用户名: 密码: 验证码:
ABR-人工湿地分散处理乡村生活污水的控制因子的强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对乡村生活污水的生态环境污染问题,通过厌氧折流板反应器(ABR)与改进填料的人工湿地组合技术对乡村生活污水的动态处理试验,结合Fe3+、Fe2+对ABR启动过程的强化效果与污泥颗粒化特征的结果,探讨了ABR-人工潜流湿地技术处理乡村生活污水的可行性及其关键控制因子的强化效果与机制,为乡村生态环境的改善提供技术支撑。获得的主要研究结果如下:
     ABR-人工湿地处理实际生活污水的动态试验结果表明:在进水CODCr=200-1200mg/L, TN=100-150mg/L, NH3-N=50-150mg/L的条件下,ABR的启动时间为130d,启动完成后继续运行49d,出水CODcr达到城镇污水处理厂二级排放标准(GB18918-2002),相应的TN、TP的平均去除率分别为10.28%、12.49%。栽植芦苇的人工湿地模拟装置采用了给水厂污泥作为强化除磷的填料,其中所含的铝铁物质可以吸附污水中的磷,理论吸附量最高值为13.07mg(PO43--P)/g,优于沸石、钢渣与粉煤灰等常规湿地填料材料。ABR出水经过人工湿地模拟装置的进一步处理后,出水CODcr稳定在20mg/L左右,相应的去除率约为80%,总磷在2.05-6.51mg/L范围,平均去除率为39.2%,氮去除率仅为10%-20%,主要受湿地微生物和植物生长状况的影响。
     ABR在上述常规启动运行过程中,各格室污泥中的微生物发生了部分相分离现象。污泥在颗粒化过程中,其长宽比经历了增长-急剧下降-趋于稳定三个阶段,启动成功后颗粒污泥具有趋于球形的密实结构,表面较为光滑。成熟厌氧颗粒污泥的平均粒径为0.54-0.92mm,沉降速度为1.8-29.1mm/s,有效密度为2.82-71.32kg/m3,质量分形维数为2.17-2.69,具有内层密实外层疏松的特征,基于Logan公式确定的颗粒污泥孔隙率为0.60-0.95,而通过石蜡切片图像确定的平均孔隙率仅为0.66-0.81。还提出了ABR处理低浓度生活污水时颗粒污泥成长过程与成熟颗粒污泥的概念模型。
     ABR的强化启动过程研究表明:直接投加Fe3+不能提高ABR的处理效果,而采用铁炭微电解装置产生的Fe2+进行强化启动,可以将ABR的启动时间从对照试验的51d缩短为38d,出水CODCr为120mg/L,其去除率提高了10%。ABR各格室中加入Fe2+加速了污泥的生长速度,最终形成了表面光滑结构密实的球形颗粒污泥,各格室中这些颗粒污泥的平均粒径为0.28-0.73mm,而对照ABR和Fe3+作用下的ABR内污泥颗粒的平均粒径仅为0.04-0.20mm。
     Fe2+强化启动的ABR运行稳定后颗粒污泥的水凝胶结构分析表明:该颗粒污泥水凝胶结构的关键物质可能为:蛋白质与α-多糖。在中性pH与高离子强度下颗粒污泥的储能模量(G')、结合能(Ec)与屈服应力(τ)较高,表明该颗粒污泥水凝胶结构的强度和弹性较好。在温度为25℃-75℃范围内,该颗粒污泥的平衡水含量(EWC)变化不大;pH<4时EWC急剧降低,pH>10时EWC迅速升高;离子强度的升高导致了EWC的降低。在本研究的环境条件变化范围内,颗粒污泥的渗透压为负值,具有通过“EPS半透膜”向环境释水的趋势,这与“道南平衡”理论中的凝胶渗透现象的影响因素相关。
     此外,通过铁碳微电解装置产生的Fe2+投加到ABR中,进水Fe2+浓度为150mg/L,启动过程中反应器上清液pH值维持在7.0左右,是产甲烷细菌生长的适宜条件。采用PCR-DGGE技术解析了ABR成熟颗粒污泥中真细菌的分子生态学特征,结果表明,与对照ABR相比,Fe2+的加入改变了ABR各格室污泥中微生物种群的分布,前者各格室内分布着大量的螺杆菌属与泥生绿菌属微生物,且在第2格室发现大量的梭菌属与气单胞菌属细菌,第3-5格室发现较多的Uncultured Sulfuricurvumsp.;后者前2个格室的优势种为Uncultured Sulfuricurvum sp.,后3个格室内该细菌数量减少。并且Fe2+的投加导致ABR第二格室至第五格室内微生物多样性指数降低。
     论文研究结果证明,ABR-人工潜流湿地分散处理乡村生活污水时,通过铁炭微电解单元释放的Fe2+强化ABR的启动过程、给水厂污泥除磷填料和典型湿地植物强化人工湿地对有机物和磷的去除效果等技术措施的实施,不仅可以缩短关键单元的启动时间,而且提高污染物去除效果,可以作为乡村生态环境改善方面生态处理的储备技术。针对北京市昌平区康陵村低浓度生活污水的水质水量特征,确定了Fe2+强化启动的ABR反应装置为中试工艺的预处理单元,含有给水厂污泥强化除磷填料和典型湿地植物的人工潜流湿地装置作为中试工艺的深度处理单元,计算了4m3/d的ABR-人工潜流湿地中试工艺装置以及铁碳微电解装置的尺寸,绘制了单元装置的结构图。比较了ABR-人工湿地工艺系统与其它乡村生活污水处理系统,分析了前者的优势。
In this paper, to treat the ecological environmental pollution caused by rural sewage, a combination of anaerobic baffled reactor(ABR) and constructed wetland with the enhanced wetland media was employed for rural sewage disposal, of which dynamic features were explored. The ABR start-up experiment was also conducted by adding Fe3+and Fe2+, respectively. Furthermore, the feasibility of the ABR-constructed wetland and the effect of key controlling factors on the performance of the wetland as well as the corresponding mechanism were investigated. The results of this paper would provide technical support for improving the rural ecological environment. The results were as follows:
     Under the condition of COD of200-1200mg/L,TN of100-150mg/L, NH3-N of50-150mg/L in the influent, the start-up time lasted130d and the CODcr in the effluent of ABR reached the second discharge standard of pollutants for municipal wastewater treatment plant(GB18918-2002)49-day later, and the corresponding average TN and TP removal was10.28%and12.49%,respectively. The effluent was discharged to the simulated apparatus of constructed wetland for the further purification. In the apparatus, reed was planted and water treatment residual (WTR) was considered to be the enhanced wetland media. Due to the presence of Al and Fe in WTR, its maximum adsorption capacity of phosphorus was13.07mg(PO43--P)/g, which was higher than that of normal constructed wetland substrate, like zeolite, steel slag, coal ash etc. The effluent COCr of the simulated apparatus was stable at about20mg/L, and the corresponding CODCr removal was about80%. The effluent CODcr ranged from2.05mg/L to6.51mg/L, and the average TP removal was about39.2%. The nitrogen removal was only in the range of10%to20%, which was due to the influence of the microbial and growth of wetland plants.
     During the ABR start-up and running process, the partial microbial separation in ABR sludge was observed. The aspect ratio of the granules in ABR firstly increased followed by a dramatically decreasing, then tended to be stable. The anaerobic granules produced in ABR became more and more regular in surface and compact in structure. The size of the granules increased to0.54-0.92mm after a duration of stable running. The corresponding settling velocity and the effective density of these granules ranged from1.8mm/s to29.1mm/s and from2.82kg/m3-71.32kg/m3,respectively. Based on Logan's equation, the porosity of these granules was in the range of0.60-0.95, whereas the average porosity of these granules was only0.66-0.81determined from the paraffin section image.
     Adding Fe3+alone did not improve the performance. By comparison, when ABR was dosed Fe2+by the iron carbon micro electrolysis device, it took ten days shorter to start up the ABR than the control one which lasted45days. Meanwhile, the CODCr was120mg/L in the effluent and the removal efficiency increased by10percent. Dosing Fe2+to ABR accelerated the granulation, improved the capability of resistance to shear deformation, and promoted the growth of granular sludge in the length direction and the width direction. Finally, the sphere-like granule formed, which had smooth surface and dense structure. The average size of the granules in the five compartment was0.28-0.73mm, while it was only in the range from0.04mm to0.20mm for the control ABR and the ABR dosed Fe3+.
     The protein and a-polysaccharide might be the main contributor to the formation of anaerobic granule hydrogel. Under conditions of neutral pH and high ionic strength, the storage modulus(G'), energy of cohesion(E) and yield stress(τ) of the granules were higher, which indicated that the granules exhibited stronger elasticity and strength. The equilibrium water content (EWC) of the anaerobic granules kept almost stable when the temperature was in the range of25℃and75℃. As pH<4, the sharp decrease of the EWC indicated the decrease of the water content in sludge. While the EWC increased rapidly when pH>10. The high concentration of NaCl in the solution led to the reduction of the EWC. Under these conditions, the osmotic pressure was negative, which showed that the granules tended to release water. This tendency was controlled by Donnan equilibrium.
     Adding Fe2+to ABR by control the Fe2+concentration of150mg/L, maintained the pH in ABR at about7.0, under which the methane-producing bacteria grew well. Through the PCR-DGGE technology, the distribution of microbial community in the ABR was characterized, and the results was as following. A variation in the microbial community in the ABR compartments was observed with the addition of Fe2+. In the ABR dosing with Fe2+, the dominant species was Uncultured Sulfuricurvum sp in the first and second compartment, and its quantity decreased in the latter three compartments. However, in the control ABR, a great number of Uncultured Sulfuricurvum sp. and Chlorobium limicola was observed in all the five compartments. In addition, Uncultured Clostridiales bacterium and Tolumonas auensis dominated in the second compartment, Uncultured Sulfuricurvum sp and great quantity of Uncultured Sulfuricurvum sp was observed in the fifth compartment. The microbial diversity analysis showed that the microbial diversity decreased in ABR apart from in the first compartment due to the Fe2+dosing.
     In this paper, ABR-constructed wetland was employed for decentralized treating rural domestic sewage. The ABR start-up was strengthed by Fe2+produced in the iron carbon micro electrolysis device, and the wetland was strengthed by WTR and typical plants, through which the start-up period of key unit was shortened and the removal efficiency of polluant in sewage was increased. The combination of ABR-constructed wetland could be recommended techniques for improving rural ecological environment. Based on the results of the above-mentioned and the analysis about the water quantity and wastewater characterization of the low-strength rural sewage produced in Kang Ling Village in Beijing, the ABR that was celebrated start-up by Fe2+was considered as the pretreatment unit. A constructed subsurface wetland that contained WTR to ennaced phosphorus removal was employed as the advanced treament unit. An4.0m/d pilot-scale improved ABR-constructed' wetland and iron carbon micro electrolysis device were designed, and the draft was drawn after calculating the structure parameters of every unit. In addition, the improved ABR-constructed wetland with enhanced media was compared with other technology used in rural sewage disposal.
引文
[1]白玉华,章小军,雷志洪,张春玲,杨立君.垂直流人工湿地净化机理及工程实践[J].北京工业大学学报,2008,07:761-766,772
    [2]包健,许明,涂勇,等.A/O+人工湿地工艺处理四川丘陵地区农村生活污水应用[J].安徽农业科学,2012,39(35):21952-21953.
    [3]卜现亭,府灵敏,周艳文.生态塘组合工艺处理小城镇生活污水的前景及应用[J].环境监测管理与技术,2008,20(4):51-53.
    [4]陈和平,张慎,朱建林,等.厌氧接触氧化池/垂直流人工湿地处理农村生活污水[J].宁波大学学报(理工版),2008,21(4):568-570.
    [5]陈洪斌,张国政.厌氧折流板反应器处理豆制品废水的研究[J].中国沼气,1999,17(1):12-16.
    [6]陈俊敏,贾滨洋,付永胜.表面流人工湿地用于农家乐旅游设施污水处理的试验研究[J].农业环境科学学报,2006,25(S1):191-193.
    [7]陈晓宏,陈栋为,陈伯浩,李开明.农村水污染治理驱动因素的利益相关者识别[J].生态环境学报,2011,Z2:1273-1277.
    [8]成先雄,严群.农村生活污水土地处理技术[J].四川环境,2005,24(2):39-43.
    [9]程晓波.厌氧颗粒污泥的性质及其在污水处理中的应用[J].中国市政工程,2010,02:44-46,80.
    [10]崔理华,朱夕珍,骆世明,等.几种人工湿地基质磷的吸附特性研究[J].农业环境科学学报,2007,26(3):894-898.
    [11]戴友芝,施汉昌,冀静平,等.厌氧折流板反应器处理有毒废水及其污泥特性的研究[J].环境科学学报,2000,20(3):284-289.
    [12]戴媛媛,杨新萍,周立祥.芦苇根际微环境对潜流人工湿地氮与COD去除性能的影响[J].环境科学,2009,29(12):3387-3392.
    [13]冯华军.分散式生活污水处理工艺开发及机理研究[D].杭州:浙江大学,2008.
    [14]顾超.上海浦东南片新农村的污水治理技术分析[J].中国给水排水,2011,02:34-38.
    [15]郭飞,李怀正,王晟.潜流湿地处理旅游区生活污水生产试验:以COD为例[J].四川环境,2006,25(1):4-7.
    [16]贺峰,吴振斌,成水平,等.复合垂直流人工湿地对氮的净化效果[J].中国给水排水,2004,20(10):18-21.
    [17]贺延龄.废水的厌氧生物处理[M].北京:轻工业出版社,1998.
    [18]胡静.自来水厂污泥除磷性能研究及其在人工湿地中的应用[D].北京:中国农业大学,2010.
    [19]胡奇.生物接触氧化-温室结构潜流人工湿地处理农村生活污水[D].哈尔滨:哈尔滨工业大学,2011.
    [20]胡文华,吴慧芳,徐明,等.聚合氯化铝污泥对磷的吸附动力学及热力学[J].环境工程学报,2011,5(10):2288-2292.
    [21]胡细全,李兆华,蔡鹤生.低浓度下冲击负荷对厌氧折流板反应器的影响[J].环境科学与技术,2006,29(3):76-78.
    [22]胡细全,刘大银,蔡鹤生.ABR结构对水力特性的影响[J].中国地质大学学报:2004,29(3):369-374
    [23]黄梅,李小兵.我国生态塘污水处理工艺的研究与应用[J].企业技术开发,2005,23(12):19-21.
    [24]黄武,陈明晖,赵光桦,等.无动力,地埋分散式厌氧系统处理农村生活污水[J].中国给水排水,2008,24(20):43-45.
    [25]吉祝美,李通林,吕锡武,等.生态塘处理农村生活污水的效果分析[J].江苏环境科技,2007,20(5):39-41.
    [26]纪峰,潘安君.快速渗滤在小堡村污水治理中的应用[J].北京水利,1998,24(2):26-27.
    [27]贾静,傅大放,马强,等.苏南农村地区分散式污水的处理与回用[J].中国给水排水,2007,23(6):31-34
    [28]姜苏,周集体,郭海燕,等.一体化A/O生物膜反应器脱氮特性研究[J].环境科学与技术,2005,28(2):71-73.
    [29]姜潇,王毅力,张桐,等.厌氧折流板反应器(ABR)中成熟颗粒污泥的分形分析[J].环境科学学报,2008,28(4):647-658.
    [30]蒋微微.太阳能在农村生活污水处理中的应用[J].环境科学与技术,2011,34(6G):194-196.
    [31]蒋展鹏,钟燕敏.一体化A/O生物膜反应器处理生活污水[J].中国给水排水,2002,18(8):9-12.
    [32]郎惠卿,赵魁义,陈克林.中国湿地植被[M].北京:科学出版社,199%
    [33]雷中方,陆雍森.用厌氧折流板反应器处理碱法草浆黑液[J].上海环境科学,1995,14(5):19-22.
    [34]李清雪,华玉芝.厌氧折流板反应器处理高浓度有机废水[J].河北建筑科技学院学报,2003,20(3):13-14.
    [35]李秋华,刘送平,高延进.复合垂直流人工湿地净化城镇生活污水的研究[J].给水排水,2012,38(S1):187-190.
    [36]李松,王为东,强志民,等.自动增氧人工湿地处理农村生活污水脱氮研究[J].环境科学与技术2011,34(3):19-22.
    [37]李涛,周律,武红功,等.水平潜流湿地处理生活污水示范工程研究[J].中国给水排水,2010,26(11):88-91.
    [38]李卫华,盛国平,王志刚,等.废水生物处理反应器出水的三维荧光光谱解析[J].中国科学技术大学学报,2008,38(6):601-608.
    [39]李雅婕.新型一体式膜生物反应器处理化粪池污水的研究[J].安徽农业科学,2010,026:14598-14599.
    [40]李再兴,杨景亮,叶莉,等.厌氧颗粒污泥膨胀床(EGSB)处理生活污水试验研究[J].环境工程学报,2008,2(10):1345-1348.
    [41]梁祝,倪晋仁.农村生活污水处理技术与政策选择[J].中国地质大学学报:社会科学版,2007,7(3):18-22.
    [42]梁卓,何国富,刘伟,等.城郊农村生活污水排放现状分析及对策研究[J].安徽农学通报.2009,15(5):78-80.
    [43]刘春,李亮,马俊科,吴根,杨景亮.基于mcrA基因的厌氧颗粒污泥产甲烷菌群分析[J].环境科学,2011,04:1114-1]19.
    [44]刘大银,毕亚凡,李庆新,等.ABR反应器处理生活污水的研究[J].华中师范大学学报:自然科学版,2004,37(4):514-517.
    [45]刘红,刘学燕,欧阳威.人工湿地植物系统优化管理研究[J].农业环境科学学报,2004,23(5):1003-1008
    [46]刘泓,谢卫平,宗旭超.太湖流域某市农村生活污水处理工艺的比较研究[J].环境科学与管理,2013,12:81-85
    [47]刘华波,杨海真.稳定塘污水处理技术的应用现状与发展[J].天津城市建设学院学报,2003,9(1):19-22.
    [48]刘建,胡啸,李轶.垂直流人工湿地处理农村分散生活污水的应用与工程设计[J].水处理技 术,2011,37(6):132-135.
    [49]刘然,彭剑峰,宋永会,等.厌氧折流板反应器(ABR)中微生物种群演替特征[J].环境科学研究,2010,23(06):741-747.
    [50]鲁敏,曾庆福.七种植物的人工湿地处理生活污水的研究[J].武汉科技学院学报,2004,17(2):32-35.
    [51]吕炳南,陈志强.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [52]吕兴菊,孟良.厌氧-接触氧化-砂滤组合工艺处理洱海流域农村生活污水的试验研究[J].昆明理工大学学报:理工版,2010,35(4):93-97.
    [53]马传军,费庆志,许芝,等.厌氧生物滤池-好氧生物炭滤池联合处理生活污水[J].环境化学,2007,26(1):70-72.
    [54]马俊科,刘春,吴根,杨景亮,郭建博,李再兴.工业化UASB厌氧颗粒污泥产氢产乙酸菌群分析[J].浙江大学学报(工学版),2011,03:576-581.,
    [55]钱易,王凤芹.常温下厌氧生物滤池处理生活污水的试验研究[J].给水排水,1994,20(1):24-27.
    [56]任朝斌,于磊,顾华,汪元元.京郊生活污水处理设施运行现状调研与分析[J].中国给水排水,2013,14:5-8.
    [57]沈东升,贺永华,冯华军,等.农村生活污水地埋式无动力厌氧处理技术研究[J].农业工程学报,2005,21(7):111-115.
    [58]沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水[J].中国给水排水,1999,15(5):10-12.
    [59]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,2006.
    [60]沈耀良,赵丹,王承武,等.ABR反应器的水力特征研究[J].中国给水排水,2004,19(11):1-3.
    [61]沈耀良,赵丹.ABR处理高浓度淀粉制品加工废水运行特性的研究[J].给水排水,2002,28(9):33-36.
    [62]宋小康,金龙,王建芳,等.ABR+复合人工湿地处理农村生活污水中试[J].环境工程,2011,29(3):4-9
    [63]宋永会,彭剑峰,高红杰,等.高效藻类塘与水生植物塘联用深度净化受污染河水研究[J].环境工程技术学报,2011,1(4):317-322.
    [64]苏东辉,郑正,丁明明.水电站移民安置区生活污水处理技术研究[J].华东工程技术,2007(28):10-11.
    [65]孙文杰,佘宗莲,关艳艳,周艳丽.垂直流人工湿地净化污水的研究进展[J].安全与环境工程,2011,01:25-28+44.
    [66]汪媛.在线超声对流化床膜生物反应器膜污染的控制及其机理研究[D].北京:北京林业大学,2012.
    [67]王宝贞,杨鲁豫.生态塘-简易高效的污水处理技术设计应用[J].城市环境与城市生态,1998,11(2):1-5.
    [68]王昌辉,裴元生.给水处理厂废弃铁铝泥对正磷酸盐的吸附特征[J].环境科学,2011,08:2371-2377.
    [69]王青颖.中国农村生活污水处理技术应用现状及研究方向[J].污染防治技术,2007,20(5):37-41.
    [70]王晟,徐祖信,李怀正.潜流湿地处理不同浓度有机污水的差异分析[J].环境科学,2006,,27(11):2194-2200
    [71]王天晓,蒋雅真,陈慧婷,王昌辉,裴元生.给水处理厂铁铝泥对正磷酸盐的吸附效果[J].环境工 程学报,2012,09:2991-2994.
    [72]王毅力,石宝友,杜白雨,等.聚合氯化铁-腐殖酸(PFC-HA)冷冻干燥絮体的表面与孔分形研究[J].环境科学学报,2006,26(9):1474-1483.
    [73]王云龙,张徵晟,陶琪,刘志刚,马鲁铭.四种农村生活污水处理工艺比较[J].水处理技术,2011,07:133-136.
    [74]吴迪,赵秋,高贤彪,等.厌氧-3级好氧/缺氧生物膜工艺处理农村生活污水[J].中国给水排水,2010,7:9-11.
    [75]武曲寅.水厂铁污泥对磷酸盐吸附性能研究[D].大连:大连理工大学,2008
    [76]辛杰,裴元生,王颖,等.几种吸附材料对磷吸附性能的对比研究[J].环境工程,2011,29(4):30-34.
    [77]辛青,黄种买,陆其林.我国中小城镇污水处理适用工艺综述[J].节能与环保,2004,9:23-25.
    [78]邢德峰,任南琪,李建政.荧光原位杂交在环境微生物学中的应用及进展[J].环境科学研究,2003,16(3):55-58.,
    [79]徐洪斌,吕锡武,李先宁,等.太湖流域农村生活污水污染现状调查研究[J].农业环境科学学报,2007,26(B 10):375-378.
    [80]许春华,周琪.高效藻类塘的研究与应用[J].环境保护,2001,8:41-43.
    [81]杨琦,尚海涛.ABR工艺处理生活污水研究[J].中国沼气,2006,24(1):9-14.
    [82]杨文婷,王德建,纪荣平.厌氧池-潜流人工湿地处理低浓度农村生活污水的研究[J].土壤(Soils),2010,42(3):485-491.
    [83]尹炜,李培军,叶闽,等.复合潜流人工湿地处理城市地表径流研究[J].中国给水排水,2006,22(1):5-8.
    [84]虞益江,魏国庆,陈铬铭.无动力高效组合式厌氧生物膜反应器技术在杭州农村生活污水治理中的应用[J].农业环境科学学报,2006,25(B9):680-682.
    [85]元新艳,王琳,孙磊,李世峰.膜生物反应器在生活社区中水站的应用[J].中国给水排水,2008,06:56-58
    [86]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [87]张虎成,田卫,俞穆清,等.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(2):11-15.
    [88]张建,黄霞.地下渗滤污水处理系统的氮磷去除机理[J].中国环境科学,2002,22(5):438-441.
    [89]张清.人工湿地的构建与应用[J].湿地科学,2011,04:373-379.
    [90]张瑞兴.生态塘处理中小城市污水的现状及前景[J].甘肃科技,2006,22(7):94-96.
    [91]张秀红,周集体,郭海燕,等.-体化A/O生物膜反应器低温硝化研究[J].环境科学,2007,28(1):142-146.
    [92]张云慧,朱伟,董婵.利用生物膜强化表流湿地处理农村生活污水的试验[J].湖泊科学,2012,24(6):838-842.
    [93]张增胜,徐功娣,陈季华,等.生物净化槽/强化生态浮床工艺处理农村生活污水[J].中国给水排水,2009,9:8-11.
    [94]赵大传,钟丽媛,杨厚玲,等.升流式厌氧生物滤池与温室型人工湿地组合对农村生活污水处理的研究[J].中国农学通报,2012,28(5):258-262.
    [95]赵大传,杜家伟.ABR-人工湿地组合工艺处理生活污水[J].安徽大学学报(自然科学版),2011,35(1):97-101
    [96]赵思平,颜京松.废水处理与利用生态工程Ⅱ-类型及一些案例[J].城市环境与城市生 态,2000,13(6):6-11.
    [97]朱敬平.调理与消化对污泥胶羽结构之影响分析[D].台北:国立台湾大学,2003.
    [98]竺建荣,胡纪萃.颗粒污泥的产甲烷细菌[J].微生物学报,1993,04:304-308+318
    [99]Abidi S, Kallali H, Jedidi N, et al. Comparative Pilot Study of the Performances of Two Constructed Wetland Wastewater Treatment Hybrid Systems[J]. Desalination,2009,246(l): 370-377.
    [100]Aguirre P, Ojeda E, Garcia J, et al. Effect of Water Depth on the Removal of Organic Matter in Horizontal Subsurface-Flow Constructed Wetlands [J]. Journal of Environmental Science and Health,2005^ 40:1457-1466.
    [101]Albuquerque A, Oliveira J, Semitela S, et al. Influence of Bed Media Characteristics on Ammonia and Nitrate Removal in Shallow Horizontal Subsurface Flow Constructed Wetlands[J]. Bioresource Technology,2009,100(24):6269-6277.
    [102]Alphenaar P A. Anaerobic Granular Sludge:Characterization, and Factors Affecting its Functioning [M]. Landbouwuniversiteit Te Wageningen,1994.
    [103]APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater [M].19th Washington D C:American Public Health Association,1998.
    [104]Ayaz S C. Post Treatment and Reuse of Tertiary Treated Wastewater by Constructed Wetlands [J]. Desalination.2008,226(1-3):249-255.
    [105]Babatunde A, Zhao Y, Burke A, et al. Characterization of aluminium-Based Water Treatment Residual For Potential Phosphorus Removal in Engineered Wetlands[J]. Environmental Pollution,2009,157(10):2830-2836.
    [106]Bachand P A, Home A J. Denitrification in Constructed Free-Water Surface Wetlands:I. Very High Nitrate Removal Rates in A Macrocosm Study[J]. Ecological Engineering,1999,14(1):9-15.
    [107]Barber W P, Stuckey D C. The Use of the Anaerobic Baffled Reactor(ABR) for Wastewater Treatment:A Review[J]. Water Research,1999,33(7):1559-1578.
    [108]Barbera A C, Cirelli G L, Cavallaro V, et al. Growth and Biomass Production of Different Plant Species in Two Different Constructed Wetland Systems in Sicily [J]. Desalination,2009,246(1): 129-136.
    [109]Bayley M, Davison L, Healey T. Nitrogen Removal From Domestic Effluent Using Subsurface Flow Constructed Wetlands:influence of Depth, Hydraulic Residence Time and Pre-Nitrification[J]. Water Science and Technology,2003,48(5):175-182.
    [110]Bekmezci O K, Ucar D, Kaksonen A H, et al. Sulfidogenic Biotreatment Of Synthetic Acid Mine Drainage And Sulfide Oxidation In Anaerobic Baffled Reactor[J]. Journal of hazardous materials, 2011,189(3):670-676.
    [111]Bellouti M, alves M, Novais J, et al. Flocs Vs Granules:Differentiation by Fractal Dimension[J]. Water Research,1997,31 (5):1227-1231.
    [112]Belmont M A, Cantellano E, Thompson S, et al. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico [J]. Ecological Engineering.2004,23(4-5):299-311.
    [113]Bialowiec A, Janczukowicz W, Randerson P F. Nitrogen Removal From Wastewater in Vertical Flow Constructed Wetlands Containing Lwa/Gravel Layers and Reed Vegetation[J]. Ecological Engineering,2011,37(6):897-902.
    [114]Boopathy R, Tilche A. Pelletization of Biomass in A Hybrid Anaerobic Baffled Reactor(HABR) Treating Acidified Wastewater[J]. Bioresource Technology,1992,40(2):101-107.
    [115]Brix H. Do Macrophytes Play A Role in Constructed Treatment Wetlands[J]. Water Science and Technology,1997,35(5):11-17.
    [116]Bulc, T G. Long term performance of a constructed wetland for landfill leachate treatment [J]. Ecological Engineering,2006,26(4):365-374.
    [117]Caselles-Osorio A, Puigagut J, Seg E, et al. Solids Accumulation in Six Full-Scale Subsurface Flow Constructed Wetlands[J]. Water Research,2007,41(6):1388-1398.
    [118]Chen J, Lun S Y.Study on mechanism of anaerobic sludge ranulation in UASB reactors[J]. Water Sci Technol 1993; 28(7):171-8.
    [119]Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science and Technology,2003,37(24):5701-5710.
    [120]Chen X, Stewart P. Role of Electrostatic interactions in Cohesion of Bacterial Biofilms[J]. Applied Microbiology and Biotechnology,2002,59(6):718-720.
    [121]Cheng S, Grosse W, Karrenbrock F, Thoennessen M. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering,2001,18(3):317-325.
    [122]Chernicharo C D L, Machado R. Feasibility of the Uasb/Af System For Domestic Sewage Treatment in Developing Countries[J]. Water Science and Technology,1998,38(8):325-332.
    [123]Chu C, Lee D, Peng X. Structure of Conditioned Sludge Flocs[J]. Water Research,2004,38(8): 2125-2134.
    [124]Chu, C. P. and Lee, D. J. Moisture distributions in sludges:effects of cationic polymer conditioning [J]. Environmental Engineering. ASCE.1999,125(4):340-345.
    [125]Chui H, Fang H. Histological Analysis of Microstructure of Uasb Granules[J]. Journal of Environmental Engineering,1994,120(5):1322-1326.
    [126]Chung A, Wu Y, Tam N, et al. Nitrogen and Phosphate Mass Balance in A Sub-Surface Flow Constructed Wetland For Treating Municipal Wastewater[J]. Ecological Engineering,2008,32(l): 81-89.
    [127]Chung H Y, Chu C P, Lee D J. Drag Force on Activated Sludge Floe Under Crossflow[J]. Journal of the Chinese institute of Chemical Engineers,2004,35(2):225-230.
    [128]Collins A G, Theis T L, Kilambi S, et al. Anaerobic Treatment of Low-Strength Domestic Wastewater Using An Anaerobic Expanded Bed Reactor[J]. Journal of Environmental Engineering,1998,124(7):652-659.
    [129]Cooper P. A Review of the Design and Performance of Vertical-Flow and Hybrid Reed Bed Treatment Systems[J]. Water Science and Technology,1999,40(3):1-9.
    [130]Cui L, Ouyang Y, Gu W, et al. Evaluation of Nutrient Removal Efficiency and Microbial Enzyme Activity in A Baffled Subsurface-Flow Constructed Wetland System[J]. Bioresource Technology,2013,146:656-662.
    [131]Dama P, Bell J, Foxon K, et al. Pilot-Scale Study of An Anaerobic Baffled Reactor For the Treatment of Domestic Wastewater[J]. Water Science & Technology,2002,46(9):263-270.
    [132]Dordio A V, Carvalho A J P. Organic Xenobiotics Removal in Constructed Wetlands, With Emphasis on the Importance of the Support Matrix[J]. Journal of Hazardous Materials,2013,252: 272-292.
    [133]Dubourgier H C, Prensier G, Albagnac G. Structure and microbial activities of granular anaerobic sludge[C].//Lettinga G, Zehnder A J B, Grotenhuis J T C, Hulshoff Pol L W.Granular anaerobic sludge:microbiology and technology. Netherlands:Pudoc Wageningen,1987:18-33.
    [134]Dursun D. Gel-like behavior of biosolids in conditioning and dewatering processes [D]. Delaware:University of Delaware,2007.
    [135]F Reilly J, J Home A, D Miller C. Nitrate Removal From A Drinking Water Supply With Large Free-Surface Constructed Wetlands Prior To Groundwater Recharge[J]. Ecological Engineering,1999,14(1):33-47.
    [136]Faulwetter J L, Gagnon V, Sundberg C, et al. Microbial Processes influencing Performance of Treatment Wetlands:A Review[J]. Ecological Engineering,2009,35(6):987-1004.
    [137]Feng H, Hu L, Mahmood Q, et al. Anaerobic Domestic Wastewater Treatment'With Bamboo Carrier Anaerobic Baffled Reactor[J]. International Biodeterioration & Biodegradation,2008,62(3): 232-238.
    [138]Fink D F, Mitsch W J. Seasonal and Storm Event Nutrient Removal By A Created Wetland in An Agricultural Watershed[J]. Ecological Engineering,2004,23(4):313-325.
    [139]Foladori P, Ortigara A, Ruaben J, et al. Influence of High Organic Loads During the Summer Period on the Performance of Hybrid Constructed Wetlands(Vssf+Hssf) Treating Domestic Wastewater in the alps Region[J]. Water Science & Technology,2012(65):890-897.
    [140]Garuti G, Giordano A, Pirozzi F. Full-Scale Ananox(R) System Performance[J]. Water SA,2004,27(2):189-198.
    [141]Gasiunas V, Strusevicius Z, Struseviciene M S,. Pollutant removal by horizontal subsurface flow constructed wetlands in Lithuania [J]. Journal of Environmental Science and Health, Part A,2005, 40(6),1467-1478.
    [142]Gervin L, Brix H. Removal of nutrients from combined sewer overflows and lake water in a vertical flow constructed wetland system [J]. Water Science & Technology,2001,44 (11):171-176
    [143]Gorra R, Coci M, Ambrosoli R, et al. Effects of Substratum on the Diversity and Stability of Ammonia-Oxidizing Communities in A Constructed Wetland Used For Wastewater Treatment[J]. Journal of Applied Microbiology,2007,103(5):1442-1452.
    [144]Gregory J. The Density of Particle Aggregates[J]. Water Science and Technology,1997,36(4): 1-13.
    [145]Grotenhuis J, Kissel J, Plugge C, et al. Role of Substrate Concentration in Particle Size Distribution of Methanogenic Granular Sludge in Uasb Reactors[J]. Water Research,1991,25(1): 21-27.
    [146]Haner A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products [J]. Water Research,1994,28(4):863-869.
    [147]Herouvim E, Akratos C S, Tekerlekopoulou A, et al. Treatment of Olive Mill Wastewater in Pilot-Scale Vertical Flow Constructed Wetlands[J]. Ecological Engineering,2011,37(6):931-939.
    [148]Hoffmann J P. Wastewater Treatment with Suspended and Nonsuspended Algae[J]. Journal of Phycology,1998,34(5):757-763.
    [149]Hu Y, Zhao Y, Zhao X, et al. High Rate Nitrogen Removal in An alum Sludge-Based intermittent Aeration Constructed Wetland[J]. Environmental Science & Technology,2012,46(8):4583-4590.
    [150]Huang Y, Ortiz L, Aguirre P, Garcia J, Mujeriego R, Bayona J M. Effect of design parameters in horizontal flow constructed wetland on the behavior of volatile fatty acids and volatile alkylsulfides[J]. Chemosphere.2005,59:769.
    [151]Hulshoff Pol L W, De Zeeuw W J, Velzeboer C T M, Lettinga G. Granulation in UASBreactors[J]. Water Science & Technology,1983,15(8/9):291-304
    [152]Hulshoff Pol L, De Castro Lopes S, Lettinga G, et al. Anaerobic Sludge Granulation[J]. Water Research,2004,38(6):1376-1389.
    [153]Ji G D, Sun T H, Ni J R, et al. Anaerobic Baffled Reactor (ABR) for Treating Heavy Oil Produced Water with-High Concentrations of Salt and Poor Nutrient[J]. Bioresource Technology,2009, 100(3):1108-1114.
    [154]Ji G, Sun T, Ni J. Surface Flow Constructed Wetland For Heavy Oil-Produced Water Treatment[J]. Bioresource Technology,2007,98(2):436-441.
    [155]Ji G, Sun T, Zhou Q, et al. Constructed Subsurface Flow Wetland For Treating Heavy Oil-Produced Water of the Liaohe Oilfield in China[J]. Ecological Engineering,2002,18(4): 459-465.
    [156]Jiang Q, Logan B E. Fractal Dimensions of Aggregates Determined From Steady-State Size Distributions[J]. Environmental Science & Technology,1991,25(12):2031-2038.
    [157]Jin B, Wil N B-M, Lant P. A Comprehensive insight into Floe Characteristics and Their Impact on Compressibility and Settleability of Activated Sludge[J]. Chemical Engineering Journal,2003,95(1): 221-234.
    [158]Johnson C P, Li X, Logan B E. Settling Velocities of Fractal Aggregates[J]. Environmental Science & Technology,1996,30(6):1911-1918.
    [159]Kadlec R H, Wallace S. Treatment Wetlands [M].USA:Crc Press,2008.
    [160]Karaca, S., Giirses, A., Ejder, M., Ac, ikyildiz, M. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite [J]. Journal of Colloid and Interface Science,2004,277:257-263.
    [161]Knight R L, Kadlec R H, Ohlendorf H M.The Use of Treatment Wetlands For Petroleum industry Effluents[J]. Environmental Science & Technology,1999,33(7):973-980.
    [162]Knowles P, Dotro G, Nivala J, et al. Clogging in Subsurface-Flow Treatment Wetlands: Occurrence and Contributing Factors[J]. Ecological Engineering,2011,37(2):99-112.
    [163]Konnerup D, Koottatep T, Brix H. Treatment of Domestic Wastewater in Tropical, Subsurface Flow Constructed Wetlands Planted With Canna and Heliconia[J]. Ecological Engineering,2009,35(2):248-257.
    [164]Kouki, S., M'hiri, F., Saidi, N., Belard, S., Hassen, A. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle [J]. Desalination.2009,246: 452-467.
    [165]Lalbahadur T, Pillay S, Rodda N, et al. Microbiological Studies of An Anaerobic Baffled Reactor: Microbial Community Characterisation and Deactivation of Health-Related Indicator Bacteria[J]. Water Science & Technology,2005,51 (10):155-162.
    [166]Langenhoff A A M, Stuckey D C. Treatment of Dilute Wastewater Using an Anaerobic Baffled Reactor:Effect of Low Temperature [J]. Water Research,2000,34(15):3867-3875.
    [167]Lesage E, Rousseau D P L, Meers E, et al. Accumulation of metals in the sediments and reed biomass of a combined constructed wetland treating domestic wastewater [J]. Water, Air and Soil Pollution,2007,183:253-264.
    [168]Lesage E, Rousseau D, Meers E, et al. Accumulation of Metals in A Horizontal Subsurface Flow Constructed Wetland Treating Domestic Wastewater in Flanders, Belgium[J]. Science of the Total Environment,2007,380(1):102-115.
    [169]Leverenz H L, Haunschild K, Hopes G, et al. Anoxic Treatment Wetlands For DenitrificationfJ]. Ecological Engineering,2010,36(11):1544-1551.
    [170]Li D H, Ganczarczyk J J. Structure of Activated Sludge Floes[J]. Biotechnology and Bioengineering,1990,35(1):57-65.
    [171]Li X Y, Leung R P. Determination of the Fractal Dimension of Microbial Floes From the Change in Their Size Distribution After Breakage[J]. Environmental Science & Technology,2005,39(8): 2731-2735.
    [172]Li X Y, Logan B E. Permeability of fractal aggregates [J]. Water research,2001,35(14): 3373-3380.
    [173]Li X Y, Yuan Y, Wang H-W. Hydrodynamics of Biological Aggregates of Different Sludge Ages: An insight into the Mass Transport Mechanisms of Bioaggregates[J]. Environmental Science& Technology,2003,37(2):292-299.
    [174]Li X Y, Yuan Y. Settling Velocities and Permeabilities of Microbial Aggregates[J]. Water Research,2002,36(12):3110-3120.
    [175]Lin Y F, Jing S R, Lee D Y, et al. Performance of A Constructed Wetland Treating intensive Shrimp Aquaculture Wastewater Under High Hydraulic Loading Rate[J]. Environmental Pollution,2005,134(3):411-421.
    [176]Lin Y, Yin J, Wang J, et al. Performance and Microbial Community in Hybrid Anaerobic Baffled Reactor-Constructed Wetland For Nitrobenzene Wastewater[J]. Bioresource Technology,2012,l 18: 128-135.
    [177]Liu R R, Lu X J, Tian Q, Yang B, Chen J H. The Performance Evaluation of Hybrid Anaerobic Baffled Reactor for Treatment of PVA-Containing Desizing Wastewater [J].Desalination,2011, 271(1-3):287-294.
    [178]Liu X, Ren N, Yuan Y. Performance of a periodic anaerobic baffled reactor fed on Chinese traditional medicine industrial wastewater [J]. Bioresource Technology,2009,100(1):104-110.
    [179]Liu Y Q, Tay J H, Moy B Y P. Characteristics of Aerobic Granular Sludge in A Sequencing Batch Reactor With Variable Aeration[J]. Applied Microbiology and Biotechnology,2006,71(5):761-766.
    [180]Liu Y, Zhang Y, Quan X, et al. Applying an electric field in a built-in zero valent iron-anaerobic reactor for enhancement of sludge granulation[J]. Water research,2011,45(3):1258-1266.
    [181]Liu Y, Zhang Y, Quan X, et al. Applying An Electric Field in A Built-in Zero Valent Iron-Anaerobic Reactor For Enhancement of Sludge Granulation[J]. Water Research,2011,45(3): 1258-1266.
    [182]Luederitz V, Eckert E, Lange-Weber M, et al. Nutrient Removal Efficiency and Resource Economics of Vertical Flow and Horizontal Flow Constructed Wetlands[J]. Ecological Engineering,2001.18(2):157-171.
    [183]Macleod F, Guiot S, Costerton J. Layered Structure of Bacterial Aggregates Produced in An Upflow Anaerobic Sludge Bed and Filter Reactor[J]. Applied and Environmental Microbiology,1990,56(6):1598-1607.
    [184]Mandelbrot B B. the Fractal Geometry of Nature [M]. Landon:Macmillan,1983.
    [185]Marin J, Kennedy K J, Eskicioglu C. Characterization of An Anaerobic Baffled Reactor Treating Dilute Aircraft De-Icing Fluid and Long Term Effects of Operation on Granular Biomass[J]. Bioresource Technology,2010,101 (7):2217-2223.
    [186]Matheson F E, Sukias J P. Nitrate Removal Processes in a Constructed Wetland Treating Drainage From Dairy Pasture[J]. Ecological Engineering,2010,36(10):1260-1265.
    [187]Mckeown R M, Hughes D, Collins G, et al. Low-Temperature Anaerobic Digestion For Wastewater Treatment[J]. Current Opinion in Biotechnology,2012,23(3):444-451.
    [188]McLeod F A,Guiot S R, Costerton J W. Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor [J]. Applied and Environmental Microbiology, 1990,56(6):1598-607.
    [189]Mitsch W J, Wise K M. Water Quality, Fate of Metals, and Predictive Model,Validation of A Constructed Wetland Treating Acid Mine Drainage[J]. Water Research,1998,32(6):1888-1900.
    [190]Molle P, Lienard A, Grasmick A, Iwema A, Kabbabi A. Apatite as an Interesting Seed to Remove Phosphorus from Wastewater in Constructed Wetlands [J]. Water Sci. Technol.2005,51 (9):193-203.
    [191]Moshiri G A. Constructed Wetlands For Water Quality Improvement [M].USA:Crc Press,1993.
    [192]Mu Y, Ren T T, Yu H Q. Drag Coefficient of Porous and Permeable Microbial Granules[J]. Environmental Science & Technology,2008,42(5):1718-1723.
    [193]Mu Y, Yu H Q. Biological Hydrogen Production in A UASB Reactor with Granules.1: Physicochemical Characteristics of Hydrogen-Producing Granules [J]. Biotechnology Bioengineering.2006a; (94):980-987.
    [194]Mu Y, Yu H Q. Rheological and Fractal Characteristics of Granular Sludge in an Upflow Anaerobic Reactor [J]. Water Research.2006b, (40):3596-3602
    [195]Nachaiyasit S, Stuckey D C. Microbial Response to Environmental Changes in An Anaerobic Baffled Reactor(ABR)[J]. Antonie Van Leeuwenhoek,1995,67(1):111-123.
    [196]Nguyen L. Accumulation of Organic Matter Fractions in A Gravel-Bed Constructed Wetland[J]. Water Science & Technology,2001,44(11-12):281-287.
    [197]Oron G, Shelef G, Levi A, et al. Algae/Bacteria Ratio in High-Rate Ponds Used For Waste Treatment[J]. Applied and Environmental Microbiology,1979,38(4):570-576.
    [198]Ozdemir S, Cirik K, Akman D, et al. Treatment of Azo Dye-Containing Synthetic Textile Dye Effluent Using Sulfidogenic Anaerobic Baffled Reactor [J]. Bioresource technology,2013,146: 135-143.
    [199]Paredes D, Kuschk P, K Ser H. Influence of Plants and Organic Matter on the Nitrogen Removal in Laboratory-Scale Model Subsurface Flow Constructed Wetlands inoculated With Anaerobic Ammonium Oxidizing Bacteria[J]. Engineering in Life Sciences,2007,7(6):565-576.
    [200]Plumb J J, Bell J, Stuckey D C. Microbial Populations Associated With Treatment of An industrial Dye Effluent in An Anaerobic Baffled Reactor[J]. Applied and Environmental Microbiology,2001,67(7):3226-3235.
    [201]Ramesh A, Lee D J, Hong S G. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge [J]. Applied Microbiology and Biotechnology, 2006,73(1):219-225.
    [202]Reddy K, Patrick W, Broadbent F. Nitrogen Transformations and Loss in Flooded Soils and Sediments[J]. Critical Reviews in Environmental Science and Technology,1984,13(4):273-309.
    [203]Rivas A, Barcel-Quintal 1, Moeller G. Pollutant Removal in A Multi-Stage Municipal Wastewater Treatment System Comprised of Constructed Wetlands and A Maturation Pond, in A Temperate Climate[J]. Water Science & Technology,2011,64(4):980-987.
    [204]Rosa D R, Duarte I, Katia Saavedra N, et al. Performance and Molecular Evaluation of An Anaerobic System With Suspended Biomass For Treating Wastewater With High Fat Content After Enzymatic Hydrolysis[J]. Bioresource Technology,2009,100(24):6170-6176.
    [205]Rouxhet PG, Mozes "N.Physical chemistry of the interaction between attached microorganisms and their support [J].Water Sci Technol 1990; 22:1-16.
    [206]Ruan, X., Xue, Y., Wu, J., Sun, M., Zhang, X. Treatment of polluted river water using pilot scale constructed wetlands [J]. Bulletin of Environmental Contamination and Toxicology.2006, 76:90-97.
    [207]Saeed T, Afrin R, Muyeed A A, et al. Treatment of Tannery Wastewater in A Pilot-Scale Hybrid Constructed Wetland System in Bangladesh[J]. Chemosphere,2012,88(9):1065-1073.
    [208]Saeed T, Sun G. A Review on Nitrogen and Organics Removal Mechanisms in Subsurface Flow Constructed Wetlands:Dependency on Environmental Parameters, Operating Conditions and Supporting Media[J]. Journal of Environmental Management,2012,112:429-448.
    [209]Sahinkaya E, Altun M, Bektas S, et al. Bioreduction of Cr (VI) from acidic wastewaters in a sulfidogenic ABR[J]. Minerals Engineering,2012,32:38-44.
    [210]Scholz M, Hedmark A. Constructed Wetlands Treating Runoff Contaminated With NutrientsfJ]. Water, Air, and Soil Pollution,2010,205(1-4):323-332.
    [211]Seviour T, Pijuan M, Nicholson T, et al. Understanding the Properties of Aerobic Sludge Granules As Hydrogels[J]. Biotechnology and Bioengineering,2009,102(5):1483-1493.
    [212]She Z, Zheng X, Yang B, et al. Granule Development and Performance in Sucrose Fed Anaerobic Baffled Reactors[J]. Journal of Biotechnology,2006,122(2):198-208.
    [213]Show K Y, Wang Y, Foong S F, et al. Accelerated Start-Up and Enhanced Granulation in Upflow Anaerobic Sludge Blanket Reactors [J]. Water Research,2004,38(9):2293-2304.
    [214]Singh S, Haberl R, Moog O, et al. Performance of an Anaerobic Baffled Reactor and Hybrid Constructed Wetland Treating High-Strength Wastewater in Nepal E A Model For DEWATS [J]. Ecological Engineering.2009,35:654-660.
    [215]Sovik A K, Klove B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater [J]. Ecological Engineering,2005,25 (2):168-182.
    [216]Sun G, Austin D. Completely Autotrophic Nitrogen-Removal Over Nitrite in Lab-Scale Constructed Wetlands:Evidence From A Mass Balance Study[J]. Chemosphere,2007,68(6): 1120-1128.
    [217]Sun G, Zhao Y, Allen S. Enhanced Removal of Organic Matter and Ammoniacal-Nitrogen in A Column Experiment of Tidal Flow Constructed Wetland System[J]. Journal of Biotechnology,2005,115(2):189-197.
    [218]Tanner C. Plants As Ecosystem Engineers in Subsurface-Flow Treatment Wetlands[J]. Water Science & Technology,2001,44(11-12):11-12.
    [219]Tao W., Wang J. Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems [J], Ecological Engineering,2009,35 (5):836-842
    [220]Tawfik A, El-Qelish M. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor [J]. Bioresource technology, 2012,114:270-274.
    [221]Tawfik A, Salem A, El-Qelish M. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste [J]. Bioresource technology,2011,102(18):8723-8726.
    [222]Thanwised P, Wirojanagud W, Reungsang A. Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR)[J]. International Journal of Hydrogen Energy,2012, 37(20):15503-15510.
    [223]Tiwari M K, Guha S, Harendranath C S, et al. Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater[J]. Water research,2005,39(16): 3801-3810.
    [224]Truu M, Juhanson J, Truu J. Microbial Biomass, Activity and Community Composition in Constructed Wetlands[J]. Science of the Total Environment,2009,407(13):3958-3971.
    [225]Uyanik S, Sallis P J, Anderson G K. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I:process performance. [J]. Water Research,2002,36(4):933-943.
    [226]Vohla C, K Iv M, Bavor H J, et al. Filter Materials for Phosphorus Removal from Wastewater in Treatment Wetlands-A Review[J]. Ecological Engineering,2011,37(1):70-89.
    [227]Vohla C, Koiva M, John Bavor H.Filter materials for phosphorus removal from wastewater in treatment wetlands-A review [J]. Ecological Engineering,2011,37(1):70-89.
    [228]Vymazal J, Kr Pfelov L. A Three-Stage Experimental Constructed Wetland For Treatment of Domestic Sewage:First 2 Years of Operation[J]. Ecological Engineering,2011,37(1):90-98.
    [229]Vymazal J. Constructed Wetlands for Wastewater Treatment:Five Decades of Experience(?)[J]. Environmental Science & Technology,2010,45(1):61-69.
    [230]Vymazal J. Plants Used in Constructed Wetlands With Horizontal Subsurface Flow:A Review[J], Hydrobiologia,2011,674(1):133-156.
    [231]Vymazal J. Removal of Nutrients in Various Types of Constructed Wetlands[J]. Science of the Total Environment,2007,380(1):48-65.
    [232]Vymazal J. The Use Constructed Wetlands With Horizontal Sub-Surface Flow For Various Types of Wastewater[J]. Ecological Engineering,2009,35(1):1-17.
    [233]Wang L., Li T, Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment [J]. Ecological Engineering.2011,37,1225-1230
    [234]Wang R, Baldy V, P Rissol C, et al. Influence of Plants on Microbial Activity in A Vertical-Downflow Wetland System Treating Waste Activated Sludge With High Organic Matter Concentrations[J]. Journal of Environmental Management,2012,95:S158-S164.
    [235]Wang R, Korboulewsky N, Prudent P, et al. Feasibility of Using An Organic Substrate in A Wetland System Treating Sewage Sludge:Impact of Plant Species[J]. Bioresource Technology,2010,101 (1):51-57.
    [236]Wang Y L, Dentel S K. The effect of polymer doses and extended mixing intensity on the geometric andrheological characteristics of conditioned anaerobic digested sludge (ADS) [J]. Chemical Engineering Journal,2011,166(3):850-858.
    [237]Wiessner A, Kappelmeyer U, Kuschk P, et al. Sulphate Reduction and the Removal of Carbon and Ammonia in A Laboratory-Scale Constructed Wetland[J]. Water Research,2005,39(19):4643-4650.
    [238]Wloka M, Rehage H, Flemming H-C, et al. Rheological Properties of Viscoelastic Biofilm Extracellular Polymeric Substances and Comparison To the Behavior of Calcium Alginate Gels[J]. Colloid and Polymer Science,2004,282(10):1067-1076.
    [239]Wu Y, Li T, Yang L. Mechanisms of Removing Pollutants From Aqueous Solutions By Microorganisms and Their Aggregates:A Review[J]. Bioresource Technology,2012,107:10-18.
    [240]Xiao F, Yang S, Li X Y. Physical and Hydrodynamic Properties of Aerobic Granules Produced in Sequencing Batch Reactors [J]. Separation and Purification Technology,2008,63(3):634-641.
    [241]Yang Y, Zhao Y, Babatunde A, et al. Characteristics and Mechanisms of Phosphate Adsorption on Dewatered alum Sludge[J]. Separation and Purification Technology,2006,51(2):193-200.
    [242]Yang Z, Peng X, Chu C, et al. Image Processing and Geometric Parameters Extracted from Sliced Image of Porous Biomaterial[J]. Advanced Powder Technology,2007,18(2):187-213.
    [243]Ye F X, Li Y. Enhanced Denitrification and Organics Removal in Hybrid Wetland Columns: Comparative Experiments [J]. Ecological Engineering.2009,35(6):1043-1050
    [244]Yeh T, Wu C. Pollutant Removal Within Hybrid Constructed Wetland Systems in Tropical Regions[J]. Water Science & Technology,2009,59(2):233-240.
    [245]Yu H Q, Fang H H P, Tay J H. Enhanced Sludge Granulation in Upflow Anaerobic Sludge Blanket (UASB) Reactors by Aluminum Chloride. [J]. Chemosphere,2001,44(1):31-36.
    [246]Yu H, Fang H, Tay J. Effects of Fe2+ on Sludge Granulation in Upflow Anaerobic Sludge Blanket Reactors[J]. Water Science and Technology,2000,41(12):199-206.
    [247]Zhai J, Xiao H, He Q, et al. Experimental Study of A Novel Hybrid Constructed Wetland For Water Reuse and its Application in Southern China[J]. Water Science & Technology,2011,64(11): 2177-2184.
    [248]Zhai, J., Xiao, H.W., Kujawa-Roeleveld, K., He, Q., Kerstens, S.M. Experimental study of a novel hybrid constructed wetland for water reuse and its application in Southern China [J]. Water Science and Technology,2011,64 (11):2177-2184.
    [249]Zhang D, Li J, Guo P, et al. Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. [J]. Bioresource technology,2011,102(7):4703-4711.
    [250]Zhang J J, Li X Y, Oh S E, et al. Physical and Hydrodynamic Properties of Floes Produced During Biological Hydrogen Production [J]. Biotechnology and Bioengineering,2004,88(7):854-860.
    [251]Zhang L, Xia X, Zhao Y, et al. The Ammonium Nitrogen Oxidation Process in Horizontal Subsurface Flow Constructed Wetlands[J]. Ecological Engineering,2011,37(11):1614-1619.
    [252]Zhao L, Zhu W, Tong W. Clogging Processes Caused By Biofilm Growth and Organic Particle Accumulation in Lab-Scale Vertical Flow Constructed Wetlands[J]. Journal of Environmental Sciences,2009,21(6):750-757.
    [253]Zheng Y M, Yu H Q. Determination of the Pore Size Distribution and Porosity of Aerobic Granules Using Size-Exclusion Chromatography[J]. Water Research,2007,41(1):39-46.
    [254]Zhi W, Ji G. Constructed Wetlands,1991-2011:A Review of Research Development, Current Trends, and Future Directions[J]. Science of the Total Environment,2012,441:19-27.
    [255]Zhou J, Mary B, James M T. DNA Recovery From Soils of Diverse Composition [J]. Applied and Environmental Microbiology,1996,62:316-322.
    [256]Zupancic Justin, M., Vrhovsek, D., Stuhlbacher, A., Griessler Bulc, T. Treatment of wastewater in hybrid constructed wetland from the production of vinegar and packaging of detergents [J]. Desalination.2009,246:100-109.
    [257]Zwain H M, Hassan S R, Zaman N Q, et al. The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. [J]. Journal of Environmental Chemical Engineering,2013,1(1):61-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700