒级分布及其稳定性的短期影响.土壤学报,2009,46(1):154-158.
    刘广深,徐文彬,洪业汤,陈旭晖.土壤N2O释放通量季节变化的主要环境驱动因素研究.矿物学报,2002,22(3):229-234.
    柳敏,宇万太,姜子绍,马强.土壤活性有机碳.生态学杂志,2006,25(11):1412-1417.
    逯非,王效科,韩冰,欧阳志云,段晓男,郑华.中国农田施用化学氮肥的固碳潜力及其有效性评价.应用生态学报,2008,19(10):2239-2250.
    罗良国,近藤始彦,伊藤纯雄.日本长期不同施肥稻田N2O和CH4排放特征及其环境影响.应用生态学报,2010,21(12):3200-3206.
    毛青兵.天台山七子花群落下土壤微生物生物量的季节动态.生物学杂志,2003,20(3):16-18.
    毛艳玲,杨玉盛,崔纪超.土地利用变化对土壤团聚体微生物量碳的影响.水土保持学报,2009,23(4):227-231.
    孟凡乔,关桂红,张庆忠.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999.
    牛新胜,牛灵安,张宏彦.玉米秸秆覆盖免耕对土壤呼吸的影响.生态环境,2008,17(1):256-260.
    欧阳学军,周国逸,黄忠良,彭闪江,刘菊秀,李炯.土壤酸化对温室气体排放影响的培育实验研究.中国环境科学,2005,25(4):465-470.
    潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    潘根兴,周萍,张旭辉,李恋卿,郑聚锋,邱多生,储秋华.不同施肥对水稻土作物碳同化与土壤碳固定的影响-以太湖地区黄泥土肥料长期试验为例.生态学报,2006,26(11):3704~3710.
    彭少麟,李跃林,任海,赵平.全球变化条件下的土壤呼吸效应.地球科学进展,2002,17(5):705-713.
    彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176-2183.
    彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,2004,41(4):618-623.
    齐玉春,董云社,耿元波,杨小红,耿会立.我国草地生态系统碳循环研究进展.地理科学进展,2003,22(4):342-352.
    齐玉春,董云社,章申.华北平原典型农业区土壤甲烷通量研究.农村生态环境,2002,18(3):56~58.
    钱泽澍,闵航.沼气发酵微生物学.杭州:浙江科技出版社.1986.
    史磊刚,陈阜,孔凡磊,范士超.华北平原冬小麦-夏玉米种植模式碳足迹研究.中国人口资源与环境,2011,21(9):93-98.
    史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响.应用生态学报,2002,13(11):1491-1494.
    宋长春,王毅勇,王跃思,赵志春.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态.环境科学,2005,26(4):7-12.
    宋长春,王毅勇,王跃思,赵志春.人类活动影响下淡水沼泽湿地温室气体排放变化.地理科学,2006,26(1):82-86.
    谭周进,周卫军,张杨珠,曾希柏,肖嫩群,刘强.不同施肥制度对稻田土壤微生物的影响研究.植物营养与肥料学报,2007,13(3):430-435.
    唐国勇,李昆,孙永玉.土地利用方式对土壤有机碳及碳库管理指数的影响.林业科学,2011,24(6):754-759.
    唐晓红,魏朝富,吕家恪,罗友进,谢德体,潘根兴,曾希柏.保护性耕作对丘陵区水稻土团聚体稳定性的影响.农业工程学报,2009,25(11):49-54.
    田慎重,宁堂原,王瑜,李洪杰,仲惟磊,李增嘉.不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响.应用生态学报,2010,21(2):373-378.
    田云,李波,张俊飚.我国农地利用碳排放的阶段特征及因素分解研究.中国地质大学学报,2011,11(1):59-63.
    王伯仁,徐明岗,文石林.长期不同施肥对旱地土壤性质和作物生长的影响.水土保持学报,2005,19(1):97-100.
    王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响.亚热带农业研究,2005,1(3):44-51.
    魏燕华,赵鑫,翟云龙,张二朋,陈阜,张海林.耕作方式对华北农田土壤固碳效应的影响.农业工程学报,2013,29(17):87-95.
    魏一鸣,范英,王毅,刘兰翠,梁巧梅,吴刚,曹明奎,黄耀,王绍强.关于我国碳排放问题的若干对策与建议.气候变化研究进展,2006,2(1):15-20.
    吴金水,童成立,刘守龙.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的影响.地球科学进展,2004,19(1):131-137.
    伍芬琳,张海林,李琳,陈阜,黄凤球,肖小平.保护性耕作下双季稻农田甲烷排放特征及温室效应.中国农业科学,2008,41(9):2703-2709.
    武天云, Jeff J.S.,李凤民,钱佩源,张树清, Sukhadev S., Malhi,王方.土壤有机质概念和分组技术研究进展.应用生态学报,2004,15(4):717-722.
    谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象,2002,23(4):47-52.
    熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟,钱薇.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究.中国农业科学,2002,35(9):1104-1108.
    徐江兵,李成亮,何园球,王艳玲,刘晓利.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响.土壤学报,2007,44(4):675-682.
    徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,2006,43(5):723-729.
    徐阳春,沈其荣,雷宝坤,储国良,王全洪.水旱轮作下长期免耕和施用有机肥对某些肥力性状的影响.应用生态学报,2000,11(4):549-552.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    薛建福,赵鑫, Dikgwatlhe S.B.,陈阜,张海林.保护性耕作对农田碳氮效应的影响研究进展.生态学报,2013,33(19):6006-6013.
    颜晓元,蔡祖聪.土壤对甲烷氧化作用的研究进展.农村生态环境,1996,12(2):33-38.
    杨长明,欧阳竹,杨林章,董玉红.农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响.生态学报,2006,26(12):4148-4155.
    杨长明,欧阳竹.华北平原农业土地利用方式对土壤水稳性团聚体分布特征及其有机碳含量的影响.土壤,2008,40(1):100-105.
    杨昕,王明星,黄耀.地-气间碳通量气候响应的模拟Ⅰ.近百年来气候变化.生态学报,2002,22(2):270-277.
    杨学明,张晓平,方华军,梁爱珍,齐晓宁,王洋.北美保护性耕作及对中国的意义.应用生态学报,2004,15(2):335-340.
    杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义.地理科学,2003,23(1):101-106.
    易志刚,蚁伟民,周国逸,周丽霞,张德强,丁明懋.鼎湖山三种主要植被类型土壤碳释放研究.生态学报,2003,23(8):1673~1678.
    于建光,李辉信,陈小云,胡锋.秸秆施用及蚯蚓活动对土壤活性有机碳的影响.应用生态学报,2007,18(4):818-824.
    苑学霞,褚海燕,林先贵.土壤微生物生物量和呼吸强度大气CO2浓度升高的响应.植物营养与肥料学报,2005,11(4):564-567.
    岳进,黄国宏,梁巍,焦志华,梁战备,王琛瑞,史奕.不同水分管理下稻田土壤CH4和N2O排放与微生物菌群的关系.应用生态学报,2003,14(12):2273-2277.
    张福锁,崔振岭,王激清,李春俭,陈新平.中国土壤和植物养分管理现状与改进策略.植物学通报,2007,24(6):687-694.
    张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用.应用生态学报,2011,22(7):1921-1930.
    张海林,孙国峰,陈继康,陈阜.保护性耕作对农田碳效应影响研究进展.中国农业科学,2009,42(12):4275-4281.
    张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境,2003,12(4):500-504.
    张明园,魏燕华,孔凡磊,陈阜,张海林.耕作方式对华北农田土壤有机碳储量及温室气体排放的影响.农业工程学报,2012,28(6):203-209.
    张秀君.土壤N2O产生的微生物过程.沈阳教育学院学报,2005,7(1):129-131.
    张岳芳,郑建初,陈留根,王子臣,朱普平,盛婧,王亚雷.麦秸还田与土壤耕作对稻季CH4和N2O排放的影响.生态环境学报,2009,18(6):2334-2338.
    张振贤,华珞,尹逊霄,滑丽萍,高娟.农田土壤N2O的发生机制及其主要影响因素.首都师范大学学报:自然科学版,2005,26(3):114-120.
    赵荣钦,黄贤金,钟泰洋.中国不同产业空间的碳排放与碳足迹分析.地理学报,2010,65(9):1048-1057.
    赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异.生态与农村环境学报,2007,23(2):1-6,11.
    周虎,吕贻忠,杨志臣,李保国.保护性耕作对华北平原土壤团聚体特征的影响.中国农业科学,2007,40(9):1972-1979.
    周萍,宋国菡,潘根兴,李恋卿,张旭辉.南方三种典型水稻土长期试验下有机碳积累机制研究I:团聚体物理保护作用.土壤学报,2008,45(6):1063-1071.
    周萍,宋国菡,潘根兴,李恋卿,张旭辉.三种南方典型水稻土长期试验下有机碳积累机制研究II:团聚体内有机碳的化学结合机制.土壤学报,2009,46(2):263-274.
    周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响.植物营养与肥料学报,2006,12(6):765-771.
    周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报,2003,58(5):727-734.
    朱培立,黄东迈,余晓鹤,于杰,朱献玳.14C标记秸杆和根茬在淹水及旱地土壤中的矿化特征.土壤通报,1994,25(7):67-70.
    Ahmad S., Li C., Dai G., Zhan M., Wang J., Pan S., Cao C.. Greenhouse gas emission fromdirect seeding paddy field under different rice tillage systems in central China. Soil Till.Res.,2009,106:54-61.
    Andersen M.K., Jensen L.S.. Low soil temperature effects on short-term gross Nmineralization-immobilization turnover after incorporation of a green manure. Soil Biol.Biochem.,2001,33:511-521.
    Arnold K.V., Weslien P., Nilsson M., Svensson B.H., Klemedtsson L.. Fluxes of CO2, CH4and N2O from drained coniferous forests on organic soils. Forest Eco. Man.,2005,210(1-3):239-254.
    Arthur E., Schj nning P., Moldrup P., De Jonge L.W.. Soil resistance and resilience tomechanical stresses for three differently managed sandy loam soils. Geoderma,2012,173-174:50-60.
    Arvidsson J., Etana A., Rydberg T.. Crop yield in Swedish experiments with shallow tillageand no-tillage (1983-2012). Euro. J. Agron.,2014,52:307-315.
    Baggs E.M., Blum H.. CH4oxidation and emissions of CH4and N2O from Lolium perenneswards under elevated atmospheric CO2. Soil Biol. Biochem.,2004,36(4):713-723.
    Bailey V.L., Bilskis C.L., Fansler S.J., McCue L.A., Smith J.L., Konopka A.. Measurementsof microbial community activities in individual soil macroaggregates. Soil Biol.Biochem.,2012,48:192-195.
    Balabane M., Plante A.F.. Aggregation and carbon storage in silty soil using physicalfractionation techniques. Eur. J. Soil Sci.,2004,55(2):415-427.
    Ball B.C., Scott A., Parker J.P.. Field N2O, CO2and CH4fluxes in relation to tillage,compaction and soil quality in Scotland. Soil Till. Res.,1999,53:29-39.
    Bandyopadhyay K.K., Misra A.K., Ghosh P.K., Hati K.M.. Effect of integrated use offarmyard manure and chemical fertilizers on soil physical properties and productivity ofsoybean. Soil Till. Res.,2010,110:115-125.
    Bandyopadhyay P.K., Saha S., Mani P.K., Mandal B.. Effects of organic inputs on aggregateassociated organic carbon concentration under long-term rice–wheat cropping system.Geoderma,2010,154:379-386.
    Barreto R.C., Madari B.E, Maddock J.E.L, Machado P.L.O.A, Torres E., Franchini J., CostaA.R.. The impact of soil management on aggregation, carbon stabilization and carbonloss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agr. Ecosyst.Environ.,2009,132:243-251.
    Bayer C., Mielniczuk J., Amado T.J., Martin-Neto L., Fernandes S.V.. Organic matter storagein a sandy clay loam Acrisol affected by tillage and cropping systems in Southern Brazil.Soil Till. Res.,2000,54:101-109.
    Belanger G., Richards J.E., Angers D.A.. Longterm fertilization effectson soil carbon underpermanent swards. Can. J. Soil Sci.,1999,79:99-102.
    Benbi D.K., Senapati N.. Soil aggregation and carbon and nitrogen stabilization in relation toresidue and manure application in rice–wheat systems in northwest India. Nutr. Cycl.Agroecosyst.,2010,87:233-247.
    Bhatia A., Sasmal S., Jain N., Pathak H., Kumar R.. Mitigating nitrous oxide emission fromsoil under conventional and no-tillage in wheat using nitrification inhibitors. Agr.Ecosyst. Environ.,2010,136:247-253.
    Blair G.J., Lefroy R.D.B, Lisle L.. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems. Aus. J. Agr.Res.,1995,46:1459-1466.
    Blanco-Canqui H, Lal R. Mechanisms of carbon sequestration in soil aggregates. Critical Rev.Plant Sci.,2004,23:481-504.
    Boomsma C.R., Santini J.B., West T.D., Brewer J.C., McIntyre L.M., Vyn T.J.. Maize grainyield responses to plant height variability resulting from crop rotation and tillage systemin a long-term experiment. Soil Till. Res.,2010,106:227-240.
    Boudot J.P., Bel Hadi B.A., Chone T.. Dependence of carbon and nitrogen mineralizationrates upon amorphous metallic constituents and allophanes in highland soils. Geoderma1988,42:245-260.
    Briedis C., Sá J.C.M., Caires E.F., Navarro J.F., Inagaki T.M., Boer A.. Soil organic matterpools and carbon-protection mechanisms in aggregate classes influenced by surfaceliming in a no-till system. Geoderma,2012,170:80-88.
    Cambardella C.A, Elliott E.T. Carbon and nitrogen distributions in aggregates from cultivatedand grassland soils. Soil Sci. Soc. Am. J.,1993,57:1071-1076.
    Cambardella C.A., Elliott E.T.. Carbon and nitrogen dynamics of soil organic matter fractionsfrom cultivated grassland soils. Soil Sci. Soc. Am. J.,1994,58(1):123-130.
    Campbell C.A., Mconkey B.G., Zentner R.P., Selles F., Curtin D.. Tillage and crop rotationeffects on soil organic C and N in a course-textured Typic Haploboroll in southwesternSaskatchewan. Soil Till. Res.,1996,37(1):3-14.
    Campbell C.A., Thomas A.G., Biederbeck V.O., Mc Conkey B.G., Selles F., Spurr D., ZentnerR.P.. Converting from no-tillage to pre-seeding tillage: Influence on weeds, springwheat grain yields and N, and soil quality. Soil Till. Res.,1998,46:175-185.
    Campiglia E., Mancinelli R., Di Felice V., Radicetti E.. Long-term residual effects of themanagement of cover crop biomass on soil nitrogen and yield of endive (Cichoriumendivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil Till. Res.,2014,139:1-7.
    Carter M.R.. Soil quality for sustainable land management: organic matter and aggregationinteractions that maintain soil function. Agron. J.,2002,94:38-47.
    Chadwick O.A., Amundson R.. Rapid exchangebetween soil carbon and atmospheric carbondioxide driven bytemperature change. Science,1996,272:393-396.
    Chan K.Y., Heenan D.P.. The effects of stubble burning and tillage on soil carbonsequestration and crop productivity in southeastern Australia. Soil Use Manage.,2005,21:427-431.
    Chatskikh D., Olesen J.E.. Soil tillage enhanced CO2and N2O emissions from loamy sandsoil under spring barley. Soil Till. Res.,2007,97:5-18.
    Chen H.Q., Hou R.X., Gong Y.S., Li H.W., Fan M.S., Kuzyakov, Y.. Effects of11years ofconservation tillage on soil organic matter fractions in wheat monoculture in LoessPlateau of China. Soil Till. Res.,2009a,106:85-94.
    Chimner R.A., Cooper D.J.. Influence of water table levels on CO2emissions in a Coloradosubalpine fen: an in situ microcosm study. Soil Biol. Biochem.,2003,35(3):345-351.
    Christopher S., Lal R., Mishra U.. Long-term no-till effects on carbon sequestration in theMidwestern U.S. Soil Sci. Soc. Am. J.,2009,73:207-216.
    Cui R.Y., Chen Z.Z., Chen S.Q.. Progress in research on soil respiration of grasslands. ActaEcologica Sinica,2001,21:315-325.
    Dai J., Hu J.L., Lin X.G., Zhu A.N., Yin R., Zhang H.Y., Wang J.H.. Effects of non-tillage oncontent of organic carbon and microbial carbolic metabolism of soil aggregates in afluvo-aquic soil. Acta Pedologica Sinic,2010,47(5):923-930.
    Dalal R.C., Chan K.Y.. Soil organic matter in rainfed cropping systems of the Australiancerealbelt. Aus. J. Soil Res.,2001,39:435-464.
    Das B., Chakraborty D., Singh V.K., Aggarwal P., Singh R., Dwivedi B.S., Mishra R.P.. Effectof integrated nutrient management practice on soil aggregate properties, its stability andaggregate-associated carbon content in an intensive rice-wheat system. Soil Till. Res.,2014,136:9-18.
    Denef K., Six J., Paustian K., Merckx R.. Importance of macroaggregate dynamics incontrolling soil carbon stabilization: short-term effect of physical-disturbance inducedby dry-wet cycles. Soil Biol. Biochem.,2001,33:2145-2153.
    Denef K., Zotarellia L., Boddey R M, Six J.. Microaggre gate-associated carbon as adiagnostic fraction for management-induced changes in soil organic carbon in twoOxisols. Soil Biol. Biochem.,2007,39:1165-1172.
    Dijkstra F.A., Morgan J.A., von Fischer J.C., Follett R.F.. Elevated CO2and warming effectson CH4uptake in a semiarid grassland below optimum soil moisture. J. Geoph. Res.,2011,116:1-9.
    Ding X.L., Han X.Z., Liang Y., Qiao Y.F., Li L.J., Li N.. Changes in soil organic carbon poolsafter10years of continuous manuring combined with chemical fertilizer in a Mollisol inChina. Soil Till. Res.,2012,122:36-41.
    East A.J. Vegetable industry carbon foot print scoping study discussion paper I:What is acarbon foot print? An overview of definitions and methodologies. Sydney: Hort. Aus.Limited,2008.
    Ekschmitt K., Liu M., Vetter S., Fox O., Wolters V.. Strategies used by soil biota to overcomesoil organic matter stability-why is dead organic matter left over in the soil? Geoderma,2005,128:167-176.
    Elder J.W., Lal R.. Tillage effects on gaseous emissions from an intensively farmed organicsoil in North Central Ohio. Soil Till. Res.2008,98:45-55.
    Elliott E.T., Coleman D.C.. Let the soil work for us. Ecol. Bull.,1988,39:23-32.
    Elliott E.T.. Aggregate structure and carbon, nitrogen, and phosphorus in native andcultivated soils. Soil Sci. Soc. Am. J.,1986,50:627-633.
    Follett R.F.. Soil management concepts and carbon sequestration in cropland soils. Soil Till.Res.,2001,61(1-2):77-92.
    Fortin M.C.. Soil temperature, soil water, and no-till corn development following in-rowresidue removal. Agron. J.,1993,85:571-576.
    Frey S.D., Elliott E.T., Paustian K.. Bacterial and fungal abundance and biomass inconventional and no-tillage agroecosystems along two climatic gradients. Soil Boil.Biochem.,1999,31:573-585.
    Giardina C.P., Ryan M.G.. Evidence that decomposition rates of organic carbon in mineral soildo not vary with temperature. Nature,2001,404(20):858-861.
    Golchin A., Oades J.M., Skjemstad J.O., Clarke P.. Study of free and occluded particulateorganic matter in soils by solid state13C CP/MAS NMR spectroscopy and scanningelectron microscopy. Soil Res.,1994,32(2):285-309.
    Gregorich E.G., Rochette P., Vandenbygart A.J., Angers D.A.. Greenhouse gas contributionsof agricultural soils and potential mitigation practices in Eastern Canada. Soil Till. Res.,2005,83:53-72.
    Groffman P.M., Hardy J.P., Driscoll C.T., Fahey T.J.. Snow depth, soil freezing, and fluxes ofcarbon dioxide, nitrous oxide and methane in a northern hardwood forest. Glob. Chang.Biol.,2006,12:1748-1760.
    Gruber S., Pekrun C., M hring J., Claupein W.. Long-term yield and weed response toconservation and stubble tillage in SW Germany. Soil Till. Res.,2012,121:49-56.
    Hassink J.. Density fractions of soil macroorganic matter and microbial biomass as predictorsof C and C mineralization. Soil Biol. Bioch.,1995,27:1099-1108.
    Haynes R.J.. Labile organic matter as an indicator of organic matter quality in arable andpastoral soils in New Zealand. Soil Biol. Biochem.,2000,32:211-219.
    He J., Li H.W., Rasaily R.G., Wang Q.J, Cai G.H., Su Y.B., Qiao X.D., Liu L.J.. Soilproperties and crop yields after11years of no tillage farming in wheat–maize croppingsystem in North China Plain. Soil Till. Res.,2011,113:48-54.
    He J., Wang Q.J., Li H.W., Liu L.J., Gao H.W.. Effect of alternative tillage and residue coveron yield and water use efficiency in annual double cropping system in North ChinaPlain. Soil Till. Res.,2009b,104:198-205.
    He J., Li H.W., Wang X.Y., Mc Hugh A.D., Li W.Y., Gao H.W., Kuhn N.J.. The adoption ofannual subsoiling as conservation tillage in dryland maize and wheat cultivation innorthern China. Soil Till. Res.,2007,94:493-502.
    Hertwich E.G., Peters G.P.. Carbon foot print of nations: a global, trade-linked analysis.Environ. Sci. Tech.,2009,43(16):6414-6420.
    Hillier J., Hawes C., Squire G.. The carbon footprints of food crop production. Inter. J. Agr.Sustain.,2009,7(2):107-118.
    Hoosbeek M.R., Vos J.M., Bakker E.J, Scarascia-Mugnozza G.E.. Effects of free atmosphericCO2enrichment (FACE), N fertilization and poplar genotype on the physical protectionof carbon in the mineral soil of a polar plantation after five years. Biogeosciences,2006,3:479-487.
    Hou X.Q., Li R., Jia Z.K., Han Q.F., Wang W., Yang B.P.. Effects of rotational tillagepractices on soil properties, winter wheat yields and water-use efficiency in semi-aridareas of north-west China. Field Crops Res.,2012,129:7-13.
    Hou X.Q., Li R., Jia Z.K., Han Q.F., Yang B.P., Nie J.F.. Effects of rotational tillage practiceson soil structure, organic carbon concentration and crop yields in semi-arid areas ofnorthwest China. Soil Use Manage.,2012,28:551-558.
    Huang X.X., Gao M., Wei C.F, Xie D.T., Pan G.X.. Tillage effects on organic carbon in apurple paddy soil. Pedosphere,2006,16(5):660-667.
    Huygens D., Boeckx P., Van Cleemput O., Oyarzún C. Godoy R.. Aggregate and soil organiccarbon dynamics in South Chilean Andisols. Biogeosciences,2005,2:159-174.
    IPCC.. Climate change2007: The physical science basis. Contribution of working group I tothe fourth assessment report of the intergovernmental panel on climate change.Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007.
    IPCC.. Climate Change. Working Group I, Cambridge University Press, U. K.1995.
    Jacinthe P.A., Lal R.. Labile carbon and methane uptake as affected by tillage intensity in aMollisol. Soil Till. Res.,2005,80(1-2):35-45.
    Kaiser K, Eusterhues K., Rumpel C, Guggenberger G., K gel-Knabner I.. Stabilization oforganic matter by soil minerals-investigations of density and particle-size fractions fromtwo acid forest soils. J. Plant Nutr. Soil Sci.,2002,165:451-459.
    Kaiser K., Guggenberger G.. The role of DOM sorption to mineral surfaces in the preservationof organic matter in soils. Organic Geochem.,2000,31(7):711-725.
    Kaiser K., Zech W.. Release of natural organic matter sorbed tooxides and a subsoil. Soil Sci.Soc. Am. J.,1999,63:1157-1166.
    K nk nen H., Alakukku L., Salo Y., Pitk nen T.. Growth and yield of spring cereals duringtransition to zero tillage on clay soils. Eur. J. Agr.,2011,34,35-45.
    Karami A., Homaee M., Afzalinia S., Ruhipour H., Basirat S.. Organic resource management:impacts on soil aggregate stability and other soil physico-chemical properties. Agric.Ecosyst. Environ.,2012,148:22-28.
    Kenny T., Gray N.F.. Comparative performance of six carbon foot print models for use inIreland. Environ. Impact Assess. Rev.,2009,29:1-6.
    Kessavalou A., Mosise A.R., Doran J.W.. Fluxes of carbon dioxide, nitrous oxide, andmethane in grass sod and winter wheat-fallow tillage management. J. Environ. Qual.,1998,27:1094-1104.
    King J.A., Bradley R.I., Harrison R., Carter A.D.. Carbon sequestration and saving potentialassociated with changes to the management of agricultural soils in England. Soil UseManage.,2004(20):394-402.
    Koponen H.T., Flojt L., Martikainen P.J.. Nitrous oxide emissions from agricultural soils atlow temperatures: a laboratory microcosm study. Soil Biol. Biochem.,2004,36(5):757-766.
    Kovar J.L., Barber S.A., Kladivko E.J., Griffith D.R.. Characterization of soil temperature,water content, and maize root distribution in two tillage systems. Soil Till. Res.,1992,24:11-27.
    Krull E.S., Baldock J.A., Skjemstad J.O.. Importance of mechanisms and processes ofthe stabilisation of soil organic matter for modelling carbon turnover. Functional PlantBiol.,2003,30:207-222.
    Ladd J.N., Oades J.M., Amato M.. Microbial biomass formed from14C,15N-labelled plantmaterial decomposing in soils inthe field. Soil Biol. Biochem.,1981,13:119-126.
    Lal R.. Soil carbon sequestration impacts on global climate change and food security. Science,2004b,304:1623-1627.
    Lal R., Griffin M., Apt J.. Managing soil carbon. Science,2004a,304(4):393.
    Lal R., Kimble J.M.. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst.,1997,49:243-253.
    Lal R., Kimble J., Follet R.. The potential of US cropland to sequester carbon and mitigate thegreenhouse effect. Chelsea, MI: Ann Arbor Press,1998.
    Lal R., Logan T.J., Fausey N.R.. Long-term tillage effects on a Mollic Ochraqualf innorthwest Ohio III. soil nutrient profile. Soil Till. Res.,1990,15:371-382.
    Lal R.. Carbon emission from farm operations. Environ. Inter.,2004,30:981-990.
    Lal R.. Soil C sequestration in China through agricultural intensification and restoration ofdegraded and decertified soils. Land Degradation Develop.,2002,13:469-478.
    Lal R.. Soil carbon sequestration to mitigate climate change. Geoderma,2004,123:1-22.
    Lavelle P.. Faunal activities and soil processes: adaptive strategies that determine ecosystemfunction. Adv. Ecol. Res.,1997,27:93-132.
    Le Mer J., Roger P.. Production, oxidation, emission and consumption of methane by soils: Areview. Eur. J. Soil Biol.,2001,37:25-50.
    Lee J., Six J., King A.P., Van Kessel C., Rolston D.E.. Tillage and field scale controls ongreenhouse gas emissions. J. Environ. Qual.,2006,35:714-725.
    Lefroy R.D.B.. Changes in soil organic matter with cropping as measured by organic carbonfractions and13C natural isotope abundance. Plant Soil,1993,155/156:399-402.
    Leifeld J., K gel-Knabner I.. Soil organic matter fractions as early indicators for carbon stockchanges under different land-use? Geoderma,2005,124:143-155.
    Lenka N.K., Lal R.. Soil aggregation and greenhouse gas flux after15years of wheat strawand fertilizer management in a no-till system. Soil Till. Res.,2013,126:78-89.
    Li D.M., Liu M.Q., Cheng Y.H., Wang D., Qin J.T.. Methane emissions from double-ricecropping system under conventional and no tillage in southeast China. Soil Till. Res.,2011,113:77-81.
    Li Y.B., Wei C.F., Xie D.T., Gao M.. The features of soil water-stable aggregate before andafter vegetation destruction in Karst Mountains. Agr. Sci. Bulletin,2005,21(10):232-234.
    Liang W., Shi Y., Zhang H., Yue J., Huang G.H. Greenhouse gas emissions from northeastChina rice fields in fallow season. Pedosphere,2007,17:630-638.
    Lipiec J., Hajnos M. wieboda R.. Estimating effects of compaction on pore size distributionof soil aggregates by mercury porosimeter. Geoderma,2012,179-180:20-27.
    Liu X.J., Mosier A.R., Halvorson A.D, Reule C.A., Zhang F.S.. Dinitrogen and N2O emissionsin arable soils: Effect of tillage, N source and soil moisture. Soil Biol. Bioch.,2007,39(9):2362-2370.
    López M.V., Blanco-Moure N., Limón M.á., Gracia R.. No tillage in rainfed Aragon (NESpain): Effect on organic carbon in the soil surface horizon. Soil Till. Res.,2012,118:61-63.
    López-Fando C., Pardo M. T.. Soil carbon storage and stratification under different tillagesystems in a semi-arid region. Soil Till. Res.,2011,111(2):224-230.
    Madari B., Machado P.L.O.A., Tortes E., Torres L., Andrade A.G., Valencia L.I.O.. No tillageand crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsolfrom southern Brazil. Soil Till. Res.,2005,80:185-200.
    Malhi S.S., Nyborg M.. Influence of various factors on the relative effectiveness ofautumn-versus spring-applied N. Bajwa, M.S. Proceedings of the InternationalSymposium on Nutrient Management for Sustainable Productivity, Vol.1. Ludhiana,Punjab, India: Department of Soils, Punjab Agr. Univ.,1992,355-365.
    Malhi S.S., O’Sullivan P.A.. Soil temperature, moisture and compaction under zero andconventional tillage in central Alberta. Soil Till. Res.,1990,17:167-172.
    Malhi S., Harapiak J., Nyborg M., Gill K.S., Monreal C.M., Gregorich E.G.. Total and lightfraction organic C in a thin Black Chernozemic grassland soil as affected by27annualapplications of six rates of fertilizer N. Nutr. Cycl. Agroecosyst.,2003,66:33-41.
    Maljanen M., Liikanen A., Silvola J., Silvola J., Martikainen P.J.. Nitrous oxide emissionsfrom boreal organic soil under different land-use. Soil Bio. Biochem.,2003,35(5):1-12.
    Martinez E., Fuentes J.P., Pino V., Silva P., Acevedo E.. Chemical and biological propertiesas affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll ofCentral Chile. Soil Till. Res.,2013,126:238-245.
    Martins M.R., Cora J.E, Jorge R.F., Marcelo A.V.. Crop type influences soil aggregation andorganic matter under no-tillage. Soil Till. Res.,2009,104:22-29.
    Mayer L.M., Xing B.S.. Organic matter–surface area relationships in acid soils. Soil Sci. Soc.Am. J.,2001,65:250-258.
    Miko U.F.K.. The temperature dependence of SOM decomposi-tion and the effect of globalwarming on soil organic C storage. Soil Biol. Biochem.,1995,27(6):753-760.
    Mishra U., Ussiri D.A.N., Lal R.. Tillage effects on soil organic carbon storage and dynamicsin Corn Belt of Ohio USA. Soil Till. Res.,2010,107:88-96.
    Mock J.J., Erbach D.C.. Influence of conservation-tillage environments on growth andproductivity of corn. Agron. J.,1977,69:337-340.
    Nimmo J.R., Perkins K.S.. Aggregates stability and size distribution. In: Methods of SoilAnalysis, Part4-Physical Methods. Soil Sci. Soc. Am., Inc. Madison, Wisconsin, USA,2002:317-328.
    Nyamadzawo G., Nyamangara J., Nyamugafata P., Muzulu A.. Soil microbial biomass andmineralization of aggregate protected carbon in fallow-maize systems underconventional and no-tillage in central Zimbabwe. Soil Till. Res.,2009,102:151-157.
    Nyborg M., Solberg E.D., Malhi S.S.. Fertilization N, ccrop residue, and tillage alter soil Cand N content in a decade. Advance in Soil Science. Boca Raton, FL: Lewis Publisher,CRC Press,1995,93-100.
    Oades J.M., Waters J.M.. Aggregate hierarchy in soils. Aus. J. Soil Res.,1991,29:815-828.
    Oades J.M.. Soil organic matter and structural stability: Mechanisms and implications formanagement. Plant Soil,1984,76:319-337.
    Ordónez Fernández R., González Fernández P., Giráldez Cervera J.V., Perea Torres F.. Soilproperties and crop yields after21years of direct drilling in southern Spain. Soil Till.Res.,2007,94:47-54.
    Paul B.K., Vanlauwe B., Ayuke F., Gassnerc A., Hoogmoeda M., Hurissoa T.T..Medium-term impact of tillage and residue management on soil aggregate stability, soilcarbon and crop productivity. Agr. Ecosyst. Environ.,2013,164:14-22.
    Paustian K., Andren O., Janzen H.H., Janzen H.H., Lal R., Smith P., Tian G. Woomer P.L..Agricultural soils as a sink to mitigate CO2emissions. Soil Use Manage.,1997,13(4):230-244.
    Ponnanperuma F.N.. Straw as source of nutrients for wetland rice. Organic Matter and Rice.IRRI,1984.117-136.
    Post W.M., Kwon K.C.. Soil carbon sequest ration and landuse change: processes andpotential. Glob. Chang. Biol.,2000,6:317-328.
    Pramod J., Nikita G., Lakaria B.L., Biswas A.K., Rao A.S. Soil and residue carbonmineralization as affected by soil aggregate size. Soil Till. Res.,2012,121:57-62.
    Puget P., Chenu C., Balesdent J.. Total and young organic matter distributions in aggregates ofsilty cultivated soils. Eur. J. Soil Sci.,1995,46:449-459.
    Puget P., Chenu C., Balesdent J.. Dynamics of soil organic matter associated withparticle-size fractions of water-stable aggregates. Eur. J. Soil Sci.,2000,51:595-605.
    Qin H.L., Gao W.S., Ma Y.C., Ma L., Yin C.M.. Effects of subsoiling on soil moisture underno-tillage2years later. Sci. Agr. Sinica.,2008,41:78-85.
    Qiu J., Li C., Wang L., Tang H., Li H., Van Ranst E.. Modeling impacts of carbonsequestration on net greenhouse gas emissions from agricultural soils in China. Glob.Biogeochem. Cycl.,2009,23: GB1007.
    Raun W.R., Johnson G.V., Phillips S.B., Westerman R.L.. Effect of long-term N fertilizationon soil organic C and total N in continuous wheat under conventional tillage inOklahoma. Soil Till. Res.,1998,47(3):323-330.
    Reicosky D.C., Archer D.W.. Moldboard plow tillage depth and short-term carbon dioxiderelease. Soil Till. Res.,2007,94(1):109-121.
    Richard D.. Chronic nitrogen additions reduce total soil respiration and microbial respirationin temperate forest soils at the Harvard Forest Bowden. Forest Ecol. Manage.,2004,196:43-56.
    Robertson G.. Fluxes of nitrous oxide and other nitrogen trace gases from intensivelymanaged landscapes: a global perspective. In: Harpwr L.A., Mosier A.R., Duxbury J.M.,Rolston D.E.,(eds) Agricultural ecosystem effects on trace gases and global climatechange. ASA Special Publication No.55. ASA, CSSA, SSSA, Madison,1993,95-108.
    Robertson G.P., Paul E.A., Harwood R.R.. Greenhouse gases in intensive agriculture:Contributions of individual gases to the radiative forcing of the atmosphere. Science,2000,289:1922-1925.
    Scheer C., Wassmann R., Kienzler K., Ibragimov N., Lamers J., Martius C.. Methane andnitrous oxide fluxes in annual and perennial land-use systems of the irrigated areas inthe Aral Sea Basin. Glob. Chang. Biol.,2008,14(10):2454-2468.
    Schimel D.S., Braswell B.H., Holland E.A., McKeown R., Ojima D.S., Painter T.H., PartonW.J. Townsend A.R.. Climatic, edaphic and biotic controls over storage and turnover ofcarbon in soils. Glob. Biogeochem. Cyc.,1994,8:279-293.
    Schwesig D., Kalbitz K., Matzner E.. Effects of aluminum on the mineralization of dissolvedorganic carbon derived from forest floors. Eur. J. Soil Sci.,2003,54:311-322.
    Sheppard S.K., Lloyd D.. Diurnal oscillations in gas production (O2, CO2, CH4and N2) in soilmonoliths. Biol. Rhy. Res.,2002,33(5):577-591.
    Six J., Conant R.T., Paul E A, Paustian K.. Stabilization mechanisms of soil organic matter:Implications for C saturation of soils. Plant Soil,2002,241:155-176.
    Six J., Elliott E.T., Paustian K., Doran J.W.. Aggregation and soil organic matter accumulationin cultivated and native grassland soils. Soil Sci. Soc. Am. J.,1998,62:1367-1377.
    Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R. Paustian K.. The potential to mitigateglobal warming with no-tillage management is only realized when practised in the longterm. Glob. Change Biol.,2004,10:155-160.
    Six J., Elliott T., Paustian K.. Aggregate and soil organic matter dynamics under conventionaland no-tillage systems. Soil Sci. Soc. Am. J.,1999,63:1350-1358
    Six J., Feller C., Denef K., Ogle S.M., Sa J.C.D.M., Albrecht A.. Soil organic matter, biotaand aggregation in temperate and tropical soils-effects of no-tillage. Agronomie,2002b,22,755-775.
    Smith K.A., Mc Taggart I.P., Dobbie K.E., Conen F.. Emissions of N2O from Scottishagricultural soils, as a function of fertilizer N. Nut. Cyc. Agroecosyst.,1998,52(2-3):123-130.
    Smith P., Goulding K.W.T., Smith K.A., Powlson D.S., Smith J.U.. Enhancing the carbon sinkin European agricultural soils: including trace gas fluxes in estimates of carbonmitigation potential. Nut. Cyc. Agroecosyst.,2001,60:237-252.
    Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K.,Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H.,Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thornley J.H.M.,Whitmore A.P.. A comparison of the performance of nine soil organic matter modelsusing datasets from sever long-term experiments. Geoderma,1997,81:153-225.
    Soane B.D., Ball B.C., Arvidsson J., Basch G., Moreno F., Roger-Estrade J.,2012. No-till innorthern, western and south-western Europe A review of problems and opportunities forcrop production and the environment. Soil Till. Res.,118:66-87.
    Song C.C., Wang Y.S., Wang Y.Y., Zhao Z.. Emission of CO2, CH4and N2O from freshwatermarsh during freeze-thaw period in Northeast of China. Atmosph. Environ.,2006,40(35):6879-6885.
    Sovacool B.K., Brown M.A.. Twelve metropolitan carbon foot prints: a preliminarycomparative global assessment. Ener. Pol.,2010,38(9):4856-4869.
    Subke J.A., Reichstein M., Tenhunen J.D.. Explaining temporal variation in soil CO2efflux ina mature spruce forest in Southern Germany. Soil Biol. Biochem.,2003,35(11):1467-1483.
    Sun W., Huang Y., Zhang W., Yu Y.. Carbon sequestration and its potential in agriculturalsoils of China. Glob. Biogeochem. Cyc.,2010,24(3), doi:10.1029/2009GB003484.
    Swan J.B., Higgs R.L., Bailey T.B., Wollenhaupt N.C., Paulson W.H., Peterson A.E.. Surfaceresidue and in-row treatment effects on long-term no-tillage continuous corn. Agron. J.1994.86:711-718.
    Tian S.Z., Ning T.Y., Zhao H.X., Wang B.W., Li N., Han H.F., Li Z.J., Chi S.Y.. Response ofCH4and N2O Emissions and Wheat Yields to Tillage Method Changes in the NorthChina Plain. PLoS one,2012,7(12): e51206.
    Tisdall J.M., Oades J.M.. Organic matter and water-stable aggregates in soils. Euro. J. SoilSci.,1982,33:141-163.
    Ussiri D.A.N., Lal R.. Long-term tillage effects on soil carbon storage and carbon dioxideemissions in continuous corn cropping system from an alfisol in Ohio. Soil Till. Res.,2009,104(1):39-47.
    Van den Putte A., Govers G., Diels J., Gillijns K., Demuzere M.. Assessing the effect of soiltillage on crop growth: A meta-regression analysis on European crop yields underconservation agriculture. Eur. J. Agr.,2010,33:231-241.
    Verma S., Sharma P.K.,2007.. Effect of long-term manuring and fertilizers on carbon pools,soil structure, and sustainability under different cropping systems in wet-temperate zoneof northwest Himalayas. Biol. Fertil. Soils,44:235-240.
    Von Fischer J.C., Butters G., Duchateau P.C., Thelwell R.J., Siller R.. In situ measures ofmethanotroph activity in upland soils: Areaction diffusion model and field observationof water stress. J. Geoph. Res.,2009,114: G01015.
    Wackernagel M., Ress W.. Our ecological foot print: human impact on the earth. GabriolaIsland, Canada: New Soc. Publishers,1996.
    Wang Z.P., Han X.G, Li L H, Chen Q.S., Duan Y., Cheng W.X.. Methane emission fromsmall wetlands and implications for semiarid region budgets. J. Geoph. Res.: Atmosph.(1984–2012),2005,110(D13).
    Weidema B.P., Thrane M., Christensen P.. Carbon foot print: a catalyst for life cycleassessment? J. Indus. Eco.,2008,12(1):3-6.
    West T.O., Marland G.A.. Synthesis of carbon sequestration, carbon emissions, and net carbonflux in agriculture: Comparing tillage practices in the United States. Agr., Ecosyst.Environ.,2002,91(1/3):217-232.
    Wiseman C.L.S., Puttmann W.. Interaction between mineral phases in the preservation of soilorganic matter. Geoderma,2006,134:109-118.
    Wiseman C.L.S., Puttmann W.. Soil organic carbon and its sorptive preservation in centralGermany. Eur. J. Soil Sci.,2005,56:65-76.
    Yan D., Wang D., Yang L.. Long-term effect of chemical fertilizer, straw, and manure onlabile organic matter fractions in a paddy soil. Biol. Fert. Soils,2007,44:93-101.
    Yang Y., Guo J., Chen G., Yin Y., Gao R., Lin C.. Effects of forest conversion on soil labileorganic carbon fractions and aggregate stability in subtropical China. Plant soil,2009,323:153-162.
    Yoder R.E.. A direct method of aggregate analysis of soil and a study of the physical nature oferosion losses. J. Am. Soc. Agron.,1936,28:337-357.
    Yue J., Shi Y., Ligang W., Wu J., Wang C., Huang G.. Methane and nitrous oxide emissionsfrom rice field and related microorganism in black soil, northeastern China. Nut. Cyc.Agroecosyst.,2005,73(2-3):293-301.
    Zhang J.B., Song C.B. Yang W.Y.. Cold season CH4, CO2and N2O fluxes from freshwatermarshes in northeast China. Chemosphere,2005,59(11):1703-1705.
    Zhang W., Yu Y.Q., Sun W.J., Huang Y.. Simulation of soil organic carbon dynamics inChinese rice paddies from1980to2000. Pedosphere,2007,17(1):1-10.
    Zhang G.S., Chan K.Y., Li G.D., Huang G.B.. The effects of stubble retention and tillagepractices on surface soil structure and hydraulic conductivity of a loess soil. ActaEcolog. Sinica,2011,31:298-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700