用户名: 密码: 验证码:
污泥堆肥施用土壤中多环芳烃的迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城镇污水处理量及处理率逐步提高,污泥作为污水处理过程中的副产物,其产量也在逐年递增。污泥的堆肥化处置能够将污泥中的植物营养元素转化为更易于被植物吸收利用的形式,同时又能去除污泥中的部分污染物,使污泥堆肥产品具有一定的资源化利用价值。污泥堆肥土地利用后,堆肥中残留的污染物,如多环芳烃(PAHs),可能会对土壤、植被、水系等各个环境介质造成潜在的影响,而对于PAHs在施用堆肥后的土壤系统中迁移转化的研究尚不完善。为了掌握施肥场地中PAHs的迁移转化规律,给污泥堆肥的土地利用提供参考和指导,开展了本课题的研究。
     本课题首先进行了三种草坪草(高羊茅、黑麦草、白三叶)的温室盆栽试验,风干堆肥施用比例分别为Okg/m2、1.5kg/m2、3.0kg/m2、4.5kg/m2、和6.0kg/m2,于施肥后不同的时间(三个月及九个月)对盆栽土壤及植物中的PAHs浓度进行分析测定,同时对部分植物进行修剪处理,研究施肥量和植物修剪处理对三种草本植物的生物量、植物富集PAHs浓度和土壤PAHs残留浓度的影响。试验结果表明,当施肥量(干肥)为0~4.5kg/m2时,三种草本植物的生物量随着施肥量的增大而增加,施肥土壤中植物生物量的增幅为8.17%~416.03%。植物对PAHs的吸收富集也与施肥量呈正相关。在最大施肥量(6.0kg/m2)下,高羊茅、黑麦草、白三叶中PAHs富集浓度为未施肥对照的172.8%、237.7%和179.5%。对植物(高羊茅、黑麦草)进行修剪有利于植物的生长和植物对PAHs的吸收富集。土壤中PAHs的残留浓度亦随施肥量的增加而增大。九个月后,种植高羊茅、黑麦草和白三叶的土壤中PAHs的残留率分别为20.4%~49.8%、27.2%~36.1%和22.5%~48.1%。综合植物生物量、植物对PAHs的富集和土壤中PAHs的残留三方面指标认为,本研究中,高羊茅是在施用污泥堆肥土壤中最适宜种植的植物,1.5kg/m2的污泥堆肥(干肥)施用量是有利于植物生长和PAHs降解的最佳施肥比例。
     利用初步筛选的高羊茅作为供试植物开展为期126天的温室盆栽试验,新鲜污泥施肥(含水率50%左右)施用比例为0%、10%、25%和50%的条件下,定期(每三周)对土壤和植物进行采样,分析PAHs的浓度变化,同时测定土壤中细菌总数、过氧化氢酶活性、脱氢酶活性等指标,研究PAHs在土壤中的降解规律及影响因素,同时分析PAHs在土壤-植物间及植物体内的迁移情况。试验结果表明,PAHs在土壤中的降解可以用一级动力学方程描述,方程的拟合系数大于0.88,其中无植物土壤中PAHs降解的一级动力学拟合系数更高(R2>0.93)。种植植物对降解土壤中的PAHs有促进作用。无植物土壤中PAHs降解率为34.78%~54.40%,而有植物土壤中PAHs降解率为40.84%~60.74%。其中2~3环低分子量PAHs的去除率均高于4~6环高分子量PAHs。施用堆肥的土壤中细菌总数、过氧化氢酶活性和脱氢酶活性均高于未施肥土壤。PAHs从有植物土壤中消失的过程中,有0.45%~1.78%的PAHs经植物吸收作用从土壤转移至植物根系,部分PAHs从植物根系进一步迁移至植物茎叶。植物中部分2~3环低分子量PAHs可经植物挥发作用从植物茎叶中消失,占植物吸收富集PAHs量的19.7%~40.0%。与2~3环低分子量PAHs不同的是,4~6环高分子量PAHs不会从植物中挥发。高分子量PAHs在植物中呈现持续累积的趋势。
     将盆栽试验扩大为场地试验,种植高羊茅、黑麦草、白三叶三种草本植物,进行施肥量(新鲜堆肥)Okg/m2、1.5kg/m2、3.0kg/m2、4.5kg/m2和6.0kg/m2的处理,考察PAHs在自然条件下的降解情况。同时,收集天然降雨及地下水,利用人工模拟降雨手段使地表产生径流,通过对雨水、地下水和径流中PAHs含量的测定分析,研究施用堆肥的土壤中PAHs的迁移情况。试验结果表明,自然条件下PAHs的降解率在16.04%~47.01%,明显低于温室模拟试验。雨水、地下水及地表径流中仅有低分子量PAHs检出,浓度为72.4~210ng/L,其中雨水PAHs浓度最高,地表径流次之,地下水中PAHs浓度最低。土壤中的PAHs会随地表径流和地下水迁移,从而减少土壤中的PAHs,但天然降雨会将部分PAHs带入土壤。
     综合以上研究结果,对施用堆肥的土壤系统中PAHs的迁移转化途径进行了归纳分析。在3.0kg/m2的施肥量下,堆肥引入的PAHs仅占土壤PAHs总量的19.34%~24.58%。堆肥中PAHs的解吸量受温度、pH值、腐殖酸添加量和堆肥添加量的影响,其中pH值为最主要的影响因素。土壤中PAHs的去除主要是通过微生物降解实现的,生物降解可去除土壤中31.72%~33.20%的PAHs。植物吸收和促进降解、挥发和光解、随地表径流及地下水迁移等途径对PAHs去除的贡献较小,以上几方面共同作用可去除土壤中8.41%~12.13%的PAHs。而超过50%的PAHs仍残留在土壤中,需要进一步采取措施予以去除。
Sewage sludge is a byproduct of wastewater treatment. The volume of sewage sludge gradually increases with the improvement of wastewater treatment capacity and ratio year by year. Nutrients in sludge could be converted to more available for plants, and parts of pollutants could be removed by sludge composting. Therefore, sludge compost can be utilized as organic fertilizer and has a certain value of resource utilization. However, residual contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in compost could have effect on the environmental media, such as soil, vegetation and water system, after land application. And the research on migration and transformation of PAHs in soil systems fertilized with compost is not perfect. In order to know the rule of PAH migration and transformation in soil applied with compost and provide reference and guidance of land application of compost, this research has been conducted.
     First of all, a greenhouse experiment with three plants (tall fescue, ryegrass and white clover) has been investigated. In five different amendment ratios of dry compost to soil, PAH concentrations of soil and plants were analyzed after three and nine months of experiment. And some plants have been pruned. The effect of compost dosages and pruning plant on biomass of plants, PAH concentrations in plant and PAH residual concentrations in soil have been investigated. The results indicated that the biomass of plants and PAH concentrations in plants and soils increased with the more compost dosages in the range of0to4.5kg/m2. Biomasses of plants fertilized with compost were8.17%-416.03%higher than those without compost. When compost dosage was6.0kg/m2, PAH concentrations in tall fescue, ryegrass and white clover were1.73,2.38and1.79times of the unfertilized control. Pruning plants (tall fescue and ryegrass) are conducive to plant growth and uptake of PAHs. After nine months'experiment, PAH residual rates in soils planted with tall fescue, ryegrass and white clover were20.4%-49.8%,27.2%-36.1%and22.5%-48.1%, respectively. Considering the biomass and PAH concentrations in plants and soils, tall fescue were the best plant grown in compost-amended soil. And the optimum dosage of dry compost were1.5kg/m2, which is propitious to plant growth and PAH degradation.
     A greenhouse experiment with tall fescue was conducted with amendment ratios of fresh sludge compost to soil of0%,10%,25%and50%(w/w) to investigate the dissipation of PAHs in soils. The PAH concentrations in soil and plant, total number of bacteria in the soil, catalase activity and dehydrogenase activity were detected every three weeks. And migrations of PAHs from soil to plant and in plant were analyzed. The results demonstrated that PAH degradation in soil followed the first-order kinetics well in the study. And the determination coefficients in unplanted soils (R2>0.93) were higher than those in the corresponding planted soils (R2>0.88). Planting tall fescue has positive effect on PAH degradation in soil. The PAH dissipation rates were in the range of34.78%-54.40%in unplanted soils and40.84%-60.74%in planted soils. And the dissipation rates of2-3ring PAHs were higher than those of4-6ring PAHs. The total number of bacteria, catalase activity and dehydrogenase activity were higher in soils amended with compost than those without compost. During PAH dissipation in soil,0.45%-1.78%PAHs was transferred from soil to roots of tall fescue. And a part of these PAHs was migrated from roots to shoots of plant.2-3ring PAHs in plant may disappear from shoots of tall fescue by phytovolatilization, which accounts for19.7%-40.0%of total PAHs in plant. In the other hand,4-6ring PAHs could accumulate in roots and shoots of tall fescue.
     Field experiment with three plants were conducted with amendment ratios of fresh sludge compost to soil of0kg/m2,1.5kg/m2,3.0kg/m2,4.5kg/m2and6.0kg/m2to investigate PAH degradation under natural condition. At the same time, rainfall, groundwater and simulated runoff were collected and analyzed to investigate PAH migration in soils amended with compost. The results suggested that PAH degradation rates under natural condition were in range of16.04%-47.01%which was lower than those in greenhouse experiment.2-3ring PAHs were detected in rainfall, groundwater and runoff. And PAH concentrations in aqueous sample were in the range of72.4-210ng/L. The highest PAH concentration was found in rainfall, and the lowest shown in groundwater. PAHs migrated with runoff and groundwater would decrease the amount of PAHs in soil, but PAHs brought by rainfall would increase the amount of PAHs in soil.
     Based on the results of above experiments, the migration and transformation routes of PAHs in soil were concluded. PAHs in compost-amended soil derived from soil and compost. With amendment ratios of fresh sludge compost to soil of3.0kg/m2, PAHs introduced by compost accounted for19.34%-24.58%of total PAHs in soil. Desorption amount of PAHs in compost affected by temperature, pH value, humic acid concentration and compost dosage, which pH value was the most important factor. PAHs in soil were mainly removed through biodegradation by microorganism, which occupied31.72%-33.20%of total PAHs. Phytoaccumulation, degradation promoted by plant, volatilization, photodegradation and migration with runoff and groundwater contributed slightly to PAH dissipation, which accounted for8.41%-12.13%of total PAHs. More than50%of PAHs remained in soil, and advanced process should be performed to remove these PAHs from soil.
引文
1.蔡全英,莫测辉.水稻土施用城市污泥盆栽作物后土壤中多环芳烃(PAHs)的残留[J].土壤学报,2002,39(6):887-891.
    2. 蔡全英,莫测辉,吴启堂,等.城市污泥堆肥过程中有机污染物的变化[J].农业环境保护,2001,20(3):186-189.
    3. 蔡全英,莫测辉,朱夕珍,等.城市污泥对通菜—水稻土中有机污染物的累积效应[J].中国环境科学,2003,23(3):321-326.
    4.蔡全英,王伯光.城市污泥和化肥对水稻土种植的通菜中多环芳烃(PAHs)的影响[J].生态学报,2002,22(7):1091-1097.
    5. 蔡少华,和文祥,呼蕾,等.六价铬对土壤脱氢酶活性的影响[J].西北农业学报,2008,17(5):208-214.
    6. 蔡顺香,颜明娟,林琼,等.黑麦草根系抗氧化系统和细胞质膜透性对土壤中芘胁迫的响应[J].福建农业学报,2012,27(2):162-166.
    7. 陈冬升,凌婉婷,张翼,等.几种植物根亚细胞中菲的分配[J].环境科学,2010,31(5):1339-1344.
    8. 陈静,王学军,胡俊栋,等.LAS对土壤中多环芳烃吸附行为的影响[J].环境污染治理技术与设备,2006,7(1):26-29.
    9. 陈静,王学军,胡俊栋,等.表面活性剂对人工污染土壤装填土柱中PAHs迁移渗透的影响[J].环境科学,2005a,26(2):190-194.
    10.陈静,王学军,胡俊栋,等.多环芳烃(]PAHs)在砂质土壤中的吸附行为[J].农业环境科学学报,2005b,24(1):69-73.
    11.陈静,王学军,陶澍.天津地区土壤有机碳和粘粒对PAHs纵向分布的影响[J].环境科学研究,2005c,18(4):79-83.
    12.陈世军,祝贤凌,冯秀珍,等.多环芳烃对植物的影响[J].生物学通报,2010,(2):9-11.
    13.陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569.
    14.陈小兵,盛下放,何琳燕,等.具菲降解特性植物内生细菌的分离筛选及其生物学特性[J].环境科学学报,2008,28(7):1308-1313.
    15.陈勇,张从.降解菌对堆肥中多环芳烃降解作用的初步研究[J].农业环境保护,2000,19(1):53-55.
    16.陈宇云,朱利中.杭州市多环芳烃的干、湿沉降[J].生态环境学报,2010,19(7):1720-1723.
    17.程晓波.上海市污水处理厂污泥用于园林绿化的安全性分析[J].中国给水排水,2010,(16):20-22.
    18.楚伟华.石油污染物在土壤中迁移及转化研究[D].大庆石油学院硕士学位论文,2006.
    19.崔学慧,李炳华,陈鸿汉.太湖平原城近郊区浅层地下水中多环芳烃污染特征及污染源分析[J].环境科学,2008,29(7):1806-1810.
    20.丁国盛,李涛SPSS统计教程:从研究设计到数据分析[M].北京:机械工业出版社,2006.
    21.丁克强,骆永明,刘世亮,等.利用改进的生物反应器研究不同通气条件下土壤中菲的降解[J].土壤学报,2004,41(2):245-251.
    22.董芬,李晓亮,林爱军,等.添加剂对堆肥降解多环芳烃的影响[J].环境工程学报,2013,7(5): 1951-1957.
    23.范淑秀,李培军,何娜,等.多环芳烃污染土壤的植物修复研究进展[J].农业环境科学学报,2008,26(6):2007-2013.
    24.范顺利,田大勇,韩晓霞.多环芳烃在淮河,黄河和卫河沉积物上的吸附及解吸行为研究[J].环境污染与防治,2010,32(5):34-39.
    25.方海兰,陈玲,彭喜玲,等.上海主要污水处理厂污泥中多环芳烃的分布特征[J].土壤学报,2008,45(6):1164-1169.
    26.方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    27.方云,赵秀兰,魏源送,等.春冬季节对堆肥修复多环芳烃(PAHs)污染土壤的影响[J].环境科学,2010,31(6):1688-1696.
    28.冯磊,李润东,李延吉.源分类家庭有机垃圾及其堆肥产品中的PAHs[J].环境科学,2008,29(3):844-848.
    29.高彦征,朱利中,胡晨剑,等Tween80对植物吸收菲和芘的影响[J].环境科学学报,2004,24(4):713-718.
    30.谷晋川,蒋文举,雍毅.城市污水厂污泥处理与资源化[M].北京:化学工业出版社,2008.
    31.郭广慧,杨军,陈同斌,等.中国城市污泥的有机质和养分含量及其变化趋势[J].中国给水排水,2009,25(13):120-121.
    32.郭涓,杨玉盛,杨红玉,等.高锰酸钾氧化修复污染土壤中菲和芘的研究[J].农业环境科学学报,2010,29(3):471-475.
    33.郭明,陈红军.4种农药对土壤脱氢酶活性的影响[J].环境化学,2000,19(6):523-527.
    34.国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    35.韩晓君,潘根兴,李恋卿.长期不同施肥处理下有机质含量变化对土壤中多环芳烃降解的影响——以太湖地区黄泥土长期试验为例[J].农业环境科学学报,2009,28(12):2533-2539.
    36.何云晓,欧阳纯烈.城市生活污泥中微生物的分类与鉴定[J].现代农业科技,2012,(13):238-240.
    37.花莉,陈英旭,吴伟祥,等.生物质炭输入对污泥施用土壤-植物系统中多环芳烃迁移的影响[J].环境科学,2009,30(8):2419-2424.
    38.黄红丽,曾光明,黄国和,等.堆肥中木质素降解微生物对腐殖质形成的作用[J].中国生物工程杂志,2004,24(8):29-31.
    39.黄智,李时银.苯噻草胺对土壤中过氧化氢酶活性及呼吸作用的影响[J].环境化学,2002,21(5):481-484.
    40.康耘,葛晓立.土壤pH值对土壤多环芳烃纵向迁移影响的模拟实验研究[J].岩矿测试,2010,29(2):123-126.
    41.李贵宝,尹澄清,林永标,等.城市污泥对退化森林生态系统土壤的人工熟化研究[J].应用生态学报,2002,13(2):159-162.
    42.李海波,李亚东,李克顺.城市生活污泥在矿业废弃地复垦应用中的可行性分析[J].湖北大学学报:自然科学版,2005,27(2):184-187.
    43.李艳霞,陈同斌,罗维,等.中国城市污泥有机质及养分含量与土地利用[J].生态学报,2003,23(11):2464-2474.
    44.李有康,李欢,李忱忱.污泥中腐殖酸的含量及其特征分析[J].环境工程,2013,31(增刊): 22-24.
    45.李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    46.梁存珍,刘卫国,於俊杰,等.气相色谱与质谱联用测定淮安某县乡镇饮用水中的多环芳烃[J].光谱实验室,2012,29(5):2777-2782.
    47.梁晶,彭喜玲,方海兰,等.污泥堆腐过程中多环芳烃PAHs)的降解[J].环境科学与技术,2011,34(1):114-116.
    48.凌婉婷,高彦征,李秋玲,等.植物对水中菲和芘的吸收[J].生态学报,2006,26(10):3332-3338.
    49.凌婉婷,朱利中,高彦征,等.植物根对土壤中PAHs的吸收及预测[J].生态学报,2005,25(9):2320-2325.
    50.刘贝贝,陈丽,张勇.典型多环芳烃在红树林沉积物上的吸附特性及影响因素[J].环境化学,2012,30(12):2032-2040.
    51.刘金泉,黄君礼,季颖,等.环境中多环芳烃(PAHs)去除方法的研究[J].哈尔滨商业大学学报:自然科学版,2007,23(2):162-167.
    52.刘魏魏,尹睿,林先贵,等.生物表面活性剂-微生物强化紫花苜蓿修复多环芳烃污染土壤[J].环境科学,2010,31(4):1079-1084.
    53.陆志强,郑文教,马丽.萘和芘胁迫对红树植物秋茄幼苗膜透性及抗氧化酶活性的影响[J].厦门大学学报:自然科学版,2008,47(5):757-760.
    54.罗景阳,冯雷雨,陈银广.污泥中典型新兴有机污染物的污染现状及对污泥土地利用的影响[J].化工进展,2012,31(8):1820-1827.
    55.罗庆,孙丽娜,张耀华.细河流域地下水中多环芳烃污染健康风险评价[J].农业环境科学学报,2011,30(5):959-964.
    56.毛健,骆永明,滕应,等.高分子量多环芳烃污染土壤的菌群修复研究术[J].土壤学报,2010,47(1):163-167.
    57.莫测辉,蔡全英.城市污泥中有机污染物的研究进展[J].农业环境保护,2001,20(4):273-276.
    58.莫测辉,蔡全英,王江海,等.城市污泥在矿山废弃地复垦的应用探讨[J].生态学杂志,2001a,20(2):44-47.
    59.莫测辉,蔡全英,吴启堂,等.城市污泥与稻草堆肥中多环芳烃的研究[J].环境化学,2002,21(2):132-138.
    60.莫测辉,蔡全英,吴启堂,等.我国一些城市污泥中多环芳烃(PAHs)的研究[J].环境科学学报,2001b,21(5):613-618.
    61.莫测辉,王伯光.城市污泥与玉米秸秆堆肥中多环芳烃(PAHs)的研究[J].农业工程学报,2001,17(5):73-77.
    62.莫测辉,王伯光.城市污泥及其堆肥施用对通菜中有机污染物的累积效应[J].环境科学,2002,23(5):52-56.
    63.牛秋雅,曾光明,牛一乐,等.臭氧预氧化-堆肥去除污染土壤中菲实验研究[J].环境科学学报,2009a,29(11):2352-2358.
    64.牛秋雅,曾光明,牛一乐,等.生物强化堆肥降解菲[J].湖南大学学报:自然科学版,2009b,36(2):85-88.
    65.平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤,2005,37(4):362-369.
    66.秦华,林先贵,陈瑞蕊,等DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J].土壤学 报,2006,42(5):829-834.
    67.沈源源,滕应,骆永明,等.几种豆科,禾本科植物对多环芳烃复合污染土壤的修复[J].土壤,2011,43(2):253-257.
    68.孙峰,翁焕新,马学文,等.污泥中重金属和多环芳烃(PAHs)的存在特性及其相互关系[J].环境科学学报,2008,28(12):2540-2548.
    69.孙红文,霍崇,王翠萍.土壤中多环芳烃的SPMD辅助解吸行为研究[J].环境科学,2007,28(8):1841-1846.
    70.孙玉焕,骆永明,滕应,等.长江三角洲地区污水污泥与健康安全风险研究V污泥施用对土壤微生物群落功能多样性的影响[J].土壤学报,2009,(3):406-411.
    71.孙玉焕,骆永明,吴龙华,等.长江三角洲地区污水污泥与健康安全风险研究Ⅰ.粪大肠菌群数及其潜在环境风险[J].土壤学报,2005,42(3):397-403.
    72.唐景春,孙青,王如刚,等.堆肥过程中腐殖酸的生成演化及应用研究进展[J].环境污染与防治,2010,(5):73-77.
    73.王斌科,刘金泉,王俊安,等.剩余污泥重金属污染现状及其治理技术[J].环境保护与循环经济,2013,33(1):50-52.
    74.王菲,苏振成,杨辉,等.土壤中多环芳烃的微生物降解及土壤细菌种群多样性[J].应用生态学报,2009,20(12):3020-3026.
    75.王硕,鲍建国,刘成林.城市污泥特性研究与园林绿化利用前景分析[J].环境科学与技术,2010,33(6):238-241.
    76.王晓光,巩宗强,图影,等.应用脂肪酸甲酯淋洗去除土壤中多环芳烃[J].环境化学,2010,29(1):12-17.
    77.王新,周启星,陈涛,等.污泥土地利用对草坪草及土壤的影响[J].环境科学,2003,24(2):50-53.
    78.王振霞,肖行川,马林凤,等.土壤中原油的解吸试验研究[J].青岛理工大学学报,2012,32(6):81-85.
    79.吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    80.邢世友,袁浩然,鲁涛,等.污泥处置过程中主要有机污染物生成及迁移转化规律[J].武汉大学学报:工学版,2012,45(6):848-854.
    81.邢维芹,骆永明,李立平.影响土壤中PAHs降解的环境因素及促进降解的措施[J].土壤通报,2007,38(1):173-178.
    82.徐镜波,郎佩珍.过氧化氢酶活性及活性抑制的测定[J].环境化学,1994,13(3):279-282.
    83.徐胜,王慧,陈玮,等.土壤中多环芳烃污染对植物生理生态的影响[J].应用生态学报,2013,24(005):1284-1290.
    84.徐向宏,何明珠.试验设计与Design-Expert, SPSS应用[M].北京:科学出版社,2010.
    85.许晓伟,黄岁樑.地表水中多环芳烃迁移转化研究进展[J].环境科学与技术,2011,(1):26-33.
    86.杨婷,胡君利,王一明,等.发酵牛粪和造纸干粉对土壤中多环芳烃降解的影响[J].生态环境学报,2009,18(6):2161-2165.
    87.杨艳,凌婉婷,高彦征,等.几种多环芳烃的植物吸收作用及其对根系分泌物的影响[J].环境科学学报,2010,30(3):593-599.
    88.叶友斌,张巍,胡丹,等.城市大气中多环芳烃的降雨冲刷[J].中国环境科学,2010a,30(7): 985-991.
    89.叶友斌,张巍,胡丹,等.北京城区大气多环芳烃的沉降特征[J].城市环境与城市生态,2010b,23(2):23-26.
    90.余杰,陈同斌,高定,等.中国城市污泥土地利用关注的典型有机污染物[J].生态学杂志,2011,30(10):2365-2369.
    91.余忆玄,陈虹,王晓萌,等.我国城市污泥中的有机污染物污染状况及其海洋倾倒处置研究[J].海洋环境科学,2013,32(005):652-656.
    92.袁慧诗,潘波,刘文新,等.多环芳烃在全土及其碱提残余物上的吸附行为[J].环境化学,2006,25(2):154-158.
    93.袁馨.植物对PAHs污染土壤修复效果的种间差异研究[J].后勤工程学院学报,2010,26(6):50-54.
    94.曾跃春,李秋玲,高彦征,等.丛枝菌根作用下土壤中多环芳烃的残留及形态研究[J].土壤,2010,42(1):106-110.
    95.占达东.污泥资源化利用[M].青岛:中国海洋大学出版社,2009.
    96.占新华,周立祥.多环芳烃(PAHs)在土壤-植物系统中的环境行为[J].生态环境,2003,12(4):487-492.
    97.占新华,周立祥,黄楷.水溶性有机物对菲的表观溶解度和正辛醇/分配系数的影响[J].环境科学学报,2006,26(1):105-110.
    98.张慧,党志,易筱筠,等.玉米修复芘污染土壤的初步研究[J].环境化学,2010,(1):29-34.
    99.张晶,林先贵,李烜桢,等.菇渣和鼠李糖脂联合强化苜蓿修复多环芳烃污染土壤[J].环境科学,2010,31(10):2431-2438.
    100.张晶,汪勇,林先贵,等.植物间作系统在多环芳烃污染农田修复中的应用[J].安全与环境学报,2009,9(5):76-80.
    101.张树才,王开颜,沈亚婷,等,北京东南郊大气降尘中的多环芳烃[J].农业环境科学学报,2007,26(4):1568-1574.
    102.张卫,林匡飞,张巍,等.菲在土壤中的微生物降解研究[J].生态环境学报,2010,19(2):330-333.
    103.张文娟,沈德中,张从,等.堆制处理过程中的多环芳烃降解[J].应用与环境生物学报,1999,5(6):605-609.
    104.张雪英,周立祥,崔春红,等.江苏省城市污泥中多环芳烃的含量及其主要影响因素分析[J].环境科学,2008a,29(8):2271-2276.
    105.张雪英,周立祥,王世梅,等.施用污泥堆肥及其水溶性有机物对土壤中荧蒽解吸-淋滤的影响[J].环境科学学报,2008b,28(10):2018-2023.
    106.张翼.酶抑制剂对高羊茅代谢菲的影响[J].安徽农业科学,2010,(4):1780-1781.
    107.张翼,凌婉婷,陈冬升,等.蒽在黑麦草体内的代谢作用[J].中国环境科学,2010,(4):544-547.
    108.张增强,薛澄泽.污泥堆肥对几种花卉的生长响应研究[J].环境污染与防治,1996,18(5):1-4.
    109.赵飞,刘翔,杨建刚.降解菌对堆肥中多环芳烃降解作用的研究[J].环境污染治理技术与设备,2005,6(1):47-49.
    110.赵颖,刘利军,党晋华,等.污灌区复合污染土壤的植物修复研究[J].生态环境学报,2013,22(7):1208-1213.
    111.赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2):68-72.
    112.郑蕾,谭文捷,丁爱中,等.微生物作用下多环芳烃在土壤中的迁移特征[J].化工学报,2010,61(1):200-207.
    113.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    114.钟茂生,姜林,夏天翔,等.基于土壤中多环芳烃解吸特性的生物修复效果评价[J].环境科学学报,2012,32(3):726-730.
    115.周岩梅,张琼,汤鸿霄.多环芳烃类有机物在腐殖酸上的吸附行为研究[J].环境科学学报,2010,30(8):1564-1571.
    116.朱雪竹,倪雪,戴敏敏,等.多环芳烃胁迫下植物内生细菌的生长特性[J]. Conference on Environmental Pollution and Public Health,2010:329-333.
    117.邹绍文,张树清,王玉军,等.中国城市污泥的性质和处置方式及土地利用前景[J].中国农学通报,2005,21(1):198-201.
    118. EPA Method 3630C. Silica Gel Cleanup.1996. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3630c.pdf
    119. EPA Method 3500C. Organic extraction and sample preparation.2007a. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3500c.pdf
    120. EPA Method 3546. Microwave Extraction.2007b. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3546.pdf
    121. EPA Method 8270D. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS).2007c. US Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/8270d.pdf
    122. Amir S, Hafidi M, Merlina G, et al. Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge[J]. Chemosphere,2005,58(4):449-458.
    123. Aprill W, Sims RC. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil[J]. Chemosphere,1990,20(1):253-265.
    124. Balba MT, Al-Awadhi N, Al-Daher R. Bioremediation of oil-contaminated soil:microbiological methods for feasibility assessment and field evaluation[J]. Journal of Microbiological Methods, 1998,32(2):155-164.
    125. Baran S, Oleszczuk P. The Concentration of Polycyclic Aromatic Hydrocarbons in Sewage Sludge in Relation to the Amount and Origin of Purified Sewage[J]. Polish Journal of Environmental Studies,2003,12(5).
    126. Barber JL, Thomas GO, Kerstiens G, et al. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs[J]. Environmental Pollution,2004,128(1):99-138.
    127. Barret M, Carrere H, Delgadillo L, et al. PAH fate during the anaerobic digestion of contaminated sludge:Do bioavailability and/or cometabolism limit their bipdegradation?[J]. Water Research, 2010,44(13):3797-3806.
    128. Beyer L, Wachendorf C, Eisner DC, et al. Suitability of dehydrogenase activity assay as an index of soil biological activity[J]. Biology and fertility of soils,1993,16(1):52-56.
    129. Binet P, Portal JM, Leyval C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass[J]. Soil Biology and Biochemistry,2000a,32(14):2011-2017.
    130. Binet P, Portal JM, Leyval C. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass[J]. Plant and Soil,2000b,227(1-2):207-213.
    131. Breedveld GD, Sparrevik M. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site[J]. Biodegradation,2000,11(6):391-399.
    132. Brioukhanov AL, Netrusov AI, Eggen RI. The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri[J]. Microbiology,2006,152(6):1671-1677.
    133. Cai QY, Mo CH, Wu QT, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludge and compost application[J], Bioresource Technology,2008,99(6):1830-1836.
    134. Cai QY, Mo CH, Wu QT, et al. Occurrence of organic contaminants in sewage sludges from eleven wastewater treatment plants, China[J]. Chemosphere,2007,68(9):1751-1762.
    135. Casida LE. Microbial metabolic activity in soil as measured by dehydrogenase determinations[J]. Applied and Environmental Microbiology,1977,34(6):630-636.
    136. Cerniglia CE. Fungal metabolism of polycyclic aromatic hydrocarbons:past, present and future applications in bioremediation[J]. Journal of industrial microbiology & biotechnology,1997, 19(5):324-333.
    137. Cheema SA, Khan MI, Tang X, et al. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea)[J]. Journal of Hazardous materials,2009, 166(2-3):1226-1231.
    138. Chen BL, Yuan MX, Qian LB. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers[J]. Journal of Soils and Sediments, 2012,12(9):1350-1359.
    139. Chen YC, Banks MK, Schwab AP. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.)[J]. Environmental Science & Technology, 2003,37(24):5778-5782.
    140. Chiou CT, McGroddy SE, Kile DE. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments[J]. Environmental Science & Technology,1998,32(2):264-269.
    141. Claassens S, Van Rensburg L, Riedel KJ, et al.. Evaluation of the efficiency of various commercial products for the bioremediation of hydrocarbon contaminated soil[J]. Environmentalist,2006, 26(1):51-62.
    142. Cofield N, Schwab AP, Banks MK. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants[J]. International Journal of Phytoremediation,2007, 9(5):355-370.
    143. Contreras-Ramos SM, Alvarez-Bernal D, Dendooven L. Characteristics of earthworms (Eisenia fetida) in PAHs contaminated soil amended with sewage sludge or vermicompost[J]. Applied soil ecology,2009,41(3):269-276.
    144. D'Orazio V, Ghanem A, Senesi N. Phytoremediation of Pyrene Contaminated Soils by Different Plant Species[J]. CLEAN-Soil, Air, Water,2013,41(4):377-382.
    145. Dai JY, Xu MQ, Chen JP, et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere,2007,66(2):353-361.
    146. Dietz AC, Schnoor JL. Advances in phytoremediation[J]. Environmental Health Perspectives,2001 109(Suppl 1):163.
    147. EPA US. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons[J], Development,1993.
    148. Eschenbach A, WienbergR, Mahro B. Fate and stability of nonextractable residues of [14C] PAH in contaminated soils under environmental stress conditions[J]. Environmental Science & Technology,1998,32(17):2585-2590.
    149. Fernandez-Luqueno F, Marsch R, Espinosa-Victoria D, et al. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N[J]. Science of the Total Environment,2008,402(1):18-28.
    150. Fountoulakis MS, Terzakis S, Georgaki E, et al. Oil refinery sludge and green waste simulated windrow composting[J]. Biodegradation,2009,20(2):177-189.
    151. Fryer ME, Collins CD. Model intercomparison for the uptake of organic chemicals by plants[J]. Environmental Science & Technology,2003,37(8):1617-1624.
    152. Fu DQ, Teng Y, Shen YY, et al. Dissipation of polycyclic aromatic hydrocarbons and microbial activity in a field soil planted with perennial ryegrass[J]. Frontiers of Environmental Science & Engineering,2012,6(3):330-335.
    153. Gandolfi I, Sicolo M, Franzetti A, et al.. Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils[J]. Bioresource Technology,2010, 101(2):568-575.
    154. Gao YZ, Zhang Y, Liu J, et al.. Metabolism and subcellular distribution of anthracene in tall fescue (Festuca arundinacea Schreb.)[J]. Plant and Soil,2013,365(1-2):171-182.
    155. Gao YZ, Zhu LZ. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils[J]. Chemosphere,2004,55(9):1169-1178.
    156. Garcia-Gil JC, Plaza C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2000,32(13):1907-1913.
    157. Grosser RJ, Warshawsky D, Vestal JR. Indigenous and enhanced mineralization of pyrene, benzo [a] pyrene, and carbazole in soils[J]. Applied and Environmental Microbiology,1991, 57(12):3462-3469.
    158. Hafidi M, Amir S, Jouraiphy A, et al. Fate of polycyclic aromatic hydrocarbons during composting of activated sewage sludge with green waste[J]. Bioresource Technology,2008, 99(18):8819-8823.
    159. Hamdi H, Benzarti S, Aoyama I, et al.. Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.)[J]. International Biodeterioration & Biodegradation,2012,67:40-47.
    160. Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Journal of Hazardous materials,2009,169(1):1-15.
    161. He YW, Yediler A, Sun TH, et al.. Adsorption of fluoranthene on soil and lava:Effects of the organic carbon contents of adsorbents and temperature[J]. Chemosphere,1995,30(1):141-150.
    162. Hua L, Wu WX, Liu YX, et al. Effect of composting on polycyclic aromatic hydrocarbons removal in sewage sludge[J]. Water Air and Soil Pollution,2008a,193(1-4):259-267.
    163. Hua L, Wu WX, Liu YX, et al. Heavy metals and PAHs in sewage sludge from twelve wastewater treatment plants in Zhejiang Province[J]. Biomedical and Environmental Sciences,2008b, 21(4):345-352.
    164. Jorgensen KS, Puustinen J, Suortti AM. Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles[J]. Environmental Pollution,2000,107(2):245-254.
    165. Jacques RJS, Okeke BC, Bento FM, et al. Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil[J]. Bioresource Technology,2008,99(7):2637-2643.
    166. Joner EJ, Hirmann D, Szolar OH, et al. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment[J]. Environmental Pollution,2004,128(3):429-435.
    167. Ju JH, Lee IS, Sim WJ, et al. Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea[J]. Chemosphere,2009,74(3):441-447.
    168. Komp P, McLachlan MS. The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass[J]. Science of the Total Environment,2000,250(1):63-71.
    169. Kawasaki A, Watson ER, Kertesz MA. Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres[J]. Plant and Soil,2012, 358(1-2):169-182.
    170. Ke L, Wang WQ, Wong TWY, et al. Removal of pyrene from contaminated sediments by mangrove microcosms[J]. Chemosphere,2003,51(1):25-34.
    171. Khadhar S, Higashi T, Hamdi H, et al.. Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants[J]. Journal of Hazardous materials,2010,183(1):98-102.
    172. Khan S, Wang N, Reid BJ, et al.Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar[J]. Environmental Pollution,2013,175:64-68.
    173. Kipopoulou AM, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area[J]. Environmental Pollution,1999,106(3):369-380.
    174. Kuang SP, Wu ZC, Zhao LS. Accumulation and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils around oil sludge in Zhongyuan oil field, China[J]. Environmental Earth Sciences,2011,64(5):1353-1362.
    175. Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to bioremediate PAH-contaminated samples[J]. Chemosphere,2003,52(9):1539-1546.
    176. Lazzari L, Sperni L, Bertin P, et al. Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes[J]. Chemosphere,2000,41(3):427-435.
    177. Lee HK, Wright GJ, Swallow WH. The identification of sources of polycyclic aromatic hydrocarbons (PAH) by using concentration ratios of total PAH and lead[J]. International journal of environmental studies,1990,36(4):273-277.
    178. Lee SH, Lee WS, Lee CH, et al. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes[J]. Journal of Hazardous materials,2008,153(1-2):892-898.
    179. Li XJ, Li PJ, Lin X, et al. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases[J]. Journal of Hazardous materials,2008, 150(1):21-26.
    180. Li Y, Yediler A, Ou ZQ, et al. Effects of a non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm[J]. Chemosphere,2001, 45(1):67-75.
    181. Lichtfouse E, Sappin-Didier V, Denaix L, et al. A 25-year record of polycyclic aromatic hydrocarbons in soils amended with sewage sludges[J]. Environmental Chemistry Letters,2005, 3(3):140-144.
    182. Liebeg EW, Cutright TJ. The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil[J]. International Biodeterioration & Biodegradation,1999,44(1):55-64.
    183. Lima JA, Nahas E, Gomes AC. Microbial populations and activities in sewage sludge and phosphate fertilizer-amended soil[J]. Applied soil ecology,1996,4(1):75-82.
    184. Ling WT, Gao YZ. Promoted dissipation of phenanthrene and pyrene in soils by amaranth (Amaranthus tricolor L.)[J]. Environmental Geology,2004,46(5):553-560.
    185. Liu JJ, Wang XC, Fan B. Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment[J]. Bioresource Technology,2011,102(9):5305-5311.
    186. Loew O. A new enzyme of general occurrence in organismis[J]. Science,1900,11(279):701-702.
    187. Lu M, Zhang ZZ, Sun SS, et al.. The use of goosegrass (Eleusine indica) to remediate soil contaminated with petroleum[J]. Water, Air, & Soil Pollution,2010,209(1-4):181-189.
    188. Maila MP, Cloete TE. The use of biological activities to monitor the removal of fuel contaminants-perspective for monitoring hydrocarbon contamination:a review[J]. International Biodeterioration & Biodegradation,2005,55(1):1-8.
    189. Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry,1996,11(1):121-127.
    190. Manoli E, Samara C. Occurrence and mass balance of polycyclic aromatic hydrocarbons in the Thessaloniki sewage treatment plant[J]. Journal of Environmental Quality,1999,28(1):176-187.
    191. Mansuy-Huault L, Regier A, Faure P. Analyzing hydrocarbons in sewer to help in PAH source apportionment in sewage sludges[J]. Chemosphere,2009,75(8):995-1002.
    192. Oleszczuk P. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil[J]. Chemosphere,2006,65(9):1616-1626.
    193. Oleszczuk P. Changes of polycyclic aromatic hydrocarbons during composting of sewage sludges with chosen physico-chemical properties and PAHs content[J]. Chemosphere,2007,67(3): 582-591.
    194. Oleszczuk P, Baran S. Influence of soil fertilization by sewage sludge on the content of polycyclic aromatic hydrocarbons (PAHs) in crops[J]. Journal of Environmental Science and Health,2005, 40(11):2085-2103.
    195. Page AL. Methods of soil analysis. Part 2. Chemical and microbiological properties:American Society of Agronomy. Soil Science Society of America,1982.
    196. Parafba LC, Queiroz SCN, Maia AdHN, et al.. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge[J]. Science of the Total Environment,2010,408(16):3270-3276.
    197. Petrasek AC, Kugelman U, Austern BM, et al.. Fate of toxic organic compounds in wastewater treatment plants[J]. Journal (Water Pollution Control Federation),1983,55(10):1286-1296.
    198. Petrisor 1G, Dobrota S, Komnitsas K. et al.. Artificial inoculation-perspectives in tailings phytostabilization[J]. International Journal of Phytoremediation,2004,6(1):1-15.
    199. Phillips TM, Seech AG, Liu D, et al.. Monitoring biodegradation of creosote in soils using radiolabels, toxicity tests, and chemical analysis[J]. Environmental toxicology,2000,15(2):99-106.
    200. Piatt JJ, Backhus DA, Capel PD, et al.. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments[J]. Environmental Science & Technology,1996,30(3):751-760.
    201. Polak J, Sutkowski WW. Bartoszek M, et al.. Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge[J]. Journal of Molecular Structure,2005, 744:983-989.
    202. Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons:source attribution, emission factors and regulation[J]. Atmospheric Environment,2008. 42(13):2895-2921.
    203. Reilley KA, Banks MK, Schwab AP. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere[J]. Journal of Environmental Quality,1996,25(2):212-219.
    204. Richnow HH, Seifert R, Hefter J, et al. Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments[J]. Organic Geochemistry,1994, 22(3):671-681.
    205. RPA, Milieu, WRC. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. II. Report on Options and Impacts.2010. http://ec.europa.eu/environment/waste/sludge/pdf/part ii reportpdf
    206. Salanitro JP, Dorn PB, Huesemann MH, et al. Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment[J]. Environmental Science & Technology,1997,31(6):1769-1776.
    207. Salihoglu NK, Salihoglu G, Tasdemir Y, et al.. Comparison of polycyclic aromatic hydrocarbons levels in sludges from municipal and industrial wastewater treatment plants[J]. Archives of environmental contamination and toxicology,2010,58(3):523-534.
    208. Sayara T, Borras E, Caminal G, et al.. Bioremediation of PAHs-contaminated soil through composting:Influence of bioaugmentation and biostimulation on contaminant biodegradation[J]. International Biodeterioration & Biodegradation,2011,65(6):859-865.
    209. Sayara T, Sarra M, Sanchez A. Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting[J]. Journal of Hazardous materials,2009, 172(2):1695-1698.
    210. Sayara T, Sarra M, Sanchez A. Optimization and enhancement of soil bioremediation by composting using the experimental design technique[J]. Biodegradation,2010,21(3):345-356.
    211. Schnoor JL, Licht LA, McCutcheon SC, et al. Phytoremediation of organic and nutrient contaminants[J]. Environmental Science & Technology,1995,29(7):318-323.
    212. Schwab AP, Al-Assi AA, Banks MK. Adsorption of naphthalene onto plant roots[J]. Journal of Environmental Quality,1998,27(1):220-224.
    213. Senesi N, Plaza C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments[J]. CLEAN-Soil, Air, Water,2007,35(1):26-41.
    214. Shaw LJ, Burns RG. Biodegradation of organic pollutants in the rhizosphere[J]. Advances in Applied Microbiology,2003,53:1-60.
    215. Siciliano SD, Fortin N, Mihoc A, et al.. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination[J]. Applied and Environmental Microbiology,2001, 67(6):2469-2475.
    216. Simarro R, Gonzalez N, Bautista LF, et al. Optimisation of key abiotic factors of PAH (naphthalene, phenanthrene and anthracene) biodegradation process by a bacterial consortium[J]. Water, Air, & Soil Pollution,2011,217(1-4):365-374.
    217. Sims RC, Overcash MR. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Reviews:Springer; 1983. p.1-68.
    218. Stevens JL, Northcott GL, Stern GA, et al. PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and poly chlorinated n-alkanes in UK sewage sludge:survey results and implications[J]. Environmental Science & Technology,2003,37(3):462-467.
    219. Sun L, Yan XL, Liao XY, et al. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata [J]. Environmental Pollution,2011, 159(12):3398-3405.
    220. Suto M, Takebayashi M, Saito K, et al. Endophytes as producers of xylanase[J]. Journal of bioscience and bioengineering,2002,93(1):88-90.
    221. Tabak HH, Lazorchak JM, Lei L, et al. Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments:Bioavailability, biodegradability, and toxicity issues[J]. Environmental Toxicology and Chemistry,2003,22(3):473-482
    222. Totsche KU, Danzer J, Kogel-Knabner I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments[J]. Journal of Environmental Quality,1997,26(4):1090-1100.
    223. Tremblay L, Kohl SD, Rice JA, et al. Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles[J]. Marine Chemistry,2005,96(1):21-34.
    224. Walworth JL, Woolard CR, Braddock JF, et al. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen:an approach to determining optimum levels[J]. Soil and Sediment Contamination,1997,6(5):465-480.
    225. Wild E, Dent J, Thomas GO, et al. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots[J]. Environmental Science & Technology,2005,39(10):3695-3702.
    226. Xu SY, Chen YX, Lin KF, et al. Removal of pyrene from contaminated soils by white clover[J]. Pedosphere,2009,19(2):265-272.
    227. Xu SY, Chen YX, Lin Q, et al. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.)[J]. Journal of Environmental Sciences-China,2005, 17(5):817-822.
    228. Yang WC, Lampert D, Zhao N, et al. Link between black carbon and resistant desorption of PAHs on soil and sediment[J]. Journal of Soils and Sediments,2012,12(5):713-723.
    229. Yang ZY, Zhu LZ. Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons[J]. Chemosphere,2007,67(2):402-409.
    230. Zeng XY, Lin Z, Gui HY, et al. Occurrence and distribution of polycyclic aromatic carbons in sludges from wastewater treatment plants in Guangdong, China[J]. Environmental Monitoring and Assessment,2010,169(1-4):89-100.
    231. Zhai JB, Tian WJ, Liu KK. Quantitative assessment of polycyclic aromatic hydrocarbons in sewage sludge from wastewater treatment plants in Qingdao, China[J]. Environmental Monitoring and Assessment,2011,180(1-4):303-311.
    232. Zhang J, Lin XG, Liu WW, et al. Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils[J]. Journal of Environmental Sciences,2012,24(8):1476-1482.
    233. Zhang JH, Zeng JH, He MC. Effects of temperature and surfactants on naphthalene and phenanthrene sorption by soil[J]. Journal of Environmental Sciences,2009,21(5):667-674.
    234. Zhang Y, Zhu YG, Houot S, et al. Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes[J]. Environmental Science and Pollution Research,2011,18(9):1574-1584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700