用户名: 密码: 验证码:
基于靶序列环化的新型滚环扩增方法的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸扩增是一项基本的生物技术,在医疗、农业、环境监测和取证等各个方面有着不可替代的作用。传统的核酸扩增使用聚合酶链式反应,即PCR技术。作为一种经典的扩增检测方法,同以其为基础发展而来的实时荧光定量PCR(qPCR)技术,被广泛的应用于核酸的扩增与检测领域。但这一技术在食品领域应用时会出现易受污染产生假阳性,有聚合酶抑制剂时使用困难,背景核酸大量存在时灵敏度大幅降低等问题。这些缺点限制了PCR直接用于检测食品中外源微生物。同时,作为一种变温扩增技术,PCR特异性的发挥需要精确的控温仪器,不符合基层现场快速检测的要求。因此需要开发一种新的核酸扩增技术,能够摆脱对精确控温仪器的依赖,同时能够从食品中检测出外源病毒和细菌,即能够在大量背景核酸存在的条件下特异性检测目标序列的存在,以达到在食品领域真正广泛应用的目标。
     滚环扩增(Rolling circle amplification,RCA),是一种在等温条件下就能特异性扩增目标片段的扩增技术,主要利用环状模板和具有链置换能力的DNA聚合酶环绕模板进行周期性的复制。常见技术应用为都以锁式探针RCA(padlock-RCA)引发扩增。虽然灵敏度高,但也有单链探针不稳定、探针与模板容易错配、扩增产物并非目标序列而是互补的探针自身的缺点。针对于此,本文使用了一种全新的目标成环RCA(Target-circularization RCA,TC-RCA):利用限制性内切酶酶切样品,产生具有9nt粘性末端的序列;其次,设计与目标序列粘性末端完全互补配对的双链接头,在连接酶的作用下同目标序列连接成环;利用具有链置换活性的DNA聚合酶,在两条引物的作用下引发超分支-RCA(Hyper-branched RCA);最后,扩增产物再经过限制性内切酶酶切,得到扩增后的目的片段。在此基础上,利用高特异性的DNA连接酶、生物素修饰接头、链霉亲和素磁珠以及磁性分离等手段,构建了磁珠辅助的TC-RCA技术。该项技术能够在等温条件下从大量背景核酸中检测出目标序列,从根本上解决了检测特异性和灵敏度之间的矛盾关系,特别适用于检测食品中有害微生物的存在。论文主要从以下几个方面研究建立特异性核酸检测方法。
     (1)TC-RCA的可行性,证明了TC-RCA具有在无背景核酸条件下扩增目标DNA片段的能力,敏感度为6×104个拷贝分子。同时,接头能稳定结合于固相磁珠表面,并且设计的接头固定于固相表面后不影响连接与扩增,为TC-RCA在芯片上实现目标成环等温扩增提供了技术支持和理论依据。
     (2)TC-RCA可以在大量背景核酸中检测出目标序列,敏感度达到6×106个拷贝分子,但结果伴有非特异性扩增。使用连接忠实度较高的Taq DNA连接酶进行连接,没有能够达到提高特异性的目的。主要是由于Taq DNA连接酶在非正常的缓冲液条件下,区别错配能力降低所致。说明TC-RCA已经初步具备成为一种新型检测方法的能力,同时为后续的实验提供了解决问题的思路和依据。
     (3)通过磁珠辅助将扩增子与背景DNA和Taq DNA连接酶分离,同时结合其它条件的优化探索,使得磁珠辅助的TC-RCA可以在高背景核酸存在的条件下特异性地扩增目的片段,敏感度为60个拷贝分子,并且没有任何非特异性扩增出现。经过对各个步骤的精简优化,检测结果24h之内即可获得。磁珠辅助的TC-RCA通用性强,更适用于基层和现场快速检测。
     (4)磁珠辅助TC-RCA适用于检测水产品中有害细菌,SYBR Green I染色结果表明该技术可以特异地检测出水产品中的外源细菌,最低检测限达到100个细菌基因序列拷贝分子。同其它检测水产品中有害微生物的方法相比,本方法不需要进行增菌实验,检测的结果可以直接反应食品被细菌污染的最初状态。同时反应不依赖精密控温仪器,常用水浴锅就满足检测要求,为基层现场快速检测食品中细菌提供了一种强有力的技术手段。
Nucleic acid amplification is a basic biotechnology that plays an irreplaceablerole in all aspects such as health care, agriculture development, environmentalprotection and forensics analysis. As a classical amplification technology, PCR withits evolved fashion named real-time quantitative PCR (RT-PCR), are widely used inthose fields. However, vulnerability to the contamination that generates false positives,inhibition caused by polymerase inhibitor, impaired sensitivity delivered by massivebackground nucleic acid in, discrediting PCR as a powerful technology for thedetection of exogenous microbes in food. Meanwhile, as a non-thermal amplificationtechnique, PCR relies on precise thermostable equipments, which does not meet therequirements of the on-spot-rapid detection. Therefore, the great demand for anoriginal amplification technology that is free from expensive equipment and immuneto the interference from background nucleic acids, which can be applied for foodsecurity administration, is enhanced
     As an isothermal detection method for overcoming the shortcomings of PCR,RCA (rolling circle amplification) has gained a great attention over the past decade.For the feasibility and sensitivity, padlock-RCA has been investigated in many labors.The specificity of padlock-RCA is based on the specific hybridization of two ends of apre-circular DNA (probe) with the target sequence. Nonetheless, even in the case thatseveral mismatches are present at the position not close to the ligation site, the probecan also be circularized and end up with false positive results. Moreover, theamplification reaction of padlock-RCA only generates tandem copies of the addedprobe itself but not the DNA target.
     Here we present a novel DNA detection method, termed “Target-CircularizationRolling Circle Amplification”(TC-RCA) based on rolling circle amplification, Adigestion step is employed to generate a number of shorter fragments including theDNA target with9nt sticky ends. Then a ligase is utilized to ligate the adaptor and the target DNA form a double stranded circle with a gap. Phi29DNA polymerase is thenused to amplify the circle by RCA using the integral strand as the template and theopen strand as the primer. The hyper-branched RCA is achieved with the help of twoprimers complementary to the target sequence. Finally, the products consisting oftandem copies of dsDNA target were digested by restriction endonuclease (TspR I) atthe cutting site as5'-NNCASTGNN-3'. Hence, the target DNA meant to be replicatedor detected is obtained with the augmentation of several magnitudes. Based onTC-RCA, several strategies such as high fidelity DNA ligase, biotinylated adaptor,streptavidin magnetic bead (SMB) and magnetic separation have been taken toimprove the sensitivity and specificity of TC-RCA to be an isothermal amplificationtechnology for detection harmful bacteria in food product. The following gists havebeen studied in this paper.
     1) The feasibility of TC-RCA has been proved. TC-RCA is capable of amplifyingat least6×104copies of target molecule in the absence of background DNA. Besides,the adaptor can be immobilized on solid phase surface of magnetic beads, andimmobilization does not affect the ligation and afterward amplification. This providestechnical support and theoretical basis for TC-RCA based on chip isothermalamplification.
     2) Detection of the target sequence in the presence of background DNA isachieved by TC-RCA. The detection limit is6×106copies of target molecule alongwith nonspecific amplifications. Taq DNA ligase featuring high ligation fidelity failsto promote the detection specificity, since Taq DNA ligase tolerates mismatches underabnormal conditions. This indicates that TC-RCA can be used for primary detection infood security control and intrigues us to contrive for new solutions for the problems.
     3) By utilizing SMB that realizes the separation between circular amplicon andinhibitors such as Taq DNA ligase and background DNA, SMB-assisted TC-RCAupgrade to a level that can detect at least60copies of target sequence in the presenceof massive background DNA. The desirable specificity is accomplished for nounexpected amplification occurred. With effort towards efficiency improvement, thedetection result can be obtained with24h, which paves the way for SMB-assisted TC-RCA to a general-use, rapid and precise detection protocol.
     4) SMB-assisted TC-RCA is proved to be applicable to detect harmful bacteriafrom aquatic food under isothermal conditions with great sensitivity and specificity.SYBR Green I displays the same results with electrophoresis. Comparing to PCR andother protocols in food control, this strategy can be conducted away from enrichmentculture, so the original infection status is allowed to investigate. In addition, ourprotocol avoids complicated thermal cycling program and expensive equipment, andheating in a period of time using a simple water incubator is sufficient to amplifyDNA to detectable levels. SMB-assisted TC-RCA is considered to be promoted as afast, rapid, real-time detection strategy for detecting harmful microbes in food andrelated products.
引文
[1] Erlich H A. Polymerase chain reaction [J]. Journal of clinical immunology,1989,9(6):437-447.
    [2] Delidow B C, Lynch J P, Peluso J J, et al. Polymerase chain reaction[M]//PCR Protocols.Humana Press,1993:1-29.
    [3] Erlich H A, Gelfand D, Sninsky J J. Recent advances in the polymerase chain reaction [J].Science,1991,252(5013):1643-1651.
    [4] Gibson U E, Heid C A, Williams P M. A novel method for real time quantitative RT-PCR [J].Genome research,1996,6(10):995-1001.
    [5] Vogelstein B, Kinzler K W. Digital PCR [J]. Proceedings of the National Academy of Sciences,1999,96(16):9236-9241.
    [6] Pohl G, Shih I M. Principle and applications of digital PCR [J].2004.
    [7] Backman K C, Carrino J J, Shimer G H, et al. Ligase chain reaction with endonuclease IVcorrection and contamination control: U.S. Patent5,516,663[P].1996-5-14.
    [8] Barany F. Genetic disease detection and DNA amplification using cloned thermostableligase[J]. Proceedings of the National Academy of Sciences,1991,88(1):189-193.
    [9] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification ofDNA[J]. Nucleic acids research,2000,28(12): e63-e63.
    [10] Compton J. Nucleic acid sequence-based amplification [J]. Nature,1991,350(6313):91-92.
    [11] Deiman B, van Aarle P, Sillekens P. Characteristics and applications of nucleic acidsequence-based amplification (NASBA)[J]. Molecular biotechnology,2002,20(2):163-179.
    [12] Walker G T, Fraiser M S, Schram J L, et al. Strand displacement amplification—anisothermal, in vitro DNA amplification technique [J]. Nucleic Acids Research,1992,20(7):1691-1696.
    [13] Detter J C, Jett J M, Lucas S M, et al. Isothermal strand-displacement amplificationapplications for high-throughput genomics[J]. Genomics,2002,80(6):691-698.
    [14] Cosentino L A, Landers D V, Hillier S L. Detection of Chlamydia trachomatis and Neisseriagonorrhoeae by strand displacement amplification and relevance of the amplification controlfor use with vaginal swab specimens [J]. Journal of clinical microbiology,2003,41(8):3592-3596.
    [15] Dean F B, Hosono S, Fang L, et al. Comprehensive human genome amplification usingmultiple displacement amplification [J]. Proceedings of the National Academy of Sciences,2002,99(8):5261-5266.
    [16] Luthra R, Medeiros L J. Isothermal multiple displacement amplification: a highly reliableapproach for generating unlimited high molecular weight genomic DNA from clinicalspecimens [J]. The Journal of Molecular Diagnostics,2004,6(3):236-242.
    [17] Vincent M, Xu Y, Kong H. Helicase‐dependent isothermal DNA amplification [J]. EMBOreports,2004,5(8):795-800.
    [18] Mahalanabis M, Do J, ALMuayad H, et al. An integrated disposable device for DNAextraction and helicase dependent amplification [J]. Biomedical microdevices,2010,12(2):353-359.
    [19] Liu D, Daubendiek S L, Zillman M A, et al. Rolling circle DNA synthesis: small circularoligonucleotides as efficient templates for DNA polymerases [J]. Journal of the AmericanChemical Society,1996,118(7):1587-1594.
    [20] Daubendiek S L, Ryan K, Kool E T. Rolling-circle RNA synthesis: circular oligonucleotidesas efficient substrates for T7RNA polymerase [J]. Journal of the American Chemical Society,1995,117(29):7818-7819.
    [21] Zhao W, Ali M M, Brook M A, et al. Rolling circle amplification: applications innanotechnology and biodetection with functional nucleic acids [J]. Angewandte ChemieInternational Edition,2008,47(34):6330-6337.
    [22] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting usingisothermal rolling-circle amplification [J]. Nature genetics,1998,19(3):225-232.
    [23] Kuhn H, Frank‐Kamenetskii M D. Template‐independent ligation of single‐strandedDNA by T4DNA ligase [J]. Febs Journal,2005,272(23):5991-6000.
    [24] Smolina I, Lee C, Frank-Kamenetskii M. Detection of low-copy-number genomic DNAsequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circleamplification and fluorescence in situ hybridization [J]. Applied and environmentalmicrobiology,2007,73(7):2324-2328.
    [25] Li N, Li J, Zhong W. CE combined with rolling circle amplification for sensitive DNAdetection [J]. Electrophoresis,2008,29(2):424-432.
    [26] Sch nhuber W, Fuchs B, Juretschko S, et al. Improved sensitivity of whole-cell hybridizationby the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signalamplification [J]. Applied and environmental microbiology,1997,63(8):3268-3273.
    [27] Nilsson M, Antson D O, Barbany G, et al. RNA-templated DNA ligation for transcriptanalysis [J]. Nucleic acids research,2001,29(2):578-581.
    [28] Jonstrup S P, Koch J, Kjems J. A microRNA detection system based on padlock probes androlling circle amplification [J]. RNA,2006,12(9):1747-1752.
    [29] Cheng Y, Zhang X, Li Z, et al. Highly Sensitive Determination of microRNA Using Target‐Primed and Branched Rolling‐Circle Amplification [J]. Angewandte Chemie,2009,121(18):3318-3322.
    [30] Mashimo Y, Mie M, Suzuki S, et al. Detection of small RNA molecules by a combination ofbranched rolling circle amplification and bioluminescent pyrophosphate assay [J]. Analyticaland bioanalytical chemistry,2011,401(1):221-227.
    [31] Murakami T, Sumaoka J, Komiyama M. Sensitive RNA detection by combining three-wayjunction formation and primer generation-rolling circle amplification [J]. Nucleic acidsresearch,2012,40(3): e22-e22.
    [32] Merkiene E, Gaidamaviciute E, Riauba L, et al. Direct detection of RNA in vitro and in situby target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNAsequences distanced far from the3′-end [J]. RNA,2010,16(8):1508-1515.
    [33] Lagunavicius A, Kiveryte Z, Zimbaite-Ruskuliene V, et al. Duality of polynucleotidesubstrates for Phi29DNA polymerase:3′→5′RNase activity of the enzyme [J]. RNA,2008,14(3):503-513.
    [34] Harcourt E M, Kool E T. Amplified microRNA detection by templated chemistry [J]. Nucleicacids research,2012,40(9): e65-e65.
    [35] Yao B, Li J, Huang H, et al. Quantitative analysis of zeptomole microRNAs based onisothermal ramification amplification [J]. RNA,2009,15(9):1787-1794.
    [36] Zhou Y, Huang Q, Gao J, et al. A dumbbell probe-mediated rolling circle amplificationstrategy for highly sensitive microRNA detection [J]. Nucleic acids research,2010,38(15):e156-e156.
    [37] Banér J, Nilsson M, Mendel-Hartvig M, et al. Signal amplification of padlock probes byrolling circle replication [J]. Nucleic acids research,1998,26(22):5073-5078.
    [38] Christian A T, Pattee M S, Attix C M, et al. Detection of DNA point mutations and mRNAexpression levels by rolling circle amplification in individual cells [J]. Proceedings of theNational Academy of Sciences,2001,98(25):14238-14243.
    [39] Cheung V G, Nelson S F. Whole genome amplification using a degenerate oligonucleotideprimer allows hundreds of genotypes to be performed on less than one nanogram of genomicDNA [J]. Proceedings of the National Academy of Sciences,1996,93(25):14676-14679.
    [40] Paunio T, Reima I, Syvanen A. Preimplantation diagnosis by whole-genome amplification,PCR amplification, and solid-phase minisequencing of blastomere DNA [J]. ClinicalChemistry,1996,42(9):1382-1390.
    [41] Telenius H, Carter N P, Bebb C E, et al. Degenerate oligonucleotide-primed PCR: Generalamplification of target DNA by a single degenerate primer [J]. Genomics,1992,13(3):718-725.
    [42] Zhang Lin, Cui X F, Schmitt K, et al. Whole genome amplification from a single cell:Implications for genetic analysis [J]. Proceedings of the National Academy of Sciences,1992,89(13):5847-5851.
    [43] Dean F B, Nelson J R, Giesler T L, et al. Rapid amplification of plasmid and phage DNAusing Phi29DNA polymerase and multiply-primed rolling circle amplification [J]. GenomeResearch,2001,11(6):1095-1099.
    [44] Garmendia C, Bernad A, Esteban J A, et al. The Bacteriophage φ29DNA Polymerase, aProofreading Enzyme [J]. Journal or Biological Chemistry,1992,267(4):2594-2599.
    [45] Dean F B, Hosono S, Fang L H, et al. Comprehensive human genome amplification usingmultiple displacement amplification [J]. Proceedings of the National Academy of Sciences,2002,99(8):5261-5266.
    [46] Wang G, Maher E, Brennan C, et al. DNA amplification method tolerant to sampledegradation [J]. Genome Research,2010,14:2357–2366.
    [47] Niel C, Diniz-Mendes L, Devalle S. Rolling-circle amplification of Torque teno virus (TTV)complete genomes from human and swine sera and identification of a novel swine TTVgenogroup [J]. Journal of general virology,2005,86(5):1343-1347.
    [48] Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping, and genotyping ofsingle-nucleotide polymorphisms in the human genome [J]. Science,1998,280(5366):1077-1082.
    [49] Syv nen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms [J].Nature Reviews Genetics,2001,2(12):930-942.
    [50] Qi X Q, Saleha B, Katrien M D. L-RCA (ligation-rolling circle amplification): a generalmethod for genotyping of single nucleotide polymorphisms(SNPs)[J]. Nucleic AcidsResearch,2001,29(22):116.
    [51] Ladner D P, Leamon J H, Hamann S, et al. Multiplex detection of hotspot mutations byrolling circle-enabled universal microarrays [J]. Laboratory investigation,2001,81(8):1079-1086.
    [52] Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecularmarkers and their use in animal genetics [J]. Genetics Selection Evolution,2002,34(3):275-306.
    [53] Faruqi F A, Hosono S, Driscoll M D, et al. High-throughput genotyping of single nucleotidepolymorphisms with rolling circle amplification [J]. BMC Genomics,2001,2(1):4-9.
    [54] Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circleamplification for the homogeneous, end-point detection of single nucleotide polymorphisms[J]. Nucleic Acid Research,2002,30(12):60.
    [55] Hatch A, Sano T, Misasi J, et al. Rolling circle amplification of DNA immobilized on solidsurfaces and its application to multiplex mutation detection [J]. Genetic analysis:biomolecular engineering,1999,15(2):35-40.
    [56] Kashkin K N, Strizhkov B N, Gryadunov D A, et al. Detection of single-nucleotidepolymorphisms in the p53gene by LDR/RCA in hydrogel microarrays [J]. MolecularBiology,2005,39(1):26-34.
    [57] Li J, Deng T, Chu X, et al. Rolling circle amplification combined with gold nanoparticleaggregates for highly sensitive identification of single-nucleotide polymorphisms [J].Analytical chemistry,2010,82(7):2811-2816.
    [58] Hatch A, Sano T, Misasi J, et al. Rolling circle amplification of DNA immobilized on solidsurfaces and its application to multiplex mutation detection [J]. Genetic analysis:biomolecular engineering,1999,15(2):35-40.
    [59] Schopf E, Chen Y. Attomole DNA detection assay via rolling circle amplification and singlemolecule detection [J]. Analytical biochemistry,2010,397(1):115-117.
    [60] Zhou X, Su Q, Xing D. An electrochemiluminescent assay for high sensitive detection ofmercury (II) based on isothermal rolling circular amplification [J]. Analytica chimica acta,2012,713:45-49.
    [61] Su Q, Xing D, Zhou X. Magnetic beads based rolling circle amplificationelectrochemiluminescence assay for highly sensitive detection of point mutation [J].Biosensors and Bioelectronics,2010,25(7):1615-1621.
    [62] Long Y, Zhou X, Xing D. Sensitive and isothermal electrochemiluminescence gene-sensingof Listeria monocytogenes with hyperbranching rolling circle amplification technology [J].Biosensors and Bioelectronics,2011,26(6):2897-2904.
    [63] Tong P, Zhao W W, Zhang L, et al. Double-probe signal enhancing strategy for toxinaptasensing based on rolling circle amplification [J]. Biosensors and Bioelectronics,2012,33(1):146-151.
    [64] Kurian K M, Watson C J, Wyllie A H. DNA chip technology [J]. The Journal of pathology,1999,187(3):267-271.
    [65] Li X, Luo J, Xiao P, et al. Genotyping of multiple single nucleotide polymorphisms withhyperbranched rolling circle amplification and microarray [J]. Clinica Chimica Acta,2009,399(1):40-44.
    [66] Lee J, Icoz K, Roberts A, et al. Diffractometric detection of proteins using microbead-basedrolling circle amplification [J]. Analytical chemistry,2009,82(1):197-202.
    [67] McCarthy E L, Bickerstaff L E, Cunha M P, et al. Nucleic acid sensing by regenerablesurface-associated isothermal rolling circle amplification [J]. Biosensors and Bioelectronics,2007,22(7):1236-1244.
    [68] Nallur G, Luo C H, Fang L H, et al. Signal amplification by rolling circle amplification onDNA microarrays [J]. Nucleic Acids Research,2001,29(23):e118.
    [69] Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNAamplification: a versatile platform for ultrasensitive antigen detection [J]. Proceedings of theNational Academy of Sciences,2000,97(18):10113-10119.
    [70] Sato K, Tachihara A, Renberg B, et al. Microbead-based rolling circle amplification in amicrochip for sensitive DNA detection [J]. Lab on a Chip,2010,10(10):1262-1266.
    [71] Yan J, Song S, Li B, et al. An On‐Nanoparticle Rolling‐Circle Amplification Platform forUltrasensitive Protein Detection in Biological Fluids[J]. small,2010,6(22):2520-2525.
    [72] Mahmoudian L, Kaji N, Tokeshi M, et al. Rolling circle amplification and circle-to-circleamplification of a specific gene integrated with electrophoretic analysis on a single chip [J].Analytical chemistry,2008,80(7):2483-2490.
    [73] Chapin S C, Doyle P S. Ultrasensitive multiplexed microRNA quantification on encoded gelmicroparticles using rolling circle amplification [J]. Analytical chemistry,2011,83(18):7179-7185.
    [74]钟凯,田静,李业鹏,等.食品中副溶血性弧菌PCR快速检测方法的研究[J].中国食品卫生杂志,2004,16(4):317-320.
    [75]黄玉柳,陈静,黎小正.水产品微生物实验室质量控制探讨[J].微生物学杂志,2010,30(005):108-110.
    [76] Bej A K, Patterson D P, Brasher C W, et al. Detection of total and hemolysin-producingVibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh [J].Journal of Microbiological Methods,1999,36(3):215-225.
    [77] Sanath Kumar H, Sunil R, Venugopal M N, et al. Detection of Salmonella spp. in tropicalseafood by polymerase chain reaction[J]. International journal of food microbiology,2003,88(1):91-95.
    [78] Chow K H, Ng T K, Yuen K Y, et al. Detection of RTX toxin gene in Vibrio cholerae by PCR[J]. Journal of clinical microbiology,2001,39(7):2594-2597.
    [79] Lipp E K, Rivera I N G, Gil A I, et al. Direct detection of Vibrio cholerae and ctxA inPeruvian coastal water and plankton by PCR[J]. Applied and environmental microbiology,2003,69(6):3676-3680.
    [80] Campbell M S, Wright A C. Real-time PCR analysis of Vibrio vulnificus from oysters [J].Applied and environmental microbiology,2003,69(12):7137-7144.
    [81] Coutard F, Pommepuy M, Loaec S, et al. mRNA detection by reverse transcription–PCR formonitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticusin viable but nonculturable state [J]. Journal of applied microbiology,2005,98(4):951-961.
    [82] Schwab K J, Neill F H, Estes M K, et al. Distribution of Norwalk virus within shellfishfollowing bioaccumulation and subsequent depuration by detection using RT-PCR[J]. Journalof Food Protection,1998,61(12):1674-1680.
    [83] Skjerve E, R rvik L M, Olsvik O. Detection of Listeria monocytogenes in foods byimmunomagnetic separation [J]. Applied and environmental microbiology,1990,56(11):3478-3481.
    [84] Hsih H Y, Tsen H Y. Combination of immunomagnetic separation and polymerase chainreaction for the simultaneous detection of Listeria monocytogenes and Salmonella spp. infood samples [J]. Journal of Food Protection,2001,64(11):1744-1750.
    [85] Tomoyasu T. Development of the immunomagnetic enrichment method selective for Vibrioparahaemolyticus serotype K and its application to food poisoning study[J]. Applied andenvironmental microbiology,1992,58(8):2679-2682.
    [86] Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay ofimmunoglobulin G [J]. Immunochemistry,1971,8(9):871-874.
    [87]杨文鸽,孙翠玲,潘云娣,等.水产品中致病微生物的快速检测方法[J].中国食品学报,2006,6(1):402-406.
    [88]叶玫,吴成业,刘海新,等.酶联免疫吸附法在水产品安全检测中的应用[J].上海水产大学学报,2002,11(2):171-175.
    [89] Kumar B K, Raghunath P, Devegowda D, et al. Development of monoclonal antibody basedsandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood [J].International journal of food microbiology,2011,145(1):244-249.
    [90]韩伟,顾鸣.聚合酶链反应与自动荧光免疫酶标检测弯曲菌属的试验[J].检验检疫科学,2003,13(3):32-34.
    [91] Borucki M K, Krug M J, Muraoka W T, et al. Discrimination among Listeria monocytogenesisolates using a mixed genome DNA microarray [J]. Veterinary microbiology,2003,92(4):351-362.
    [92] Volokhov D, Rasooly A, Chumakov K, et al. Identification of Listeria species bymicroarray-based assay[J]. Journal of clinical microbiology,2002,40(12):4720-4728.
    [93] Call D R, Brockman F J, Chandler D P. Detecting and genotyping Escherichia coli O157: H7using multiplexed PCR and nucleic acid microarrays [J]. International journal of foodmicrobiology,2001,67(1):71-80.
    [94] Chang C C, Chen C C, Wei S C, et al. Diagnostic devices for isothermal nucleic acidamplification [J]. Sensors,2012,12(6):8319-8337.
    [1] Blanco L, Bernad A, Lázaro J M, et al. Highly efficient DNA synthesis by the phage phi29DNA polymerase. Symmetrical mode of DNA replication [J]. Journal of Biological Chemistry,1989,264(15):8935-8940.
    [2] Parikh A, Guengerich F P. Random mutagenesis by whole-plasmid PCR amplification [J].Biotechniques,1998,24(3):428.
    [3] Yong Zhang D, Brandwein M, Chun Hung Hsuih T, et al. Amplification of target-specific,ligation-dependent circular probe [J]. Gene,1998,211(2):277-285.9~642
    [4] Banér J, Nilsson M, Mendel-Hartvig M, et al. Signal amplification of padlock probes byrolling circle replication [J]. Nucleic acids research,1998,26(22):5073-5078.
    [5] Banér J, Isaksson A, Waldenstr m E, et al. Parallel gene analysis with allele‐specific padlockprobes and tag microarrays [J]. Nucleic acids research,2003,31(17): e103.
    [6] G tze S, Saborowski R. NanoDrop fluorometry adopted for microassays of proteasomalenzyme activities [J]. Analytical biochemistry,2011,413(2):203-205.
    [1] Kaocharoen S, Wang B, Tsui K M, et al. Hyperbranched rolling circle amplification as a rapidand sensitive method for species identification within the Cryptococcus species complex [J].Electrophoresis,2008,29(15):3183-3191.
    [2] Arends M J, Morris R G, Wyllie A H. Apoptosis. The role of the endonuclease [J]. TheAmerican journal of pathology,1990,136(3):593.
    [3] Kuhn H, Frank‐Kamenetskii M D. Template‐independent ligation of single‐stranded DNAby T4DNA ligase [J]. Febs Journal,2005,272(23):5991-6000.
    [4] Porreca G J, Zhang K, Li J B, et al. Multiplex amplification of large sets of human exons [J].Nature methods,2007,4(11):931-936.
    [5] Qi X, Bakht S, Devos K M, et al. L-RCA (ligation-rolling circle amplification): a generalmethod for genotyping of single nucleotide polymorphisms (SNPs)[J]. Nucleic acidsresearch,2001,29(22): e116.
    [6] Wu D Y, Wallace R B. Specificity of the nick-closing activity of bacteriophage T4DNA ligase[J]. Gene,1989,76(2):245-254.
    [7] Pusch C M, Giddings I, Scholz M. Repair of degraded duplex DNA from prehistoric samplesusing Escherichia coli DNA polymerase I and T4DNA ligase [J]. Nucleic acids research,1998,26(3):857-859.
    [8] Taylor W H, Hagerman P J. Application of the method of phage T4DNA ligase-catalyzedring-closure to the study of DNA structure: II. NaCl-dependence of DNA flexibility and helicalrepeat [J]. Journal of molecular biology,1990,212(2):363-376.
    [9] Nilsson M, Malmgren H, Samiotaki M, et al. Padlock probes: circularizing oligonucleotidesfor localized DNA detection [J]. Science,1994,265(5181):2085-2088.
    [10] Ye S, Humphries S, Green F. Allele specific amplification by tetra-primer PCR [J]. Nucleicacids research,1992,20(5):1152-1152.
    [11] Elias J G, Eden D. Transient electric birefringence study of the persistence length andelectrical polarizability of restriction fragments of DNA [J]. Macromolecules,1981,14(2):410-419.
    [12] Dean F B, Nelson J R, Giesler T L, et al. Rapid amplification of plasmid and phage DNAusing phi29DNA polymerase and multiply-primed rolling circle amplification [J]. Genomeresearch,2001,11(6):1095-1099.
    [13] Schellman J A, Harvey S C. Static contributions to the persistence length of DNA anddynamic contributions to DNA curvature [J]. Biophysical chemistry,1995,55(1):95-114.
    [14] Cherepanov A V, de Vries S. Kinetics and thermodynamics of nick sealing by T4DNA ligase[J]. European Journal of Biochemistry,2003,270(21):4315-4325.
    [15] Wang B, Potter S J, Lin Y, et al. Rapid and sensitive detection of severe acute respiratorysyndrome coronavirus by rolling circle amplification [J]. Journal of clinical microbiology,2005,43(5):2339-2344.
    [16] Demidov V V. Rolling-circle amplification in DNA diagnostics: the power of simplicity [J].Expert review of molecular diagnostics,2002,2(6):542-548.
    [17] Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: a platform forelectrochemical detection of protein [J]. Analytical chemistry,2007,79(19):7492-7500.
    [18] Larsson C, Koch J, Nygren A, et al. In situ genotyping individual DNA molecules bytarget-primed rolling-circle amplification of padlock probes [J]. Nature methods,2004,1(3):227-232.
    [19] Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase[J]. Proceedings of the National Academy of Sciences,1991,88(1):189-193.
    [1] Silander K, Saarela J. Whole genome amplification with Phi29DNA polymerase to enablegenetic or genomic analysis of samples of low DNA yield [M].Genomics Protocols. HumanaPress,2008:1-18.
    [2] Mills J B, Vacano E, Hagerman P J. Flexibility of single-stranded DNA: use of gapped duplexhelices to determine the persistence lengths of poly(dT) and poly(dA)[J]. Journal of molecularbiology,1999,285(1):245-257.
    [3] poner J, Sabat M, Burda J V, et al. Interaction of the adenine-thymine Watson-Crick andadenine-adenine reverse-Hoogsteen DNA base pairs with hydrated group IIa (Mg2+, Ca2+, Sr2+,Ba2+) and IIb (Zn2+, Cd2+, Hg2+) metal cations: Absence of the base pair stabilization bymetal-induced polarization effects [J]. The Journal of Physical Chemistry B,1999,103(13):2528-2534.
    [4] Nix W A, Oberste M S, Pallansch M A. Sensitive, seminested PCR amplification of VP1sequences for direct identification of all enterovirus serotypes from original clinical specimens[J]. Journal of clinical microbiology,2006,44(8):2698-2704.
    [5] Chou Q, Russell M, Birch D E, et al. Prevention of pre-PCR mis-priming and primerdimerization improves low-copy-number amplifications [J]. Nucleic Acids Research,1992,20(7):1717-1723.
    [6] Kuhn H, Frank-Kamenetskii M D. Template-independent ligation of single-stranded DNA byT4DNA ligase [J]. Febs Journal,2005,272(23):5991-6000.
    [7] Kozu T, Yagura T, Seno T. De novo DNA synthesis by a novel mouse DNA polymeraseassociated with primase activity [J].1982.
    [8] Kreader C A. Relief of amplification inhibition in PCR with bovine serum albumin or T4gene32protein [J]. Applied and Environmental Microbiology,1996,62(3):1102-1106.
    [9] Holmberg A, Blomstergren A, Nord O, et al. The biotin‐streptavidin interaction can bereversibly broken using water at elevated temperatures[J]. Electrophoresis,2005,26(3):501-510.
    [10] Hatch A, Sano T, Misasi J, et al. Rolling circle amplification of DNA immobilized on solidsurfaces and its application to multiplex mutation detection [J]. Genetic analysis:biomolecular engineering,1999,15(2):35-40.
    [11] Lee H H, Burczak J D, Muldoon S, et al. Diagnosis of Chlamydia trachomatis genitourinaryinfection in women by ligase chain reaction assay of urine[J]. The Lancet,1995,345(8944):213-216.
    [12] Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting usingisothermal rolling-circle amplification[J]. Nature genetics,1998,19(3):225-232.
    [13] Uphoff S, Reyes-Lamothe R, de Leon F G, et al. Single-molecule DNA repair in live bacteria[J]. Proceedings of the National Academy of Sciences,2013,110(20):8063-8068.
    [14] Ramadan K, Shevelev I V, Maga G, et al. De Novo DNA Synthesis by Human DNAPolymerase λ, DNA Polymerase μ and Terminal Deoxyribonucleotidyl Transferase[J].Journal of molecular biology,2004,339(2):395-404.
    [15] Jia H, Li Z, Liu C, et al. Ultrasensitive detection of microRNAs by exponential isothermalamplification[J]. Angewandte Chemie International Edition,2010,49(32):5498-5501.
    [16] Hanaki K, Odawara T, Nakajima N, et al. Two different reactions involved in theprimer/template-independent polymerization of dATP and dTTP by Taq DNA Polymerase [J].Biochemical and biophysical research communications,1998,244(1):210-219.
    [17] De Vega M, Lazaro J M, Salas M, et al. Primer-terminus stabilization at the3'-5'exonucleaseactive site of phi29DNA polymerase. Involvement of two amino acid residues highlyconserved in proofreading DNA polymerases [J]. The EMBO journal,1996,15(5):1182.
    [18] Dhar A K, Roux M M, Klimpel K R. Quantitative assay for measuring the Taura syndromevirus and yellow head virus load in shrimp by real-time RT-PCR using SYBR Greenchemistry [J]. Journal of virological methods,2002,104(1):69-82.
    [19] Zhang D, Wu J, Ye F, et al. Amplification of circularizable probes for the detection of targetnucleic acids and proteins [J]. Clinica chimica acta,2006,363(1):61-70.
    [20] Yi J, Zhang W, Zhang D Y. Molecular Zipper: a fluorescent probe for real-time isothermalDNA amplification [J]. Nucleic acids research,2006,34(11): e81-e81.
    [21] Lieberman K R, Cherf G M, Doody M J, et al. Processive replication of single DNAmolecules in a nanopore catalyzed by Phi29DNA polymerase[J]. Journal of the AmericanChemical Society,2010,132(50):17961-17972.
    [1] Wang R F, Cao W W, Cerniglia C E. A universal protocol for PCR detection of13species offoodborne pathogens in foods [J]. Journal of Applied Microbiology,1997,83(6):727-736.
    [2] Yamazaki W, Ishibashi M, Kawahara R, et al. Development of a loop-mediated isothermalamplification assay for sensitive and rapid detection of Vibrio parahaemolyticus [J]. BMCmicrobiology,2008,8(1):163.
    [3] Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures [J]. Journal ofmolecular biology,1967,26(2):365-369.
    [4] Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA forPCR-based techniques [J]. Nucleic acids research,1997,25(22):4692-4693.
    [5] Mori Y, Kitao M, Tomita N, et al. Real-time turbidimetry of LAMP reaction for quantifyingtemplate DNA[J]. Journal of biochemical and biophysical methods,2004,59(2):145-157.
    [6] Yang Y, Xu F, Xu H, et al. Magnetic nano-beads based separation combined with propidiummonoazide treatment and multiplex PCR assay for simultaneous detection of viable SalmonellaTyphimurium, Escherichia coli O157: H7and Listeria monocytogenes in food products[J]. Foodmicrobiology,2013,34(2):418-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700