用户名: 密码: 验证码:
我国湖泊富营养化区域差异性调查及氮素循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化作为一个全球性的环境问题,越来越受到人们的关注。大量研究表明湖泊富营养化的发生不仅与水质条件相关,同时也与湖泊的地理特征和气象条件以及自身的水力条件、水生态系统等因素相关,不同区域湖泊固有的营养状态水平、营养物入湖负荷和富营养化效应之间的关系存在显著的区域差异性。然而,到目前为止,我国还缺乏统一的湖泊营养物生态分区技术方法体系,对现有水生态区域的划分多以水体现状使用功能和行政区为基础进行划分,迫切需要根据不同区域特点和不同类型的湖泊,科学地进行分区,而对全国各大湖区湖泊差异性进行调查研究则是湖泊分区的理论基础。因此,本文在如下几个方面进行了调查研究:
     1.对分布于江苏、云南、新疆、内蒙古的25个湖泊的水质进行调查,通过调查数据,对这些湖泊的富营养化状况进行了分析,在查阅大量的文献资料基础上,对这些湖泊的富营养化演变的历史趋势进行了探讨。结果表明已发生富营养化和具备发生富营养化的湖泊占总调查湖泊的84%,其中新疆湖区湖泊富营养化程度较低,内蒙古呼伦湖富营养程度最为严重,江苏西部所调查湖泊营养状态中等,而云南湖泊富营养化程度两级分化严重。历史资料和现场调查结果表明,绝大多数湖泊在近30年富营养化程度均有所提高,新疆、内蒙古等半干旱地区富营养化主要由气候暖干化引发,而南方湖泊如太湖、和滇池等富营养主要是受人类活动干扰引起。
     2.对2009-2010水文年中环太湖25条主要河流以及太湖梅梁湾、东太湖等典型湖区中营养盐的年变化情况进行分析,并结合太湖出、入湖水量、蓝藻人工打捞量和鱼类产量等调查,探索了太湖营养盐出、入湖通量和水体自净能力。结果表明太湖氮素河道年输入、输出总量约为7.00万吨和4.01万吨,总磷年输入、输出总量约为3756吨和3746吨,均远远大于2000-2002年度。湖西区和浙西区环湖河道是太湖营养盐主要来源,其总氮入湖量分别占河道总输入量的71.2%和22.6%,而总磷入湖量则占河道总输入量的61.2%和27.7%;湖东区是太湖氮磷的主要出口,约占总输出量的55.6%和61.6%。在该水文年中,约3.22万吨氮素从太湖水体中去除,其中约2.88万吨氮素通过反硝化途径去除,体现出湖泊强大的氮素自净能力。太湖不同湖区、不同季节反硝化潜力体现出较大的差异性,因此氮素自净能力在湖泊氮素迁移转化中的重要作用值得进一步研究。
     3.通过原位实验及实验室微宇宙模拟,研究了藻华暴发对湖泊反硝化能力的影响。结果表明蓝藻水华使水体处于厌氧状态,并能够提供大量有机碳源,这将促使反硝化在水体中直接发生,从而提高湖泊氮去除能力。传统反硝化是硝态氮迁移转化的最重要途径。经计算湖泊生态系统中109cells藻细胞的降解可提供足够的碳源将0.53mmol硝氮完全脱除,因此反硝化可能是藻华暴发过程中降低氮素含量最重要的因子;藻华暴发对湖泊氮浓度具有负反馈效应,并能够减轻因大量氮素输入后藻华暴发的程度。
     4.利用紫外-可见光谱、三维荧光、同位素和元素分析等技术对25个调查湖泊中可溶性有机质(DOM)的组成特征进行了分析,并对各湖泊中可溶性有机碳的来源进行了探讨。江苏省西部各湖泊的DOM三维荧光图谱中FI值和BIX值分别在1.17-1.30和0.47-0.67之间,显示DOM具有极强的外源性。DOM的r(A,C)值及相关性研究结果均表明江苏西部湖泊中DOM具有相似的来源,结合这些湖泊流域的经济发展水平可推断入湖河流携带的由农业废弃物及其下游产业产生的有机质是江苏西部湖泊中DOM的主要来源。呼伦湖有机质主要来源于陆源生物,而夏季湖泊内源对湖泊有机质也有一定的贡献,结合呼伦贝尔地区气温变化及放牧状况,可推断气候暖干化及特定地区的过度放牧使得湖泊湖泊DOM和营养盐浓度升高。冬季太湖DOM内、外源均占相当大的比例,表明太湖DOM内源性较强;云南、新疆湖泊中星云湖、杞麓湖和滇池等富营养湖泊中DOM有较强的内源性,而其它贫营养-中营养湖泊外源性较强。
     5.建立了太湖、滇池和呼伦湖的藻类生长模型,利用此模型考察了三个湖泊对营养盐输入的响应的差异性,结果表明营养盐输入响应程度为呼伦湖<太湖<滇池。同时对湖泊富营养效应的影响因素进行了分析,根据这些因素对所调查湖泊进行了初步分区、分类。
     研究结果可以为中国湖泊营养物分区提供依据,从而能够合理地制定全国各湖区营养盐的基准及标准。
Being a worldwide environmental problem, eutrophication has been paid more and more attention in past three decades. A lot of studies show that the occurrences of eutrophication not only correlate to the water quality but also associate with the geographic character, climate, hydrologic condition and aquatic ecosystem. The response of lakes to nutrients input varied greatly with the regions that lakes are located in, while the ecological regionalization and classification system of lakes' eutrophication have not been constructed in China by now. The aquatic ecological areas are presently being regionalized by the district, water quality and eco-function. Thus, it is of great urgency to regionalize the lakes scientifically according to the regional character and lake type. Since the investigation of the difference between the lakes in China is the base of the eutrophication eco-region, the following aspects are studied in this paper:
     1. The eutrophic statuses of25lakes in Jiangsu, Yunnan, Xinjiang and Inner Mongolia were analyzed according to the field investigation. Combined with large amount literatures, the eutrophic evolution tendencies of these lakes were further discussed. About84%of the investigated lakes are eutrophic or being toward to eutrophication. The eutrophic levels of these lakes in different district were in the rank of Xinjiang     2. The nitrogen and phosphate in25rivers surrounding Lake Taihu as well as in some typical lake zones such as Meiliang Bay and East Lake Taihu were analyzed during the hydrological year of2009-2010. Furthermore, the nitrogenous self-purification capacity of Lake Taihu was studied in combined with the investigation of water flow, cyanobacteria salvages and aquatic product outputs. In the whole hydrological year, the inflow and outflow fluxes of total nitrogen (TN) were7.00×104t and4.01×104t, respectively. About3.02×104t and0.20×104t nitrogen in water body were removed by denitrification and sediment adsorption during this hydrological year, respectively, suggesting a strong nitrogen self-purification capacity of Lake Taihu. The potential denitrification is stronger in western Lake Taihu (e.g., Meiliang Bay) than that in eastern Lake Taihu (e.g., East Lake Taihu), and is stronger in summer than that in other seasons. Thus, the nitrogenous self-purification capacity plays an important role in nitrogenous transference and transformation in Lake Taihu.
     3. To understand the effect of cyanobacterial blooms on nitrogen transformations in eutrophic Lake Taihu, nitrate transformations after the addition of cyanobacteria collected from Lake Taihu were traced in laboratory microcosms with the15N isotope addition method. About81.2%and98.4%of nitrate was lost when2×109and4×109cells L"1of cyanobacteria were added, respectively. Conventional denitrification was found to play a major role in the nitrate removal process while other pathways (e.g., dissimilatory nitrate reduction to ammonium [DNRA] and assimilation of nitrate into microbial biomass) were negligible. It was likely that the cyanobacterial respiration as well as their decomposition resulted in anoxic conditions and that cyanobacteria also served as a carbon source for denitrification. Based on the above results, it was estimated that109cells of cyanobacteria were enough for denitrifiers to remove0.53mmol nitrate in the eutrophic lake ecosystem. Therefore, cyanobacterial blooms have the potential for nitrogen removal by denitrification and this process could cause nitrogen limitation of primary production in summer in Lake Taihu.
     4. The origins of the dissolved organic matter (DOM) in27lakes were identified using UV-Vis absorbance, fluorescence spectroscopy, C/N ratios and isotopic technology. Fluorescence indexes (FI) and Biological Index (BIX) of DOM in the lakes of west Jiangsu were less than1.3or0.67, respectively, suggesting DOM a strong terrestrial origin. Significant correlation was found between the fluorescence intensities per unit organic carbon at different peaks, which indicated that the humic-like and protein-like materials in these lakes have a similar source. Considered the characterization of these lakes and the economic development, it can be deduced that most of these DOM are produced by agriculture and downstream industries and imported with inflow rivers. C/N, the stable carbon isotope (δ13C) values typical of C3plant debris in particulate organic matter (POM) and the fluorescence indices of DOM indicate that most of the OM in Lake Hulun is of terrigenous origin. It was deduced that about10.2%and7.3%of DOM were contributed by algae in September and January, respectively, according to the linear correlation between the concentrations of algae-derived DOM and the fluorescence intensities of tyrosine-like matter. According to stockbreeding development and climate change in Hunlun Buir Steppe, we deduced that the destruction of the grassland ecosystem by over grazing in specific locations and trends in climatic warming and drying were the main factors causing the increase of OM and nutrient concentrations in Lake Hulun. Both the allochthonous inputs and autochthonous production take a certain contribution to the DOM pools of Lake Taihu in December, which suggests that the autochthonous production is the main origin of DOM in Lake Taihu in the whole year. The DOM in the eutrophic lakes in Yunnan and Xinjiang such as Lake Dianchi, Lake Xinyunhu and Lake Qiluhu are predominantly allochthonous derived, while it is on the contrary in oligotrophic and mesotrophic lakes.
     5. The algal growth models of Lake Taihu, Lake Dianchi and Lake Hulunhu were constructed. According to the models, it was found that the responses of the three lakes to nutrients inputs are ranked in the order of Lake Hulunhu, Lake Taihu and Lake Dianchi. Moreover, the factors influence on the trophic response of lakes were discussed. Base on the analysise of the factors, the investigated lakes were primarily regionalized and classified.
     Our study can provide the basis for the lakes regionalization and classification in China, and for the developing of nutrient criteria and standards.
引文
Abbt-Braun G, Lankes U and Frimmel FH. Structural characterization of aquatic humic substances:The need for a multiple method approach. Aquatic Science.2004,66:151-170.
    Aitkenhead JA and McDowell WH. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemistry Cycles.2000,14:127-138.
    Andersen TK, Jensen MH, S(?)rensen J. Diurnal variation of nitrogen cycling in coastal, marine sediments. I. Denitrification. Marine Biology.1984,83:171-176.
    APHA. Standard methods for the examination of water and waste water(19th eds). Washington DC:American Public Health Association,1995:214-278.
    Arango C, Tank JL, Schaller JL, Royer T, Bernot MJ, David MB. Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshwater Biology. 2007,52:1210-1222.
    Artinger R, Buckau G, Geyer S, et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon. Applied Geochemistry.2000,15:97-116.
    Aslan S, Turkman A. Nitrate and pesticides removal from contaminated water using biodenitrification reactor. Process Biochemistry.2006,41:882-886.
    Bade DL, Carpenter SR, Cole JJ, et al.2007. Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions. Biogeochemistry 84:115-129.
    Bailey RG. Identifying ecoregion boundaries. Environmental Management.2004,34 (Suppl): 14-26.
    Baker A and Spencer RGM. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of the Total Environment.2004, 333:217-232.
    Baker A, Curry M. Fluorescence of leachates from three contrasting landfills. Water research. 2004,38:2605-2613.
    Baker A, Ward D, Lieten SH, et al. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer. Water research.2004,38 (12):2934-2938.
    Ballot A, Fastner J, Wiedner C. Paralytic Shellfish Poisoning Toxin-Producing Cyanobacterium Aphanizomenon gracile in Northeast Germany. Applied Environmental Microbiology.2010, 76(4):1173-1180
    Balls PW, Brockie N, Dobson J, Johnston W. Dissolved Oxygen and Nitrification in the Upper Forth Estuary During Summer (1982-92):Patterns and Trends. Estuarine, Coastal and Shelf Science.1996,42(1):117-134.
    Barraclough D and Puri G. The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biology and Biochemistry.1995, 27(1):17-22.
    Bricaud Annick., Morel A., and Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography.1981, 26(1):43-53.
    Brown, L. R.,1997, The Agricultural Link:How Environmental Deterioration Could Disrupt Economic Progress:Worldwatch Institute, Washington, DC.
    Buffle J, Deladoey P, Zumstein J et al. Analysis and characterization of natural organic matters in freshwaters. I. Study of analytical techniques. Journal of Hydrologia.1983,44 (2): 325-362.
    Buresh RJ, Casselman ME, Patrick Jr WH. Nitrogen Fixation in Flooded Soil Systems, A Review. Advances in Agronomy.1980,33:149-192
    Burgin AJ, Hamilton SK. Have we overemphasized denitrification in aquatic ecosystems:a review of nitrate removal pathways. Frontiers in Ecology and the Environment.2007,5: 89-96.
    Cairns JJ. Effects of increased temperatures on aquatic organisms. Industrial Waste.1956,1: 150-152.
    Carlson R. E. A trophic state index for lakes. Limnology and Oceanography.1977,22:361-369.
    Carpenter S R, Caraco N F, Correll D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications.1998,8(3):559-568.
    Cedergreen N, Madsen TV. Nitrogen uptake by the floating macrophyte Lemna minor. New Phytologist.2002,155:285-292
    Cedric G. Fichot and Ronald Benner. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophysical Research Letters.2011,38: L03610, doi:10.1029/2010GL046152.
    Cerco CF and Cole F. Three dimensional eutrophication model of Chesapeake Bay. Journal of Environmental Engineering.1994,19(6):1006-1025.
    Chen CW, Orlob CT. Ecological Simulation for Aquatic Environments. In:Pattern BC (ed), System Analysis and Simulation in Ecology. New York:Academic press,1975.
    Chen J., E. J. LeBoeuf, S. Dai, et al. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere.2003,50:639-647.
    Chen RF, Zhang Y, Vlahos P, et al. The fluorescence of dissolved organic matter in the Mid-Atlantic Bight. Deep-Sea Research Ⅱ.2002,49:4439-4459.
    Chen W, Westerhoff P, Leenheer JA, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology.2003,37:5701-5710.
    ChinYP, Aiken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology.1994,28:1853-1858.
    Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Marine Chemistry.1996,51:325-346.
    Collins GB, Weber CI. Phycoperiphyton (algae) as indicators of water quality. Transaction of the American Microscopy Society.1978,97:36-43.
    Crowly JM. Biogeography. Canadian Geographer.1967,11(4):312-326.
    Cumberland SA.and Baker A. The freshwater dissolved organic matter fluorescence- total organic carbon relationship. Hydrological Processes.2007,21(16):2093-2099.
    Dahl-Madsen KI and Strange-Nielsen K. Eutrophication models for ponds. Vand.1974,5: 24-31.
    Dalsgaard T, Thamdrup B, and Canfield DE. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology.2005,156:457-464.
    Damman, AWH. Regulation of nitrogen removal and retention in Sphagnum bogs and other peatlands. Oikos.1988,51(3):291-305.
    Del Castillo CE, Coble PG, Morell JM, et al. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Marine Chemistry.1999,66: 35-51.
    Determann S, Lobbes JM, Reuter R, et al. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry.1998,62:137-156.
    Dillon PJ and Rigler FH. The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography.1974,19:767-773.
    Dokulil MT, Teubner K. Cyanobacterial dominance in lakes. Hydrobiologia.2000,438:1-12.
    Donaghay PL, Osborn TR. Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnology and Oceanography.1997,42:1283-1296.
    Droop MR. Vitamin B12 and Marine Ecology. IV. The Kinetics of Growth, Uptake, and Inhibition in Monochrysis Lutheri. Journal of the Marine Biological Association of the United Kingdom.1968,48(3):689-733.
    Duce RA, LaRoche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science.2008,320:893-897.
    Dustin JS. and Miller AW. Trophic state evaluation for selected lakes in Grand teton national park.Joural of the American Water Reservoir association.2001,37 (4):887-897.
    Elliott JA, Jones ID. Page T. The importance of nutrient source in determining the influence of retention time on phytoplankton:an explorative modelling study of a naturally well-flushed lake. Hydrobiologia.2009,627:129-142.
    Eppley RW. Temperature and phytoplankton growth in the sea. Fishery bulletin.1972,70: 1063-1085.
    Eriksson PG, Weisner SEB. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography.1999,44:1993-1999.
    Fallon RD, Brock TD. Decomposition of blue-green algal (cyanobacterial) blooms in Lake Mendota, Wisconsin. Applied and Environmental Microbiology.1979,37(5):820-830.
    Filstrup CT, Scott JT, Lind OT. Allochthonous organic matter supplements and sediment transport in a polymictic reservoir determined using elemental and isotopic ratios. Biogeochemistry.2009,96:87-100.
    Fitzgenald GP. Some factors in the competition or antagonism among bacteria, algae and aquatic weeds. Journal of phycology.1969,5:351-359.
    Freeman C, Evans CD, Monteith DT, et al. Export of organic carbon from peat soils. Nature. 2001,412:785.
    Freeman C, Lock MA, Marxsen J, et al. Inhibitory effects of high molecular weight dissolved organic matter upon metabolic processes in biofilms from contrasting rivers and streams. Freshwater Biology.1990,24(1):159-166.
    Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions. Science.2008,320:889-892.
    Galloway JN, Bekunda M, Cai Z, et al. A preliminary assessment of "changes in the global nitrogen cycle as a result of anthropogenic influence". Third International Nitrogen Conferebce, Nanjing, China:October 2004.
    Gardner, WS, Chandler JF, Laird GA. Organic nitrogen mineralization and substrate limitation of bacteria in Lake Michigan. Limnology and Oceanography.1989,34(2):478-485.
    Golterman HL. The chemistry of phosphate and nitrogen compounds in sediments. Kluwer Academic Publishers, Dordrecht,2004.
    Golterman HL. The chemistry of phosphate and nitrogen compounds in sediments. Kluwer Academic Publishers, Dordrecht,2004.
    Gong Z and Xie P. Impact of eutrophication on biodiversity of the macrozoobenthos community in a Chinese shallow lake. Journal of Freshwater Ecology.2001,16 (2):171-178.
    Green S, Blough N. Optical absorption and fluorescence properties of chomophoric dissolved organic matter in natural waters. Limnology and Oceanography.1994,39(8):1903-1916.
    Gross EM. Allelopathical interaction between submerged macrophytes, epiphytes and phytoplankton:Algaecide hydrolysis polyphenol from Myriophyllum spicatum L. Ph D thesis. Cuvillier:Kiel University,1995.
    Grubecki I, Wojcik M. Analytical determination of the optimal temperature profiles for the reactions occurring in the presence of microorganism cells. Biochemical Engineering Journal. 2008,39(2):362-368.
    Gu B, Schelske CL, Waters MN. Patterns and controls of seasonal variability of carbon stable isotopes of particulate organic matter in lakes. Oecologia.2011,165(4):1083-1094.
    Harding LW, Meesn BW, Fisher TR. Phytoplankton production in two east coast estuaries: photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays. Estuarine, coastal and shelf science.1986,23:773-806.
    Harrison JA, Maranger RJ, Alexander RB, et al. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry.2009,93:143-157.
    Harrison JA, Maranger RJ, Alexander RB, et al. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry.2009,93:143-157.
    He Z, Qiao M, W S u, et al. Seven microcystinsi from Microcystis waterbloom in Lake Dalai, China. Journal of Environmental Science.1997,9(1):113-119.
    Hedges JI and Stern JH. Carbon and nitrogen determinations of carbonate containing solids. Limnology and Oceanography.1984,29(3):657-663.
    Hedges JI and Oades JM. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry.1997,27:319-361.
    Helms JR, Stubbins A, Ritchie JD, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography.2008,53(3):955-969.
    Henderson RK, Baker A, Parsons SA, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research.2008,42(13): 3435-3445.
    Hera N, Amya G, McKnighta D, et al. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research.2003,37:4295-4303.
    Hoffmann C, Funk R, Li Y, et al. Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena.2008,75:182-190.
    Home AJ and Goldman CR. Limnology (Second Edition), New York:McGraw-Hill, Inc.,1994.
    Hood E, Fellman J, Spencer RGM, et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature.2009,462:1044-1048
    Hossain AKMA, Raison RJ, Khanna PK. Effects of fertilizer application and fire regime on soil microbial biomass carbon and nitrogen, and nitrogen mineralization in an Australian subalpine eucalypt forest. Biology and fertility of soils.1995,19(2-3):246-252
    Howarth RW, Marino R, Lane J, et al. Nitrogen fixation in freshwater, estuarine, and marine ecosystems.1. Rates and importance. Limnology and Oceanography.1988a,33:669-687.
    Howarth, RW, Marino R, Cole JJ. Nitrogen fixation in freshwater, estuarine, and marine ecosystems.2. Biogeochemical controls. Limnology and Oceanography.1988b,33:688-701.
    Hu HJ, Li YY, Wei YX. The Freshwater Algae of China. Shanghai Science and Technology Press, Shanghai,1980.
    Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry.2009,40:706-719.
    Huovinen PS, Penttil H, Soimasuo MR. Spectral attenuation of solar ultraviolet radiation in humic lakes in Central Finland. Chemosphere.2003,51(3):205-214.
    Hutchinson GE. A Treatise on Limnology, Introduction to Lake Biology and the Limnoplankton. New York:John Wiley & Sons Inc.,1967.
    Imboden DM. Phosphorus model of lake eutrophication. Limnology and Oceanography.1974, 19:297-304.
    Inglett PW, Reddy KR, Mccormick PV. Periphyton chemistry and nitrogenase activity in a northern Everglades ecosystem. Biogeochemistry.2004,67:213-233.
    Ishida CK, Arnon S, Peterson CG, et al. Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata. Microbial Ecology.2008,56:140-152.
    Ishida CK, Arnon S, Peterson CG, et al. Influence of algal community structure on denitrification rates in periphyton cultivated on artificial substrata. Microbial Ecology.2008,56:140-152.
    Jin X, Wang S, Pang Y, et al. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2005,254:241-248.
    Jin X, Xu Q, Huang C. Current status and future tendency of lake eutrophication in China. Science in China, Series C.2005,48(S):948-954.
    Jones ID and Elliott JA. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biology.2007,52(6): 988-997.
    J(?)rgensen SE, Meier H, Frilis M. Examination of a Lake Model. Ecological Modelling.1978,4 (2-3):253-278.
    Judd KE, Crump BC, Kling GW. Variation in dissolved organic matter controls bacterial production and community composition. Ecology.2006,87:2068-2079.
    Kalff J. Limnology:inland water ecosystems. Prentice Hall. New Jersey,2002.
    Kang RJ, James RT and Lung WS. Assessing Lake Okeechobee eutrophication with water-quality models. Journal of Water Resources Planning and Management.1998,124(1): 22-30.
    Kastelan-Macan M, Petrovic M. The role of fulvic acids in phosphorus sorption and release from mineral particles. Water Science and Technology.1996,34(7/8):259-265.
    Kelso BHL, Smith RV, Laughlin RJ. Effects of carbon substrates on nitrite accumulation in freshwater sediments. Applied and Environmental Microbiology.1999,65(1):61-66.
    Kim J, Guo X, Park H. Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochemistry.2008,43(2): 154-160
    Kim LH, Choi E, Stenstrom MK. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere.2003,50:53-61.
    Kirchner WB, Dillon PJ. Comment on "An empirical method of estimating the retention of phosphorus in lakes" by Kirchner WB and Dillon PJ. Water Resources Research.1975,2(1): 182-183.
    Kiyokazu K, Kurosu M, Cheng Y, et al. Floristic Composition, Grazing Effects and Above-ground Plant Biomass in the Hulunbeier Grasslands of Inner Mongolia, China. Journal of Ecology and field biology.2008,31(4):297-307.
    Klug JL. Bacterial response to dissolved organic matter affects resource availability for algae. Canadian Journal of Fisheries and Aquatic Sciences.2005,62 (2),472-481.
    Koch MS and Reddy KR. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil science society of america journal.1992,56:1492-1499.
    Koenig A, Liu LH. Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Research.2001,35:1969-1978.
    Komatsu K, Nakajima F, Furumai H and Miki O. Characterization of dissolved organic matter (DOM) removal by iron coagulation using spectrofluorimetry and pyrolysis GC/MS analysis. Journal of water supply:research and technology-AQUA.2005,54(3):157-163.
    Kritzberg ES, Cole JJ, Pace ML, et al. Autochthonous versus allochthonous carbon sources of bacteria:Results from whole-lake 13C addition experiments. Limnology and Oceanography. 2004,49(2):588-596.
    Lapierre JF and Frenette JJ. Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquatic Science.2009,71:15-24.
    Li K. Management and restoration of fish communities in Lake Taihu, China. Fisheries management and ecology.1999,6:71-81.
    Li T, Wang DS, Zhang B, et al. Characterization of the phosphate adsorption and morphology of sediment particles under simulative disturbing conditions. Journal of Hazardous Materials. 2006,137:1624-1630.
    Liu JY, Wang H, Yang HJ, et al. Detection of phosphorus species in sediments of artificial landscape lakes in china by fractionation and phosphorus-31nuclear magnetic resonance spectroscopy. Environmental Pollution.2009,157:49-56.
    Lobbes JM, Fitznar HP, Kattner G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta.2000,64(17):2973-2983.
    Lonborg C, Davidson K, alvarez-Salgado XA, et al. Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Marine Chemistry.2009,113:219-226.
    Lozovik PA, Morozov AK, Zobkov MB, et al. Allochthonous and autochthonous organic matter in surface waters in Karelia. Water Resources.2007,34(2):204-216.
    Lu K, Jin C, Dong S, et al. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia.2006,568:111-120.
    Malmaeus JM, Hakanson L. A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling.2003,167 (3):247-262.
    Malmaeus JM, Hakanson L. Development of a lake eutrophication model. Ecological Modeling. 2004,171(1):35-63.
    Mao J, Chen Q, Chen Y. Three-dimensional eutrophication model and application to Taihu Lake, China. Journal of Environmental Sciences.2008,20:278-284.
    Martin TL, Kaushik NK, Trevors JT, et al. Review:denitrification in temperate climate riparian zones. Water, Air and Soil Pollution.1999,111(1/4):171-186.
    Mccarthy MJ, Lavrentyev PL, Yang L, et al. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Taihu Lake, China). Hydrobiologia.2007,581:195-207.
    Mccarthy MJ, Lavrentyev PL, Yang L, et al. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Taihu Lake, China). Hydrobiologia.2007,581:195-207.
    McHugh M, Harrod T, Morgan R. The extent of soil erosion in upland England and Wales. Earth Surf Process Landf.2002,27:99-107.
    McKnight DM, Boyer EW, Westerhoff PK et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materials and aromaticity. Limnology and Oceanography.2001,46(1):38-48.
    Meyers PA. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry.1997,27:213-250.
    Miller C, Gordon KG, Kieber RJ, et al. Chemical characteristics of chromophoric dissolved organic matter in rainwater. Atmospheric Environment.2009,43 (15):2497-2502.
    Mladenov N, Zheng Y, Miller MP, et al. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environmental Science and Technology.2010,44:123-128
    Monteith DT, Stoddard JL, Evans CD, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature.2007,450:537-540.
    Mopper K. and Schultz CA. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Marine Chemistry.1993,41:229-238.
    Muhammetoglu AB and Soyupak S. A three dimensional water quality macrophyte interaction model for shallow lakes. Ecological Modelling.2000,133(3):161-180
    Mulder A, van de Graaf AA, Robertson LA, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology.1995,16:171-184.
    Munevar F and Wollum AG. Effects of additions of phosphorus and inorganic nitrogen on carbon and nitrogen mineralization in Adndepts from Columbia. Journal of Soil Science Society of America.1977.41,540-545.
    Nalewajko C and Murphy TP. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach. Limnology.2001,2:45-48.
    Nedwell DB. Estuaries and saltmashes:interface between land and sea. Environmental Management and Health.1996,7(2):20-23.
    Negri AP and Jones GJ. Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola Toxicon. 1995,33(5):667-678
    Nelson NB, Carlson CA, Steinberg DK. Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Mar Chem,2004,89(1):273-287.
    Nguyen M, Westerhoff P, Baker L, et al. Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering.2005,131(11):1574-1582.
    Nie H, Yue L, Yang W, et al. Present Situation, Evolution trend and causes of sandy desertification in Hulunbuir Steppe (in Chinese). Journal of Desert Research.2005,25(5): 635-639.
    Nyholm N. A simulation model for phytoplankton growth and nutrient cycling in eutrophic shallow lakes. Ecological Modelling.1988,4(3):279-310.
    O(?)Melia CR. Phosphorus cycling in lakes. North Carolina Water Resources Research Institute, Raleigh Report 97,1974.
    Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science and Technology.2002,36:742-746.
    Omemik JM. Map Supplement:Ecoregions of the conterminous United States annals of the association of American. Geographers.1987,77(1):118) 125
    Oseguera LA, Alcocer J, Vilaclara G. Relative importance of dust inputs and aquatic biological production as sources of lake sediments in an oligotrophic lake in a semi-arid area. Earth Surface Processes and Landforms.2011,36:419-426.
    Ostroumov SA. Polyfunctional role of biodiversity in processes leading to water purification: Current conceptualizations and concluding remarks. Hydrobiologia.2002,469:203-204.
    Pan G, Zou H, Chen H, et al. Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution.2006,141:206-212.
    Pauer JJ and Auer MT. Nitrification in tile water column and sediment of a hypereutrophic lake and adjoining river system. Water Research.2000,34(4):1247-1254.
    Pelegri SP, Blackburn TH. Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation. Hydrobiologia.1996,325:231-238.
    Perkins RG, Underwood GJC. Gradient of chlorophylla and water chemistry along on eutrophic reservoir with determination of the limiting nutrient by in situ nutrient addition. Water research.2000,34(3):713-724.
    Pete R, Davidson K, Hart MC, et al. Diatom derived dissolved organic matter as a driver of bacterial productivity:The role of nutrient limitation. Journal of Experimental Marine Biology and Ecology.2010,391:20-26.
    Peters RH. The role of prediction in limnology. Limnology and Oceanography.1986, 31:1143-59.
    Peuravuori J and Pihlaja K. Isolation and characterization of natural organic matter from lake water:comparison of isolation with solid adsorption and tangential membrane filtration. Environent international.1997,23(4):441-451.
    Phillips DL and Gregg JW. Source partitioning using stable isotopes:coping with too many sources. Oecologia.2003,136:261-269.
    Pina-Ochoa E and Alvarez-Cobelas M. Denitrification in aquatic environments:a cross-system analysis. Biogeochemistry.2006,81:111-130.
    Reddy KR and Portier KM. Nitrogen utilization by Typha Latifolia L. as affected by temperature and rate of nitrogen application. Aquatic Botany.1987,27:127-138.
    Redfield AC. The biological control of chemical factors in the environment. American Scientist. 1958,46:205-222.
    Risgaard-Petersen N. Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments:On the influence of benthic microalgae. Limnology and Oceanography. 2003,48(1):93-105.
    Robert P, Kees K, Lambertus L. Primary Production Estimation from Continuous Oxygen Measurements in Relation to External Nutrient Input. Water Research.1996,30 (3):625-643.
    Rodhe W. Environmental requirements of freshwater plankton algae- experimental studies in the ecology of phytoplankton. Symbol. Bot. Upsalien,1948:149.
    Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, et al. Production of chromophoric dissolved organic matter by marine phytoplankton. Limnology and Oceanography.2010, 55(1):446-454.
    Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archive for Hydrobiology.1966,62:1-28.
    Schanz F and Juon H. Two different methods of evaluating nutrient limitation of periphyton bioassays using water from the River Rhine and eight of its tributaries. Hydrobiologia.1983, 102:187-195.
    Schindler DW. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes.1997,11:1043-1067.
    Senga Y, Mochida K, Fukumori R, et al. N2O accumulation in estuarine and coastal sediments: The influence of H2S on dissimilatory nitrate reduction. Estuarine, Coastal and Shelf Science. 2006,67:231-238.
    Sirivedhin T, Gray KA. Factors affecting denitriflcation rates in experimental wetlands:Field and laboratory studies. Ecological Engineering.2006,26:167-181.
    Smayda TJ. Harmful algal blooms:Their ecophysiology and general relevance to phytoplankton bloom in the sea. Limnology and Oceanography.1997,42:1137-1153.
    Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in Lake phytoplankton. Science.1983,221:669-671.
    Snodgrass WJ and Klapwijk A. Model for lake-bay exchange flow. Journal of Great Lakes Research.1984,11(5):43-52.
    Soballe DM and Kimmel BL. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology.1987,68:1943-1954.
    Sobieszuk P and Szewczyk KW. Estimation of (C/N) ratio for microbial denitrification. Environmental Technology.2006,27:103-108.
    Somlyody L. Eutrophication modeling, management and decision making:the Kis-Balaton case. Water Science and Technology.1998,37(3):165-175.
    Soupir ML, Mostaghimi S, Yagow ER. Nutrient transport from live stock manure applied to pastureland using phosphorus-based management strategies. Journal of Environmental Quality.2006,35:1269-1278.
    Southwell MW, Mead RN, Luquire CM, et al. Influence of organic matter source and diagenetic state on photochemical release of dissolved organic matter and nutrients from resuspendable estuarine sediments. Marine Chemistry.2011,126:114-119.
    Stambuk-Giljanovic N. The quality of water in Busko Blato reservoir. Environmental monitoring and assessment.2001,71(3):279-296.
    Standford F and Smith SJ. Nitrogen mineralization potential of soils. Soil Science Society of America Journal.1972,36,465-472.
    Stedmon CA, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry.2003,82:239-254.
    Sterner RW and Grover JP. Algal Growth in Warm Temperate Reservoirs:Kinetic Examination of Nitrogen, Temperature, Light, and Other Nutrients. Water Research.1998,32:3539-3548.
    Steven CC. Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Research.1991,25(6):707-715.
    Stevenson RJ, Bothwell ML, Lowe RL. Algal Ecology:Freshwater Benthic Ecosystems. London: Acdamic Press Inc.,1996:184-227.
    Tamara ECK and Anderson CA. Morgenstern K. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the mckenzie river, Oregon. Journal of Environmental Quality.2010,39:2100-2112.
    Tang X, Gao G, Qin B, et al. Characterization of bacterial communities associated with organic aggregates in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Microbiology Ecology.2009,58:307-322.
    Thebault JM. A model of phytoplankton development in the Lot River (France):simulation of scenarios. Water Research.1999,33 (4):1065-1079.
    Thouvenot M, Billen G, Gamier J. Modelling benthic denitrification processes over a whole drainage network. Journal of Hydrology.2009,379:239-250.
    Thouvenot M, Billen G, Gamier J. Modelling nutrient exchange at the sediment-water interface of river systems. Journal of Hydrology.2007,341:55-78.
    Tiedje JM, Simkins S, Groffman PM. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant and Soil.1989,115: 261-284.
    Tipping E, Corbishley HT, Koprivnjak JF, et al. Quantification of natural DOM from UV absorption at two wavelengths. Environmental Chemistry.2009,6(6):472-476.
    Toothman BR, Cahoon LB, Mallin MA. Phosphorus and carbohydrate limitation of fecal coliform and fecal enterococcus within tidal creek sediments. Hydrobiologia.2009,636: 401-412.
    Toth N, VorosL, Mozes A, et al. Biological availability and humic properties of dissolved organic carbon in Lake Balaton (Hungary). Hydrobiologia.2007,592:281-290.
    USEPA. United States Environmental Protection Agency, Nutrient Criteria Technical Guidance Manual-Lakes and Reservoirs, www.epa.gov, April 2000.
    Vagnetti R, Miana P, Fabris M, et al. Self-purification ability of a resurgence stream. Chemosphere.2003,52:1781-1795.
    Vagnetti R, Miana P, Fabris M, et al. Self-purification ability of a resurgence stream. Chemosphere.2003,52:1781-1795.
    Valiela I, McClelland J, Hauxwell J, et al. Macroalgal blooms in shallow estuaries:Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography.1997,42: 1105-1108.
    Van Kessel JF. Factors affecting the denitrification rate in two water-sediment systems. Water Research.1977,11(3):259-267.
    Van Loosdrecht MCM and Jetten MSM. Microbiological conversions in nitmgen removal. Water Science and Technology.1998,38(1):1-7.
    Van Rijn J, Tal Y, Schreier HJ. Denitrification in recirculating systems:Theory and applications. Aquacultural Engineering.2006,34:364-376.
    Veraart AJ, de Bruijne WJJ, de Klein JJM, et al. Effects of aquatic vegetation type on denitrification. Biogeochemistry.2011,104:267-274.
    Vollenweider RA. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell istituto italiano di idrobiologia.1976,33 (2):53-83.
    Vollenweider RA. The scientific basis of lake eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Technical report OECD DAS/DSI/68.27. OECD, Paris,1968,159 p.
    Vrede T, Ballantyne A, Mille-Lindblom C, et al. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology.2009,54:331-344.
    Wada S, Aokib MN, Tsuchiya Y, et al. Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. Journal of Experimental Marine Biology and Ecology.2007,349:344-358.
    Wang HJ, Wang HZ. Mitigation of lake eutrophication:Loosen nitrogen control and focus on phosphorus abatement. Progress in Natural Science.2009,19:1445-1451
    Wang H, Wang W, Yin C, et al. Littoral zones as the "hotspots" of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China. Atmospheric Environment.2006,40: 5522-5527.
    Waser NAD, Harrison PJ, Nielsen B, et al. Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnology and Oceanography.1998,43(2):215-224.
    Watson VJ and Gestring B. Monitoring algae levels in the Clark Fork River. Intermountain Journal of Sciences.1996,2:17-26.
    Weathers PJ. N2O evolution by green algae. Applied and Environmental Microbiology.1984, 48(6):1251-1253.
    Weber CI. Recent developments in the measurement of the response of plankton and periphyton to changes in their environment. In:Glass G. Ann Arbor. Bioassay Techniques and Environmental Chemistry. Michigan:Ann Arbor Science Publishers,1973:119-138.
    Wei FS, Qi WQ. Monitoring analysis methods for water and wastewater (4th edition). Beijing: China Environmental Science Press,2002.
    Weishaar J, Aiken G, Bergamaschi B, et al. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science and Technology.2003,37:4702-4708.
    Welch EB, Spyridakis DE, Shuster JI. Declining lake sediments phosphorus release and oxygen diversion. Journal of water pollution control federation.1986,58(1):92-96.
    Worrall F, Burt TP, Adamson JK. Trends in drought frequency-the fate of DOC export from British peatlands. Climatic Change.2006,76:339-359.
    Worsfold PJ, Monbet P, Tappin AD, et al. Characterization and quantification of organic phosphorus and organic nitrogen components in aquatic systems:A Review, analytica chimica acta.2008,624:37-58.
    Xie L, Xie P, Li S, et al. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research.2003,37:2073-2080.
    Xu FL, J(?)rgensen SE, Tao S. Modeling the effects of macrophyte restoration on water quality and ecosystem of Lake Chao. Ecological Modelling.1999,117:239-260
    Xu H, Paerl HW, Qin B, et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography.2010,55(1):420-432.
    Yan H, Wang SQ, Wang CY, et al. Losses of soil organic carbon under wind erosion in China. Global Change Biology.2005,11:828-840.
    Yang M, Yu J, Li Z, et al. Taihu Lake Not to Blame for Wuxi's Woes. Science.2008,319:158.
    Ye L, Wu X, Tan X, Shi X, Li D, Yu Y, Zhang M, Kong F. Cell lysis of cyanobacteria and its implications for nutrient dynamics. International Review of Hydrobiology.2010,95(3): 235-245.
    Zepp RG, Sheldon WM and Moran MA. Dissolved organic fluorophores in southeastern US coastal waters:correction methods for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices. Marine Chemistry.2004,89:15-36.
    Zhai SJ, Yang LY, Hu WP. Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in northern Lake Taihu, China. Environmental Management.2009,44:542-551.
    Zhang Y, van Dijk MA, Liu M, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes:Field and experimental evidence. Water research.2009,43:4685-4697.
    Zhang Y, Zhang E, Yin Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography.2010,55(6):2645-2659.
    ZhangY, Liu M, Qin B, et al. Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation. Hydrobiologia.2009, 627:159-168.
    Zhao H, Li C, Zhao H, et al. The climate change and its effect on the water environment in the Hulun Lake wetland. Journal of Glaciology and Geocryology (in Chinese).2007,29(5): 795-801.
    Zhao M and Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science.2010,329:940-943.
    Zheng X, Xiao L, Ren J, et al. The effect of a Microcystis aeruginosa bloom on the bacterioplankton community composition of Lake Xuanwa. Journal of Freshwater Ecology. 2008,23(2):297-304.
    Zhong J, Fan C, Liu G, et al. Seasonal variation of potential denitrification rates of surface sediment from MeiliangBay, TaihuLake, China. Journal of Environmental Sciences.2010, 22(7):961-967.
    Zhu G, Peng Y, Li B, et al. Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology.2008,192:159-195.
    Znachor P and Nedoma J. Importance of dissolved organic carbon for phytoplankton nutrition in a eutrophic reservoir. Journal of Plankton Research.2010,32(3):367-376.
    陈双全,孔和云.固城湖水环境现状调查与评价.环境监测管理与技术.2004,16(6):19-21.
    陈永灿,张宝旭,李玉梁.密云水库富营养化分析预测.水利学报.1998(7):12-15.
    陈永根,李香华,胡志新,等.中国八大湖泊冬季水-气界面C02通量.生态环境.2006,15(4):665-669.
    程钟,孙祥.洪泽湖水质污染状况及其发展趋势分析.江苏环境科技.1996,(1):15-18.
    邓小琴.太湖水域氮、磷环境容量评价.地质学刊.2008,32(3):249-253.
    丁玲,逢勇,李凌,等.水动力条件下藻类动态模拟生态学报.2005,25(8):1863-1868.
    董广霞,毛剑英.淮河流域污染“久治不愈”原因浅析及治理措施建议.中国环境监测.2005,21(6):75-78.
    董攸,江敏,刘其根,等.乌伦古湖水质及营养水平调查.上海水产大学学报.2008,17(5):564-569.
    范成新,羊向东,史龙新,等.江苏湖泊富营养化特征、成因及解决途径.长江流域资源与环境.2005,14(2):218-223.
    范成新,羊向东,史龙新,等.江苏湖泊富营养化特征、成因及解决途径.长江流域资源与环境.2005,14(2):218-223.
    范成新,张路,秦伯强,等.太湖沉积物-水界面生源要素迁移机制及定量化—铵态氮释放速率的空间差异及源、汇通量.湖泊科学.2004,16(1):12-20.
    范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界面氮磷交换的影响.湖泊科学.1997,9(4):337-342.
    范成新.滆湖沉积物理化特征及磷释放模拟.湖泊科学.1995,7(4):341-350.
    方涛,李道季,余立华,等.光照和营养盐磷对微型及微微型浮游植物生长的影响.生态学报.2006,26(9):2783-2790.
    冯冰冰,王国祥,杨文斌.南京玄武湖污染源调查与分析.安徽农业科学.2007,35(28):8963-8964,8973.
    傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究.光谱学与光谱分析.2005,25(12):2024-2028.
    傅平青,刘丛强,吴丰昌等.洱海沉积物孔隙水中溶解有机质的三维荧光光谱特征.第四纪研究.2004,24(6):695-700.
    龚志军,谢平,唐汇涓,等.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报.2001,25(3):210-216.
    郭培章,宋群.中外水体富营养化治理案例研究.中国计划出版社,2003.
    郭志刚.社会统计分析方法.中国人民大学出版社,1999.
    国家环保总局.水和废水分析监测方法(第四版),北京:中国环境科学出版社,2002.
    韩爱民,杨广利,张书海,刘斌.洪泽湖富营养化和生态状况调查与评价.环境监测管理与技术.2002,14(6):18-22.
    韩向红,杨持.呼伦湖自净功能及其在区域环境保护中的作用分析.自然资源学报.2002,17(6):684-690.
    何池全,叶居新.石菖蒲(Acorus tatarinowii)克藻效应的研究.生态学报.1999,19(5):754-758.
    胡春华,胡维平,张发兵,等.太湖沉积物再悬浮观测.科学通报.2005,50(22):2541-2545.
    胡洪营,门玉洁,李锋民.植物化感作用抑制藻类生长的研究进展.生态环境.2006,15(1):153-157.
    胡江涌.甘肃省与江苏省经济发展的比较分析.发展.2004,(7):65-70.
    胡小韦,海米提·依米提,伊元荣等.博斯腾湖水质综合评价因子分析方法.干旱区资源与环境.2008,22(1):79-83.
    胡智弢,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究.农业环境科学学报.2004,23(6):1212-1216.:
    淮安市环保局.京杭运河淮安控制单元水环境综合治理方案.
    淮安市环保局.水质季报.2010,12.
    环保部.中国环境状况公报.2001.
    黄卫,张祥志,朱泽华,等.江苏省太湖流域入湖河流污染物入湖总量监测.中国环境监测.2005,21(2):52-54.
    黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议.湖泊科学.1998,10(3):83-90.
    黄漪平主编.太湖水环境及其污染控制.北京:科学出版社,2001.
    黄智华薛滨逢勇.江苏固城湖流域1951~2000年农业非点源氮,磷输移的数值模拟研究.第四纪研究.2008,28(4):674-682.
    霍守亮,陈奇,席北斗,等.湖泊营养物基准的候选变量和指标.生态环境学报.2010,19(6):1445-1451.
    姜波,杨士建,赵秀兰.骆马湖水质变化特征及其富营养化评价.干旱环境监测.2005,19(4):224-228.
    姜敬龙,吴云海.底泥磷释放的影响因素.环境科学与管理.2008,33(6):4346.
    金相灿,等.中国湖泊环境.海洋出版社,1995.
    金相灿,刘鸿亮.中国湖泊富营养化.中国环境科学出版社,1990.
    金相灿,屠清瑛.湖泊富营养化调查规范(第二版).中国环境科学出版社,1990.
    金相灿,朱萱.我国主要湖泊和水库水体的营养特征及其变化.环境科学研究.1991,4(1):11-20
    金相灿.湖泊富营养化控制和管理技术.化学工业出版社,2001.
    金相灿.中国湖泊水库环境调查研究.中国环境科学出版社,1990.
    兰文辉,刘建平.博斯腾湖水质变化分析与对策研究.重庆环境科学.2002,24(4):86-88.
    李阔宇,宋立荣,万能.底泥中微囊藻复苏和生长特性的研究.水生生物学报.2004,28(2):113-118.
    李立人,王学冬.乌伦古湖水质现状及污染防治对策.干旱环境监测.2003,17(2):102-106.
    李松志,李源,陈烈,等.基于旅游调控规划的湖泊旅游环境评价研究.人文地理.2005,84(4):69-73.
    李夜光,李中奎,耿亚红,等.富营养化水体中N、P浓度对浮游植物生长繁殖速率和生物量的影响.生态学报.2006,26(2):317-325.
    李荫玺,刘红,陆娅,等.抚仙湖富营养化初探.湖泊科学.2003,15(3):285-288.
    郦桂芬.环境质量评价.中国环境科学出版社,1989.
    刘俊,陈红.星云湖水生生态系统变迁及富营养化的变化分析.云南环境科学.2000,19(2):42-44.
    刘兰芬,张祥伟,夏军.河流水环境容量预测方法研究.水利学报.1998,7:16-20.
    刘凌,崔广柏,王建中.太湖底泥氮污染分布规律及生态风险.水利学报.2005,36(8):900-905.
    刘明亮,张运林,秦伯强.太湖入湖河口和开敞区CDOM吸收和三维荧光特征.湖泊科学.2009,21(2):234-241.
    刘其根,陈立侨,陈勇.千岛湖水华发生与主要环境因子的相关性分析.海洋湖沼通报.2007,(1):117-124.
    刘星才,徐宗学,徐琛.水生态一、二级分区技术框架.生态学报.2010,30(17):4804-4814.
    刘玉生,唐宗武,韩梅,等.滇池富营养化丰态动力学模型及其应用.环境科学研究.1991,4(6):1-8.
    刘元波,陈伟民,范成新,等.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析.湖泊科学.1998,10(4):53-59.
    刘元波,陈伟民.湖泊藻类动态模拟.湖泊科学.2000,12(2):171-176.
    刘元波,陈伟民,范成新等.太湖藻类生态模拟与蓝藻水华治理对策分析.湖泊科学.1998,10(4):53-59.
    陆铭锋,徐彬,杨旭昌.太湖水质评价计算方法及近年来水质变化分析.水资源保护.2008,24(5):30-33.
    吕金福,李志民,冷雪天,等.松嫩平原湖泊的分类与分区.地理科学.1998,18(6):524-530.
    吕怡兵,宫正宇,连军,等.长江三峡库区蓄水后水质状况分析环境科学研究.2007,20(1):1-6.
    罗崇富.博斯腾湖富营养化状态水平调查.干旱环境监测.1991,5(2):98-102.
    罗潋葱,秦伯强,朱广伟.太湖沉积物的分布和动力扰动下最大侵蚀深度的确定.泥沙研究.2004,(1):9-14.
    马经安,李红清.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境.2002,11(6):575-578.
    毛春梅,张文锦.固城湖富营养化评价及防治对策.安徽农业科学.2007,35(28):9005-9006,9030.
    梅卓华.玄武湖水域初级生产力和富营养化的调查研究.江苏环境科技.1995,(3):7-10.
    孟伟,张远,张楠.中国流域水生态功能区划研究.中国环境科学学会环境标准与基准专业委员会2011年学术研讨会,2011,南京.
    南京市环保厅.南京市环境状况公报.2001.
    潘继征,熊飞,李文朝,等.云南抚仙湖透明度的时空变化及影响因子分析.湖泊科学.2008,20(5):681-686.
    逢勇,颜润润,余钟波.等.风浪作用下的底泥悬浮沉降及内源释放量研究.环境科学.2008,29(9):2456-2464.
    逢勇,颜润润,余钟波.等.风浪作用下的底泥悬浮沉降及内源释放量研究.环境科学.2008,29(9):2456-2464.
    逢勇,姚琪,濮培民.太湖地区大气-水环境的综合数值研究.北京:气象出版社.1998.
    濮培民,王国祥,胡春华,等.底泥疏浚能控制湖泊富营养化吗?湖泊科学.2000,12(3):269-279.
    乔明彦,何振荣.达赉湖鱼腥藻水华对羊的毒害作用及毒素分离.内蒙古环境保护,1996,(1):19-20.
    秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机-原因与对策.地球科学进展.2007,22(9):896-906.
    秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法.中国科学D.2005,35(Z2):33-44.
    秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学.2002,14(3):193-202.
    秦洁,吴献花,高卫国.杞麓湖富营养化控制因子研究.玉溪师范学院学报.2010,26(12):26-30.
    全为民,严力蛟,沈新强.磷模型在千岛湖水体污染预测中的应用研究.生物数学学报.2004,19(1):98-102.
    全为民,严力蛟,虞左明,等.湖泊富营养化模型研究进展.生物多样性.2001,9(2):168-175.
    师莉莉,杨晓红.滇中三大湖泊氮、磷水质变化趋势研究.环境科学导刊.2007,26(Z1):67-83.
    舒金华.我国主要湖泊富营养化程度的初步评价与防治对策.环境科学丛刊.1986,7(2):1-9.
    舒金华.我国主要湖泊富营养化程度的初步评价与防治对策.环境科学丛刊.1986,7(2):1-9.
    宋文林,彭近新.湖泊富营养化与磷模型预测.环境科学与技术.1983,(1):37-42.
    宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源.环境科学学报,2010,30(11):2321-2331.
    宋友坤,袁忠,陆江.骆马湖富营养化和生态状况调查与评价.污染防治技术.2006,19(2):50-53.
    苏耀明,苏小四.地下水水质评价的现状与展望.水资源保护.2007,23(2):4-9,12.
    宿俊英,刘树坤,何少答.等.太湖水环境容量的研究.水利学报.1992,11:22-36.
    孙长青.滇池浮游动物的群落结构和种群数量变化的研究.云南大学,2010.
    孙儒泳,李博,诸葛阳,等.普通生态学.高等教育出版社,1993.
    孙文浩,俞子文,余叔文.城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理.环境科学学报.1989,9(2):188-195.
    孙小银,周启星.中国水生态分区初探.环境科学学报.2010,30(2):415-423.
    屠清瑛,顾丁锡,尹澄清,等.巢湖富营养化研究.北京-中国科学技术出版社.1990,101-125.
    万洪秀,孙占东,王润.博斯腾湖水位变动对湿地生态环境的影响.自然资源学报.2006,21(2):260-266.
    王芳,晏维金.长江输送颗粒态磷的生物可利用性及其环境地球化学意义.环境科学学报.2004,24(3):418-422.
    王凤娇.呼伦湖氮磷的地球化学特征[硕士论文].2008.
    王红梅.阳宗海水质现状及变化趋势分析.云南环境科学.2003,22(z1):170-167.
    王洪道,窦鸿身,颜京松.中国湖泊水资源.科学出版社,1989.
    王建云.玉溪市”三湖一库”CODMn,与BOD5的相关性分析.云南环境科学.2000,19(2):45-46.
    王俊,冯伟业,张利,等.呼伦湖水质和生物资源量监测及评价.水生态学杂志.2011,12(5):64-68.
    王荔弘.呼伦湖水环境及水质状况浅析.呼伦贝尔学院学报.2006,14(6):5-7.
    王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准.中国环境监测.2002,18(5):47-49.
    王苏民,窦鸿身,等.中国湖泊志.科学出版社,1998.
    王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998.
    王小林.关于太湖水生生物多样性(Aquatic Organisms Diversity)保护的思考.现代渔业信息.2006,21(2):22-29.
    王云华.杞麓湖水体藻量和透明度变化分析.云南环境科学.2002,21(2):49-50.
    魏文志,付立霞,陈日明,等.高邮湖水质与浮游植物调查及营养状况评价.长江流域资源与环境.2010,19(Z1):106-110.
    吴舜泽,夏青,刘鸿亮.中国流域水污染分析.环境科学与技术.2000,23(2):1-6.
    吴小伟,刘平.扬州市地表水水资源质量变化调查评价.治淮.2011,(3):16-18.
    谢冰,徐亚同.废水生物处理原理和方法.北京:中国轻工业出版社,2007,5。
    谢立新.乌伦古湖泊水位及水质变化原因分析.水资源与水工程学报.2009,20(2):148-150.
    徐徽,张路,商景阁,等.太湖梅梁湾水土界面反硝化和厌氧氨氧化.湖泊科学.2009,21(6):775-781.
    徐慧,崔广柏.湖泊湿地利用与保护临界的经济学准则探讨.资源科学.2006,28(1):51-56.
    徐梦洁,孙雁,夏敏.南京市地表水环境质量评估.四川环境.2005,24(3):82-85.
    徐前荣,徐其军.太湖水环境承载力研究.江西农业学报.2009,21(2):114-118.
    徐祖信,姜雅萍.湖泊营养状态的综合水质标识指数评价及检验.同济大学学报(自然科学版).2009,37(8):1044-1048.
    许晨红,赵庆顺,王晓琳,等.藻华暴发期太湖不同湖区水样对斑马鱼胚胎发育及仔鱼生长毒性研究.农业环境科学学报.2010,29(8):1443-1447.
    许秋瑾,金相灿,颜昌宙.中国湖泊水生植被退化现状与对策.生态环境.2006,15(5):1126-1130
    许秋瑾,秦伯强,陈伟民,等.太湖藻类生长模型研究.湖泊科学.2001,13(2):149-157.
    薛滨,姚书春,王苏民,夏威岚.长江中下游不同类型湖泊沉积物营养盐蓄积变化过程及其原因分析.第四纪研究.2007,27(1):122-127.
    阳平坚,吴为中,孟伟,等.基于生态管理的流域水环境功能区划—以浑河流域为例.环境科学学报.2007,(6):944-952.
    杨光俊,尹大强,顾宇飞,等.利用多生物学指标评价宝应湖沉积物的环境质量.农村生态环境.2002,18(2):39-43.
    杨磊,林逢凯,胥峥,等.底泥修复中温度对微生物活性和污染物释放的影响.环境污染与防治,2007,29(1):22-29.
    杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究.湖泊科学.1998,10(4):41-47.
    杨龙元,秦伯强,胡维平,等.太湖大气氮、磷营养元素干湿沉降率研究.海洋与湖沼.2007,38(2):104-110.
    杨龙元,秦伯强,胡维平,等.太湖大气氮、磷营养元素干湿沉降率研究海洋与湖沼.2007,38(2):104-110.
    杨文龙,杨常亮.滇池水环境容量模型研究及容量计算结果.云南环境科学.2002,(3):20-23.
    于忠华,黄文钰,舒金华.南京市主要湖库水环境现状与演变趋势分析.国土与自然资源研究.2005(4):37-39.
    袁和忠,沈吉,刘恩峰.太湖重金属和营养盐污染特征分析.环境科学.2011,32(3):649-657.
    岳彩英,赵卫东,李明娜,等.达赉湖水质状况及影响因素分析.内蒙古环境科学.2008,20(2):7-10.
    云南省环保厅.云南省环境状况公报
    曾海鳌,吴敬禄.蒙新高原湖泊水质状况及变化特征.湖泊科学.2010,22(6):882-887.
    曾巾,杨柳燕,肖琳,等.太湖不同湖区无机氮转化潜力.生态与农村环境学报.2008,24(1):63-67.
    曾庆飞,谷孝鸿,周露洪,等.东太湖水质污染特征研究.中国环境科学.2011,31(8):1355-1360.
    翟淑华,张红举.环太湖河流进出湖水量及污染负荷(2000-2002年).湖泊科学.2006,18(3):225-230.
    翟淑华,张红举.环太湖河流进出湖水量及污染负荷(2000-2002年).湖泊科学.2006,18(3):225-230.
    张彤晴.高、宝、邵伯湖浮游植物资源调查报告.水产养殖.1993,(1):12-14.
    张运林,张恩楼,刘明亮.云南高原湖泊有色可溶性有机物和颗粒物光谱吸收特性.湖泊科学.2009,21(2):255-263.
    章宗涉,黄祥飞.淡水浮游植物研究方法.北京:科学出版社,1991,338,340:345-347.
    赵慧颖,李成才,赵恒和,等.呼伦湖湿地气候变化及其对水环境的影响.冰川冻土.2007,29(5):795-801.
    赵永宏,邓祥征,战金艳,等.我国湖泊富营养化防治与控制策略研究进展.环境科学与技术.2010,33(3):92-98.
    赵永宏,邓祥征,战金艳,等.我国湖泊富营养化防治与控制策略研究进展.环境科学与技术.2010,33(3):92-98.
    赵玉华,刘畅,薛飞,等.影响分光光度法检测藻类叶绿素a的因素.沈阳建筑大学学报(自然科学版).2007,23(3):482-484.
    郑丙辉,张永泽,梁占彬,等.滇池生态动力学模型的改进.环境科学研究.1994,7(4):1-6.
    中国科学院南京地理研究所湖泊室.江苏湖泊志.南京:江苏科学技术出版社:1982.
    种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备.2003,4(2):36-40.
    周保华,潘恒健,谷长强.湖泊水库营养状态分区研究进展.环境与可持续发展.2006,(3):10-13.
    周建伟,王宝玉,张绮,等.固城湖、石臼湖水质及其不稳定性研究.污染防治技术.1996,9(1,2):83-85.
    周维力,孙明康,宋光军.一起由藻类污染生活饮用水的事故调查.安徽预防医学杂志.1997,3(2):72-73.
    周孝德,冯成洪,张仙娥.博斯腾湖富营养化综合加权指数评价.中国水利学会学术年会论文集.2003:662-666.
    朱广伟.太湖富营养化现状及原因分析.湖泊科学.2008,20(1):21-26.
    诸敏.太湖水质变化趋势及其保护对策.湖泊科学.1996,8(2):133-138.
    庄源益,赵凡,戴树桂,等.高等水生植物对藻类生长的克制效应.环境科学进展.1995,6(3):44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700