用户名: 密码: 验证码:
污水处理系统中磺胺嘧啶和磺胺甲噁唑的优化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素的环境污染及其生态毒理效应已成为我国乃至全球所面临的重大环境问题之一。随着环境检测分析手段的快速发展和应用,给排水系统中抗生素等微污染物的残留、危害、去除机制等己逐渐引起了环境工作者和公众的广泛关注。
     城市污水的再生利用是解决当前水资源日益短缺的有效途径之一。城市污水处理厂已成为抗生素药物进入环境的主要污染源之一。而现有的多数传统污水处理工艺对抗生素的去除效率不高,且去除机制存在争议。故进入水体中的抗生素成为城市污水再生利用的一个巨大挑战。因此,如何在保证现有污水厂处理工艺对常规污染物较高去除率的基础上,探讨研究一套可靠、高效、经济可行的以去除抗生素为目的的优化处理工艺已成为亟待解决的问题。
     为了提高现有污水处理系统中磺胺类抗生素的去除率,本文在调查研究了泰安市两座污水处理厂各工段中SD与SMX浓度分布特征的基础上,采取传统污水处理系统SBR法和两类典型深度处理工艺优化处理人工污水中SD与SMX,系统的研究了处理工艺的影响因素和最佳工艺参数,提出了改进现有污水厂强化抗生素去除率的工艺流程。论文的主要研究内容如下:
     (1)采用固相萃取—高效液相色谱法对泰安市两座污水处理厂磺胺嘧啶和磺胺甲噁唑的污染特征分析。结果表明,不同污水来源的处理厂中进水浓度不同,以生活污水为主的A厂进水浓度为165.8ng L-1和324.3ng L-1,而以工业废水为主的B厂中进水浓度分别为88.9和165.3ng L-1;处理工艺不同,去除效率不同,A厂、B厂SD与SMX去除率分别为48.3%、44.9%和39.1%、35.8%;A厂中不同工段的去除率不同,其中的好氧单元去除率最高,SD和SMX去除率为29.0%和20.6%%;污水中SD和SMX的去除机制主要是吸附到颗粒物上,浓缩污泥中SD和SMX浓度分别为135.4和285.3ng g-1。
     (2)采用延长污泥龄和增加曝气时间的方法优化了SBR法去除污水中两种磺胺类抗生素工艺参数。实验结果表明,延长SBR总HRT、提高好氧时间段-厌氧时间段的比例和延长SRT有助于提高SD与SMX的去除率,当总HRT时间为480min时,SRT为25d,好氧-厌氧时间比为0.83时,SD与SMX去除率维持在48~56%、51~58%;
     (3)采用Fenton试剂法、高铁酸盐法和吸附法强化了污水系统中两种抗生素的去除效率。实验结果表明,当污水量为0.4L,SD与SMX浓度为1.0mg·L-1时,采用高铁酸盐去除SD与SMX,其最佳投加量为0.15mmoL·L-1,pH为6~7,温度为25℃,反应最佳时间为10min,SD与SMX的去除率达到88.6%和88.9%;采用Fenton试剂法去除SD与SMX时,其去除率随氧化剂和催化剂投加量的增加而升高,其最佳投加量为Fe2+0.015mmoL·L-1,H2O20.2mmoL·L-1,反应初始pH为4,温度为25℃,反应最佳时间为60min,SD与SMX的去除率达到92%和99%以上;采用大孔树脂吸附法去除SD与SMX时,其最佳投加量分别为1.6g,pH为6~7,反应平衡时间为120min,吸附温度为20℃,SD与SMX的去除率达到80.8%和88.2%,SD与SMX的去除符合拟一级动力学模型;采用活性炭去除SD与SMX时,其最佳投加量为100mg,pH为6~7,反应平衡时间为180min,SD与SMX的去除率达到79.7%和91.5%,SD与SMX的去除符合拟一级动力学模型。
     同时,实验结果表明,优化后的SBR工艺对常规指标可以保持原有的去除效率。深度处理法对常规指标的去除效率不高,去除率仅有10%~35%左右。在传统生物处理的污水系统中,增加深度处理法可有效去除污水中常规污染物和微量污染物。
Environmental pollution and eco-toxicological effects of antibiotics has become one of the majorenvironmental problems in China and even in the whole world. With the rapid development and applicationof environmental detection and analysis measures, the residual, hazards and removal of micro pollutantssuch as antibiotics in the drainage systems has gradually caused wide concern among the public, especiallythe environmentalist.
     Recycling of urban sewage is one way of effective solutions to the current growing water scarcity. Theurban sewage treatment plant has become one of the main sources of antibiotic drugs into the environment.Because most of the existing traditional wastewater treatment process of removing antibiotics is not soeffective and the mechanism of removal is controversial, antibiotics discharged into the water have becomea great challenge to the municipal wastewater recycling. So it has become a serious problem to discuss andresearch a reliable, efficient and economically feasible treatment process aimed at removing the antibioticon the basis of higher efficiency of the existing sewage treatment plant to remove the common pollutants.
     In order to improve the removal of sulfonamides in the existing wastewater treatment system,thispaper,based on investigating the concentration distribution of sulfadiazine(SD) and sulfamethoxazole(SMX)in each section of two sewage treatment plants in Tai'an City, took traditional treatment process SBR andtwo types of typical advanced treatment process to optimize the SD and SMX in artificial wastewater,studied systematically the influencing factors of treatment process and optimum parameters, and finally putforward a process of improving the removal of antibiotics in the existing wastewater treatment plants. Themain contents are as follows:
     (1)Analyzed the pollution characteristics of SD and SMX in two sewage treatment plants of Tai'anCity by solid-phase extraction and high performance liquid chromatography (HPLC). The results showedthat influent concentration varies from different sources of sewage: The influent concentration of SD andSMX were165.8ng L-1and324.3ng L-1in Plant A for domestic sewage and the influent concentrationswere88.9and165.3ng L-1in Plant B for industrial wastewater; that removal rates varied from differentprocesses: the removal rates of SD and SMX in Plant A and B were48.3%、44.9%and39.1%、35.8%respectively; that the removal rates varied from different sections in Plant A, and the highest removalefficiency took place in aerobic cells, in which removal rates of SD and SMX were29.0%and20.6%%;that the removal mechanisms of SD and SMX were mainly adsorbed into particulate matter and theconcentrations of SD and SMX in concentrated sludge were135.4and285.3ng g-1.
     (2) Optimized the parameters of removing two sulfa antibiotics in the SBR wastewater process byextending the sludge reaction time (SRT) and hydraulic reaction time (HRT). Experimental results showedthat extending the total HRT, improving the proportion of aerobic period-anaerobic period and extending the SRT contributed to the removal rates of SD and SMX: when the total HRT was480min, the SRT was25d, and the aerobic to anaerobic ratio was0.83, the removal rates of SD and SMX maintained at48~56%,51~58%;
     (3) Strengthened the efficiency of the removal of two antibiotics in the sewage system by usingFenton reagent method, ferrate method and adsorption method. Experimental results showed that when thedischarge of sewage was0.4L and the concentration of SD and SMX was1.0mg·L-1, for the method offerrate, the optimum dosage was0.15mmoL L-1, pH was from6to7, the temperature was25℃, and thebest reaction time was10min, when the removal rates of SD and SMX reached88.6%and88.9%; for theFenton reagent method,the removal rate increased with the oxidant and catalyst dosage increased, theoptimum dosage was Fe2+=0.015mmoL L-1, H12O2=0.2mmoL L-, the initial reaction pH was4, thetemperature was25℃, the best reaction time was60min, the removal rates of SD and SMX reached92%and over99%; for the microporous resin adsorption method, the optimal dosage was1.6g, pH was from6to7, the equilibrium time was120min, absorption temperature was20℃, the removal rates of SD andSMX were80.8%and88.2%,and the removals of SD and SMX’s were in line with the first order kineticsmodel; when using activated carbon to remove SD and SMX, the optimum dosage was100mg, pH wasfrom6to7, the equilibrium time was180min., the removal rates of SD and SMX reached79.7%and91.5%and the removals of SD and SMX’s were in line with the first order kinetics model.
     Meanwhile,the experimental results showed that optimized SBR technology could maintain theoriginal removal efficiency for the conventional indicators such as COD; that the advanced treatment is notso effective for the conventional indicators, and the removal rate was only about10%~35%; in sewagesystems of conventional biological treatment,increasing the depth treatment could effectively removeconventional pollutants and trace contaminants in sewage.
引文
白杨.污水厂中磺胺类抗生素的去除效率与残留特征[D].哈尔滨工程大学,2012
    常红,胡建英.城市污水处理厂中磺胺类抗生素的调查研究[J].科学通报.2008,53(02):159-164.
    陈国猛.紫外_高铁酸盐处理有机磷农药废水的实验研究[D].华中科技大学,2012.
    陈涛,李彦文等.广州污水厂磺胺和喹诺酮抗生素污染特征研究[J].环境科学与技术,2010(6):144-147+180.
    陈杖榴,吴聪明.兽用抗菌药物耐药性研究[J].四川生理科学杂志2003,25(3):120-124.
    崔英杰,杨世迎,王萍,等.Fenton原位化学氧化法修复有机污染土壤和地下水研究[J].化学进展,2008,20(7/8):1196-1201.
    刁晓平,孙英健,孙振钧.磺胺二甲基嘧啶对土壤微生物活动的影响[J].农业环境科学学报,2005,24(4):694-697.
    冯精兰. Fenton法降解抗生素磺胺间甲氧嘧啶钠[J].环境工程学报,2012,6(9):3125-3130.
    高立红,史亚利,刘杰民等.污水中氟喹诺酮类抗生素的分析方法[J].环境化学.2010,29(5):948-953.
    高品.典型抗生素和抗药性基因在污水处理系统中的归趋及迁移分布规律[D].东华大学,2011.
    谷静娟.反渗透深度处理城市污水中磺胺类抗生素的试验研究[D].河北工程大学,2013.
    国彬.土壤中磺胺类抗生素的检测方法优化及残留_降解研究.土壤通报[J].2012,43(2):386-390.
    郭照冰.超声降解水中的磺胺嘧啶[J].环境工程学报,2012,6(9):3143-3147.
    洪蕾洁,石璐.固相萃取_高效液相色谱法同时测定水体中的10种磺胺类抗生素[J].环境科学,2012,33(2):652-657.
    胡勤海,管丽莉,庄秋松. SBR法处理磺胺废水的试验研究[J].环境污染与防治,2002,24(1):19-20.
    姜蕾,陈书怡,杨蓉.长江三角洲地区典型废水中抗生素的初步分析[J].环境化学,2008,2(3):371-374.
    李国亭,郭宇杰.高铁酸盐降解四环素的研究[J].人民黄河,2009,31(7):50-51.
    李俊锁,邱月明,李超.兽药残留分析[M].上海:上海科学技术出版社,2002,228-237.
    李向阳.高原低氧环境中磺胺甲噁唑的药物动力学研究[D].沈阳医科大学,2010.
    李彦文,莫测辉,赵娜.高效液相色谱法测定水和土壤中磺胺类抗生素[J].分析化学.2008,36(7):954-958.
    李彦文,莫测辉,赵娜.菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009,6(30):1762-1766.
    李再兴,左剑恶,剧盼盼,吴春旭,余忻,王莹,赵秀梅,王勇军.Fenton氧化法处理抗生素废水二级出水[J].环境工程学报,2013,7(1):132-136.
    林维宣.各国食品中农药兽药残留量规定[M].大连:大连海事出版社,2001.
    刘锋,应光国,周启星.抗生素类药物对土壤微生物呼吸的影响[J].环境科学,2009,30(5):1280-1285.
    刘佳,曹卫东,曾闹华.砂质潮土中五种磺胺类药物的高效液相色谱检测方法[J].中国土壤与肥料,2010(3):78-83.
    刘娟.磺胺类抗生素在城市污水处理厂的分布与迁移转化研究[D].河北:河北工程大学,2012
    刘铁铮,王冉,柳伟荣.鸡蛋中7种磺胺药物的多残留检测方法[J].江苏农业学报,2005,21(4):306-311.
    刘小云,为群.水中抗生素污染现状及检测技术研究进展[J].中国卫生检验杂志.2005,5(08):1011-1014.
    马丽丽,郭昌胜,胡伟.固相萃取-高效液相色谱-串联质谱法同时测定土壤中氟喹诺酮、四环素和磺胺类抗生素[J].2010,1(38):21-26.
    马文成.优化污水厂工艺参数强化处理阿特拉津的研究[J].环境工程学报,2010,4(12):2745-2749.
    马艳,高乃云.高铁酸钾去除水中磺胺嘧啶[J].同济大学学报(自然科学版).2013,41(1):106-109.
    马艳,高乃云,李聪.高铁酸钾去除饮用水源中盐酸四环素试验研究[J].土木建筑与环境工程,2010,32(4):108-113.
    曲甍甍,孙立伟,陈鋆等.兽药添加剂阿散酸和土霉素的毒理学研究[J].农业环境科学学报.2004,23
    (2):240-242.
    沈群辉.养殖场及周边农田土壤抗生素抗性基因和重金属污染初步研究[D].东华大学,2012.
    宋存义,汪翠萍.污水处理中几种去除药物及个人护理用品方法的机理及效果比较[J].环境工程学报,2009,3(11):1921-1930.
    孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    孙越,朱兆连,潘丙才,李爱民,张全兴,陈金荣.树脂吸附法处理磺胺中间体生产废水的研究.[J].化工环保,2003,23(1):9-13.
    唐才明,黄秋鑫,余以义,彭先芝.高效液相色谱-串联质谱法对水环境中微量磺胺、大环内酯类抗生素、甲氧苄胺嘧啶与氯霉素的检测[J].分析测试学报,2009,28(8):909-913.
    田世烜,张萌,陈亮,黄满红. UASB-SBR工艺去除生活污水中磺胺二甲基嘧啶的试验研究[J].水处理技术2011,(4),84-87
    田世恒,张萌,陈亮,黄满红.3种污泥对磺胺二甲基嘧啶的吸附性能[J].环境工程学报,2012,6(3):1020-1024.
    彭先芝,谭建华,余以义.药物与个人护理用品在城市污水处理过程中的去除和机理[A].第二届污染控制与资源化全国学术会议[C].南京:南京大学,2007.
    王凯娟,代丽萍,郄园林,张梅喜.高铁酸钾消毒作用实验观察[J].中国公共卫生,2003,19(9):1084-1085.
    王冉,刘铁铮,魏瑞成.猪粪便中兽药盐霉素残留的降解动态研究[J].农业环境科学学报,2007,26(增刊):219-223.
    巫杨.磺胺甲恶唑和甲氧苄氨嘧啶在土壤中的好氧降解及对微生物呼吸的影响[J].环境化学,2011,30(12):2015-2021.
    巫扬, W. Mike..水体中磺胺甲恶唑和甲氧苄氨嘧啶的自然光降解[J].环境化学,2013,32(6):1081-1087.
    谢胜,李娟英,赵庆祥.磺胺类抗生素的活性炭吸附过程研究[J].环境工程学报,2012,6(2):484-488.
    邢子鹏.混凝_水解_好氧MBBR_Fenton法处理抗生素发酵废水研究[D].哈尔滨工业大学,2008
    徐维海.典型抗生素类药物在珠江三角洲水环境中的分布_行为与归宿[D].中国科学院,2007.
    徐维海,张干,邹世春等.典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征[J].环境科学,2007,28(8):1779~1783.
    杨桂朋,孙晓春.海水中农药的光化学降解研究[J].中国海洋大学学报,2007,37(4):550~556.
    叶计朋,邹世春,张干,徐维海.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,(02):384-388.
    俞悦.光化学及生物法降解磺胺甲噁唑SMX的研究[D].上海师范大学,2013.
    曾湘梅,李咏梅,赵俊明.SBR工艺去除模拟城市污水中双A的研究[J].环境污染与防治,2008,30
    (10):23-27.
    张欣.碳纳米材料对磺胺甲噁唑的吸附机理研究[D].昆明理工大学,2011.
    赵双阳.活性炭改性及吸附水中磺胺类抗生素的研究D].哈尔滨工业大学,2011.
    周启星,罗义.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报.2007,2(03):243-251.
    庄无忌.各国食品和饲料中农药兽药残留限量大全[M].北京:中国对外经济贸易出版社,1995:982-1014.
    赵娜.珠三角地区典型菜地土壤抗生素污染特征研究[D].广州:暨南大学,2007.
    Abegglen.C, A. Joss. The fate of selected micropollutants in a single-house MBR [J]. Water Research,2009,69(11):1765-1774.
    Alighardashi A., D. Pandolfi. Acute sensitivity of activated sludge bacteria to erythromycin[J].. Journal ofHazardous Materials,2009,95(3):327-330.
    Andersen H,Siegrist H,Hailing-Srensen B.Fate of estrogens in a municipal sewage treatment plant [J].Environmental Science and Technology,2003,37(18):402l-4026.
    Batt AL,Bruce IB,AgaDS.Evaluating the vulnerability of surface water to antitfiotie contamination fromvarying wastewater treatment plant discharges[J].Environmental Pollution,2006,142(2):295-302.
    Behera S K, Kim H W, Oh J E. Occrrence and removal of antibiotics, hormones and several otherpharmaceuticals in wastewater treatment plants of the largest industrial city of Korea [J]. Science of theTotal Environment,2011,409(20):4351~4360.
    Benitez F.J, Acero J.L, Real F.J, Rubio F.J, Leal A.I. The role of hydroxyl radicals for the decomposition ofphydroxy phenylacetic acid in aqueous solutions [J]. Water Research,2001,35(5):1338-1343.
    Bielski, B. H. J. Thomas, M. J. Studies of hypervalent iron in aqueous solutions Radiation-inducedreduction of iron(VI) to iron(V) by CO2.[J]. Am. Chem. Soc,1987,109(1),7761-7764
    Blanco, G. and J. A. Lemus, et al.Microbial pollution in wildlife: Linking agricultural manuring andbacterial antibiotic resistance in red-billed choughs[J]. Environmental Research,2009,62(6):868-872.
    Burbano A.A, Dionysiou D.D, Suidan M.T, Richardson T.L. Oxidation kinetics and effect of pH on thedegradation of MTBE with Fenton reagent [J]. Water Research,2005,39(1):107-118.
    Campagnolo ER, Johnson KR, KarpatiA,etal.Antimicrobial residues in animal waste and water resourcesproximal to large-scale swine and poultry feeding operations[J].Sci Total Environ,2002,2(99):89-95.
    Carballa M, Omil F, Lema J M. Behavior of pharmaceuticals, cosmetics and hormones in a sewagetreatment plant[J]. Water Res,2004,38(12):2918-2926
    Christian T,Schneider R J,Fvrber H A. Determination of antibiotics residues in manure, soil and surfacewaters [J].Actahydrochim Hydrobiol,2003,3(1):34-44.
    Clara M,Kreuzinger N,Strenn B.The solids retention time-A suitable design parameter to evaluate thecapacity of wastewater treatment plants to remove micropollutants[J].Water esearch,2005,39(1):97-106
    Díaz-Cruz M S,García-Galán M J,Barceló D. Highly sensitive simultaneous determination of sulfonamideantibiotics and one metabolite in environmental waters by liquid chromatography quadrupole lineariontrap-mass spectrometry[J].Journal of Chromatography A,2008,1193(1/2):50~59.
    Eva MG,Alfredo CA,Andreas H.Trace determination of fluo Roquinolone antibacterial agents in urbwastewater by solid-phase extraction and liquid chromatography with fluorescence detection[J]. AnalChem,2001,73(15):3632-3638.
    Fent K, WestonA A, CaminadaD.Ecotoxieology of human Pharmaeeutieals[J].Aquatie Toxicology,2006,76(2):12-15.
    Ferrarese E,Andreottola G,Oprea I A.Remediation of PAH-contaminated sediments by chemical oxidation[J]. Hazard Mater,2008,152(1):128-139
    Gavalchin J,Katz S E. The persistence of fecalborne antibiotics in soil [J]. Jaoac Int,1994,7(7):481-485.
    Gigerw,Alder A C,Golete M l. Occurrence and fate of antibiotics as trace contaminants in wastewaterssewage sludge and surface waters [J]. Chimia,2003,5(7):485-491.
    Gobel A, Thomsen A, McArdell C S, et al. Occurrence and sorption behavior of sulfonamides, macrolidesand trimethoprim in activated sludge treatment [J]. Environ Sci Technol,2005,39(11):3981-3989
    GonzAlez, O. and M. Esplugas. Performance of a Sequencing Batch Biofilm Reactor for the treatment ofpre-oxidized Sulfamethoxazole solutions [J].Water Research,2009,32(1):254-257.
    Hirsch, R., Ternes, T. Haberer, K, Kratz, K.L. Occurrence of antibiotics in the aquatic environment [J]. Sci.Total Environ,1999,2(25),109-118.
    Hoigne J,Bader H.Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ:dissociatin gorganic compounds [J].Water research,1983,17(2):185-188..
    Huang CH,Renew JE,Smedy KL.Assessment of potential antibiotics contaminants in water andpreliminary occurrence analysis [J]. Water Res update,2001,1(20):30-40.
    Huang M H,Chen L,Chen D H.Study on the transportation and transformation of PPCPs in wastewatertreatment systems[J].Industrial Water Treatment,2009,29(7):16-17(in Chinese)
    Huber, M. M., Korhonen, S., Ternes, T. A., Von Gunten, U. Oxidation of pharmaceuticals during watertreatment with chlorine dioxide[J]. Water Research,2005,39(15):3607-3617.
    HVlzel, C. S.1. and K.1. Schwaiger. Sewage sludge and liquid pig manure as possible sources ofantibiotic resistant bacteria [J]. Environmental Research,2010,144(3):302-309.
    Jiang J Q.Researchi progress in the use of ferrate(Ⅵ) for the environmental remediation[J].Journa ofHazardous Materials,2007,146(3):617.
    Joss A,Andersen H,Ternes T.Removal of estrogens in municipal wastewater treatment under aerobic andanaerobic conditions Consequences for plant optimization[J].Environmental Science and Technology,2004,38(11):3047-3055
    Johnson A.C,Williams R J.A model to estimate influent and effluent concentrations of estradiol,estrone,and ethinylestradiol at sewage treatment works[J].Environmental Science and Technology,2004,38(13):3649-3658
    Jones O A,Voulvoulis N,Lester J N. Human pharmaceuticals in wastewater treatment processes [J].Critical Reviews in Environmental Science and Technology,2005,35(5):401-427.
    Keith A L, Craig D A,Michael T M, et al. Effect s of ionic strengt h, temperature,and pH ondegradation of selected antibiotics[J]. Environ Qual,2008,3(7):378-386.
    Kim, S. and J. N. Jensen. Tetracycline as a selector for resistant bacteria in activated sludge [J].Chemosphere2007,42(13):3552-3560.
    K.kümmerer.Singnificance of antibiotics in the environment[J].Journal of antimicrobial chemotherapy,2003,52(1):5-7.
    Kolpin D W, Furlong E T, Meyermt. Pharmaceuticals, hormones, and other organic wastewatercontaminants in U. S. streams,1999-2000: a national reconnaissance [J]. Environ SciTechnol,2002,3(6):1202-1211.
    Kreuzinger N,Clara M,Strenn B.Relevance of the sludge retention time(SRT)as design criteria forwastewater treatment plants for the removal of endocrine disruptors and harmaceuticals from wastewater[J]. Water Science and Technology.2004,50(5):149-156
    Kwon B.G, Lee D.S, Kang N, Yoon J. Characteristics of p-chlorophenol oxidation by Fenton’s reagent [J].Water Research,1999,33(9):2110-2118.
    Li, B. and T. Zhang. Mass flows and removal of antibiotics in two municipal wastewater treatment plants[J]. Chemosphere,2011,83(9):1284-1289.
    Lic,Lixz,Grahan N.A study of the preparation and reactivity of potassium ferrate [J]. Chemosphere,2005,61(4):57-68.
    Lin, A.Y., T. Yu, C. Lin. Pharmaceutical contamination in residential, industrial, and agricultural wastestreams: Risk to aqueous environments in Taiwan [J]. Chemosphere,2008,407(12):3793-3802.
    Lin, A. Y., Y. Tsai.Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streamsfrom hospitals and pharmaceutical production facilities [J]. Science of The Total Environment,2009,74(1):131-141.
    Lindberg R H, Wennberg P, Johansson M I. Screening of human antibiotic substances and determination ofweekly mass flows in five sewage treatment plants in Sweden[J]. Environ Sci Technol,2005,39(10):3421-3429.
    Marta Carballa, Francisco Omil, Thomas Ternes. Fate of pharmaceutical and personal careproducts (PPCPs) during anaerobic digestion of sewage sludge[J].Water Research,2007,4(1):2139-2150.
    M.Clara,N.Kreuzinger,B.Strenn,O.Gans,H.Kroiss.The solids retention time-a suitable design parameter toevaluate the capacity of wastewater treatment Plants to remove mieroPollutants[J].Water Researeh,2005,3(9):97-106.
    Nicole Kemper. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators,2008,8(1):1-13.
    N.vieno, T.Tuhkanen, L.Kronberg.Elimination of pharmaeeutieals in sewage treatment plants in Finland[J].Water Researeh,2007,41(1):1001-1012.
    OECD.OECD guidelines for testing of chemicals,test guideline106:adsorption/desorption using a batchequilibrium method[M].Revised Draft Document.Paris:OECD,2000.1-45.
    Peltier, E. and J. Vincent. Zinc-induced antibiotic resistance in activated sludge bioreactors [J]. WaterResearch,2010,44(3):83-94.
    Perez S, Eichhorn P, Aga D S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole,sulfathiazole, and trimethoprim at different stages of sewage treatment[J]. Environ Toxicol Chem,2005,24(6):1361-1367
    PlSsz, B. G. and H. Leknes. Diurnal variations in the occurrence and the fate of hormones and antibiotics inactivated sludge wastewater treatment in Oslo, Norway[J]. Science of The Total Environment,2010,158(5):1444-1450.
    Prado, N. and J. Ochoa. Biodegradation by activated sludge and toxicity of tetracycline into asemiindustrial membrane bioreactor[J]. Bioresource Technology,2009,44(11):1302-1306.
    Prado, N, J. Ochoa. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activatedsludge system[J]. Process Biochemistry,2009,100(15):3769-3774.
    Ramunas S,TCGlenn.Elevated Microbial Tolerance to Metals and Antibiotics in Metal ContaminatedIndustrial Environments[J].Environ. Sci.Technol,2005,3(9):3671-3678.
    Reinthaler, F. F. and G. Feierl. ESBL-producing E. coli in Austrian sewage sludge [J]. Water Research,2010,4(3):193-200.
    Roman H,Thomas T,Klaus H.Occurrence of antibiotics in the aquatic environment [J].Sci Total Environ,1999,225(1-2):109-118.
    R. Reif, S. Suárez, F. Omil. Fate of pharmaceuticals and cosmetic ingredients during the operation of aMBR treating sewage[J].Desalination,2008,2(1):511-517
    Rossi I, Bautitz F., Nogueira P. Degradation of tetracycline by photo-Fenton process—Solar irradiation andmatrix effects[J].. Journal of Photochemistry and Photobiology A:Chemistry,2007,30(5):33–39
    Ruijie Zhang, Gan Zhang, Qian Zheng, Jianhui Tang, Yingjun Chen, Weihai Xu, Yongde Zou,XiaoxiangChend. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river dischargeEcotoxicology and Environmental Safety80,2012,208–21.
    Sanderson H,Brain R A,Johnson D J.Toxicity classification and evaluation of four pharmaceuticals classes:antibiotics,antineoplastics,cardiovascular, and sexhormones[J].Toxicology,2004,203(1/3):27-40.
    Sandra R,Francesc B,Eva P.Determination of antibiotic compounds in water by solid-phaseExtraction-high-performance liquid chromatography-(electrospray)mass spectrometry[J]. ChromatogrA,2003,10(10):225-232.
    S.Kim, REiehhorn, JN.Jensen, ASWeber, D.S.Aga.Removal of antibiotics in Wastewater:Effect ofhydraulie and solid retention times on the fate of tetraeyeline in the activated sludge Proeess[J].Environmental Science and Technology,2005,3(9):5816-5823.
    Sun J.-H, Sun S.-P, Fan M.-H, Guo H.-Q, Qiao L.-P, Sun R.-X. A kinetic study on the degradation ofnitroaniline by Fenton oxidation process [J]. Journal of Hazardous Materials,2007,148(1-2):172-177.
    Tadkaew, N. and M. Sivakumar.Effect of mixed liquor pH on the removal of trace organic contaminants ina membrane bioreactor[J]. Bioresource Technology,2010,236(1):127-134.
    Theresa A. Gehring,Larry G. HPLC Determination of Sulfadiazine Residues in Coho Salmon(Oncorhynchus kisutch) with Confirmation by Liquid Chromatography with Atmospheric PressureChemical Ionization Mass Spectrometry[J]. Journalof Agriculturaland Food Chemistry,1996,44(10):3164-3169.
    Thomas H. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a reviewin recent research data [J]. Toxicol Lett,2002,13(1):5-17.
    Westerhoff P,Yoon Y,Snyder S.Fate of endocriedisruptor,pharmaceutical,and personal care productchemicals during simulated drinking water [J].water treatment technology,2005,39(17):6649-6652.
    Wood, R. H. The Heat, Free Energy and Entropy of the Ferrate(VI) Ion.[J]. Am.Chem. Soc.1958,80(1),2038-2041
    World Health Organization(WHO).WHO Annual Report on Infectious Disease: Overcoming AntimicrobialResistance. World Health Organization: Geneva, Switzerland,2000.
    Yang Sheng fu, LinCheng-Fang.Fate of sulfonamide antibiotics in contact with activated sludge sorptionand biodegradation[J]. Water research,2012,.46(10):1301-1308.
    Yu, T, A. Y. Lin. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge agebiological process [J]. Chemosphere,2009,31(6):842-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700