用户名: 密码: 验证码:
双辊铸轧不锈钢薄带开裂分析与温度场和应力场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从实际双辊铸轧生产的304不锈钢薄带上取样,采用金相、SEM等对裂纹形貌进行观察,采用金相和XRD等对其组织和相结构进行分析,并对304不锈钢进行DSC测定,确认其在室温下的相组成。研究其凝固过程中的析出相问题。采用热模拟试验机,测定不锈钢在不同温度下的应力-应变曲线,并测定其膨胀系数。
     采用304不锈钢圆柱试样分别进行快冷和缓冷处理,测量沿半径方向的残余应力,建立有限元模型对其温度场和应力场进行数值模拟,通过调整参数,证明其模型的正确性。
     应用有限元法建立熔池内钢液流动和传热的耦合模型,利用此模型模拟双辊铸轧薄带钢凝固过程中的温度场和流场,同时,对双辊铸轧过程中304不锈钢薄带在出口的温度进行了测量,采用此模型,模拟了各种工艺参数对熔液凝固过程的影响,探索适宜的工艺参数值。应用有限元法建立双辊铸轧薄带钢应力场的计算模型,结合流热耦合所获得的温度场,模拟双辊铸轧薄带钢的应力场,分析各种影响因素。通过铸轧薄带钢内的应力分布,研究薄带表面裂纹随工艺参数变化产生的可能性。通过应力场模拟结果,探讨铸轧薄带钢过程中裂纹的形成机理。
     双辊铸轧薄带开裂分析表明,铸轧薄带上的裂纹在表面凹痕处产生,并沿柱状晶晶间向内部扩展,且在裂纹附近柱状晶和等轴晶交界处存大量缩孔。铸轧断口表面存在大量氧化物,说明铸轧裂纹在高温时即已产生。通过观察在不同温度下304不锈钢铸轧薄带的金相组织和对室温下304不锈钢的XRD分析,并结合DSC曲线和相图,说明304不锈钢存在高温相变δ→γ。随着温度的升高,304不锈钢抵抗变形的能力减弱,塑性逐渐变好。
     对304不锈钢圆柱试样淬火和空冷两种状态下残余应力场进行测量和数值模拟,结果表明,二者吻合较好,证明了所建模型的有效性。采用这一模型对不同时间和不同位置的温度场和应力场进行了数值模拟。淬火试样在开始冷却时,其表面表现出切向拉应力,中部表现为切向压应力。随着冷却时间的延长行,试样应力逐渐减小,最终减少至零。随后,其表面转变为切向压应力,中心转变为切向拉应力。在此过程中,试样的应力逐渐增大。当冷却时间为90s时,试样的应力表现为残余应力。空冷试样在开始冷却时表面表现为切向拉应力,心部表现为切向压应力。随着冷却时间的延长,试样的拉应力和压应力均逐渐减小。当试样冷却至1800s时,其表面和心部的应力值非常小,均接近于零,此时的应力为残余应力。
     对双辊铸轧不锈钢薄带在一定铸轧参数下出口温度的实验测量结果与有限元数值模拟结果进行对比发现,二者的吻合性较好,证明了所建模型的有效性。利用所建模型,对不同铸轧参数下的温度场和流场进行了模拟。铸轧速度越大,铸轧薄带出口温度越高,钢液凝固点的位置越低;浇注温度越高,熔池的整体温度和薄带的出口温度均升高,钢液凝固点的位置越低;辊径越大,熔池的整体温度下降,钢液凝固点的位置升高;薄带越厚,熔池内整体温度升高,凝固点的位置下降。
     利用流热耦合数值模拟所获得的温度场,模拟了铸轧薄带出口以上和铸轧薄带出口以下的应力场。铸轧薄带出口以上的应力场模拟结果表明,最大拉应力出现在薄带与铸轧辊的接触面靠近出口的位置;最大压应力出现在薄带中心靠近出口的位置。模拟了各种工艺参数对铸轧薄带出口以上应力场的影响。随着铸轧速度的增大,沿接触面的整体应力减小,出口整体拉应力值和压应力值均减小,薄带表面和中心的应力差减小;随着浇注温度的升高,接触面上的整体应力减小,但出口的应力分布曲线接近重合,说明浇注温度对出口处的应力影响很小;随着辊径的增大,沿接触面的整体应力增加,但出口的应力分布曲线接近重合,说明辊径变化对出口处的应力影响很小;随着带厚的增加,最大应力出现位置的弧度降低,沿出口厚度方向整体应力值均增大。
     铸轧薄带出口以下的应力场模拟结果表明,薄带冷却初期,薄带的心部温度高于表面温度。随着冷却时间的延长,试样心部和表面温度均降低,薄带的中心与表面温差越来越小。此外,在冷却过程中,试样表面在长度方向的应力表现为拉应力,心部表现为为压应力。当冷却时间延长时,表面拉应力逐渐减小,最终减小至零;随后,其应力状态转变为压应力,中心压应力减小至零随后转变为拉应力,并且应力值逐渐增大。
The specimen was taken from the strip of the304stainless steel after twin-roll stripcasting. The microstructure and fractograph of the specimen was observed by OM andSEM. The phase structure of the specimen were deterimined by XRD. Meanwhile, the DSCcurve of304stainless steel during the cooling process was measured. The stress-straincurves of304stainless steel at different temperatures were measured by thermo-simulatingmachine and its dilatometric curve was determined too.
     The residual stress fields of the column specimens after quenching and air coolingwere measured, and the FEM of them was built and the stress fields were simulated. Thesimulated results were compared with the measured one.
     The FEM of the coupling fields between the temperature and fluid during the stripcasting of304stainless steel was built in this work. By using this model, the temperatureand fluid fields during the strip casting of304stainless steel were simulated. Meanwhile,the temperature of the304stainless steel strip at the exit during twin-roll strip castingprecess was measured. By using this model, the effect of the different technologyparameters on the solidification of the stainless steel was simulated too. Based on abovementioned model, combining simulated temperature field of the304stainless steel strip, thestress field of the304stainless steel strip was simulated too and the effect of differenttechnology parameters on the stress field was discussed in this work.
     The crack analysis of the304stainless steel strip during twin-roll strip casting processshows that, the cracks occur at the dent of the strip surface and develop along the dendriticgrain boundary. The large numbers of oxides can been found on the fractograph, whichindicates that the cracks have been appeared at higher temperature. By means of themicrostructure of304stainless steel at different temperatures, the analysis of XRD result,DSC curve and the Fe-C phase diagram, the phase transformation at high temperature fromδ to γ has been carried out. With the increasing of the temperature, the strength of thestainless steel is decreased, while, the plasticity is increased.
     The measured residual stresses of the column specimens after quenching and aircooling were compared with the simulated ones and they are closer to each other, whichproves the validity of this model. By using this model, the temperature and fluid fields atdifferent times and at different location of the specimen were simulated. The simulated results show that, for quenching specimen, at the beginning of the cooling process, thetangential tensile stress appears on the surface, while, tangential compress one at the center.With the increasing of the time, the stress is changed to zero, then, the tangential compressstress is appeared on the surface, while, tangential tensile one at the center, and the stress ischanged greatly. When the time is90s, the stress is the residual one. For the air coolingspecimen, at the begining of the cooling process, the tangential tensile stress is appeared onthe surface, while, tangential compress one at the center. With the increasing of the time,both of the stresses on the surface and center are decreased. When the time is1800s, thoseare very small, which are close to zero, and can be taken as residual one.
     The measured temperature of the304stainless steel strip at the exit during twin-rollcasting process was compared with the simulated one, and they are closer to each other,which proves the validity of this model. By using this model, the effect of differenttechnology parameters on the temperature field was simulated. The results show that, thefaster the casting speed is, the higher the temperature of the strip at the exit and the lowerthe position of the freezing point are. Meanwhile, the higher the casting temperature is, thehigher the temperatures of the whole melting pool and the exit of the strip, and the lowerthe position of the freezing point are. Moreover, the larger the radius of the roller is, thelower the temperatures of the whole melting pool and the higher the position of the freezingpoint are. In addition, the thicker the strip is, the higher the temperatures of the wholemelting pool and the lower the position of the freezing point are.
     Based on the temperature field simulated by the coupling ones during the twin-rollstrip casting of304stainless steel, the stress fields both upper and under the exit of the stripwere simulated. The simulated result of the stress field upper the exit of the strip shows that,the largest tensile stress is appeared on the contact interface between strip and the roller,which is near the exit, while, the largest compress stress is appeared at the location of thestrip center. The effect of different technology parameters on the stress field upper the exitof the strip was simulated. The faster the casting speed is, the lower the stress along thecontact interface and the lower both the tensile and compress stresses at the exit of the stripare. Meanwhile, the higher the casting temperature is, the lower the stress along the contactinterface is, however, little effect can be found at the exit of the strip. Moreover, the largerthe radius of the roller is, the higher the stress along the contact interface is, however, littleeffect can be found at the exit of the strip. In addition, the thicker the strip is, the lower thelocation of the roller radian is, at which the largest stress is appeared and the higher the stress along the direction of the strip thickness is.
     The simulated result of the temperature and stress fields under the exit of the stripshows that, for the temperature field, at the beginning of the cooling process, thetemperature at the strip center is higher than that on strip surface. With the increasing of thecooling time, the temperatures at both strip center and surface are decreassed. For the stressfield, at the beginning of the cooling process, the tensile stress is appeared on the stripsurface, while, the compress one at the center.. With the increasing of the cooling time, thetensile stress on the strip surface is decreased into zero, then increased into compress stress,however, the compress stress at the strip center is decreased into zero, then increased intotensile stress.
引文
[1] Shin Y K, Keng T. Development of twin strip caster for sheet steels[J]. Ironmaking andStelingmaking1995,22(1):35-44.
    [2]关小霞,王贤杰,胡宏彦,刘佳,杨庆祥.双辊铸轧不锈钢薄带开裂机制分析[J].燕山大学学报,2010,03:200-203+206.
    [3]丁培道,蒋斌,杨春楣.薄带铸轧技术的发展现状与思考[J].中国有色金属学报,2004,14(S1):192-196.
    [4] Liu Z Y, Lin Z S, Wang S H, Qiu Y Q, Liu X H, Wang G D. MicrostructureCharacterization of Austenitic Alloy Processed by Twin Roll Strip Casting[J]. MaterialsCharacterization,2007,58(10):974-979.Girgensohn A, Buchner A R, Tacke K H. Twin roll stripcasting of low carbon steels[J]. Ironmak Steelmak2000,27:317–323.
    [5] Xie Z X, Gao H Y, Wang J, Yu Y, Fang Y, Sun B D. Static Recrystallization Behavior ofTwin Roll Cast Low-Carbon Steel Strip[J]. Journal of Iron and Steel Research, International,2011,18(2):45-51.
    [6] Yang J W, Du Y P, Sun B Y. Study on effect of technical parameter on fluid flow andsolidification in steel strip roll-casting process[J]. Materials science forum2005,475-479:3207-3210.
    [7]王振敏,方圆,张跃,黄运华,齐俊杰.304不锈钢2mm铸轧薄带中的裂纹分布和形成分析[J].特殊钢,2006,27(3):14-16
    [8] Haga T, Takahashi K. Casting of Composite Strip Using a Twin Roll Caster[J]. Journal ofMaterials Processing Technology,2004,157-158(0):701-705.
    [9] Huang F, Wang X H, Wang W J. Microstructures of Austenitic Stainless Steel Produced byTwin-Roll Strip Caster[J]. Journal of Iron and Steel Research, International,2012,19(2):57-61.
    [10]刘云霞译,辛宪诚校.薄带铸轧工艺生产的AISI304不锈钢带表面裂纹的产生[J].太钢译文,2004,(1):31-38.
    [11]于艳,方园,樊俊飞,彭勇.薄带铸轧304不锈钢铸带质量特点分析[J].2003中国钢铁年会论文集,2003:560-565.
    [12]段振虎.双辊液态铸轧过程中热流场的数值模拟[D].鞍山科技大学硕士学位论文.2004:1-14
    [13]鲍培玮.双辊铸轧不锈钢薄带实验研究[D].东北大学硕士学位论文.2000:1-16.
    [14]孙斌煜.板带铸轧理论与技术[M].北京:冶金工业出版社,2002:17-18.
    [15]张世峰.双辊薄带连铸硅钢热轧常化组织与织构研究[D].东北大学,2009.
    [16]王金录.双辊铸轧薄带钢熔池内温度场的数值模拟[D].东北大学硕士学位论文,2001:1-10.
    [17] Liu H, Liu Z, Cao G, Li C, Wang G. Microstructure and Texture Evolution of Strip CastingNon-Oriented Silicon Steel with Columnar Structure[J]. Journal of Magnetism and MagneticMaterials,2011,323(21):2648-2651.
    [18]章仲禹,张凤泉,王飞龙.特种合金双辊薄带连铸生产技术进展[J].钢铁研究,2011,06:57-62.
    [19] Mukunthan K, Strezove L, Mahapatra R, et a1. Evaluation of microstructures and productopportunities in low carbon steel strip casting[J]. Canadian Metallurgicall Quarterly2001,40(4):523-532.
    [20]杜旋.铸轧工艺参数对带材结晶凝固的影响[D].太原科技大学,2009.
    [21] Hunter A, Ferry M. Phase Formation During Solidification of Aisi304Austenitic StainlessSteel[J]. Scripta Materialia,2002,46(4):253-258.
    [22]邸洪双.薄带连铸技术发展现状及展望[J].河南冶金,2005,13(1):3-7.
    [23] Liu H T, Liu Z Y, Sun Y, Gao F, Wang G D. Development of Fiber RecrystallizationTexture and Magnetic Property in Thin Sheet Produced by Strip Casting and Warm RollingMethod[J]. Materials Letters,2013,91(0):150-153.
    [24] Liu H T, Liu Z Y, Qiu Y Q, Sun Y, Wang G D. Microstructure, Texture and MagneticProperties of Strip Casting Steel Sheet[J]. Journal of Materials Processing Technology,2012,212(9):1941-1945.
    [25] Okayasu M, Sato R, Takasu S, Niikura A, Shiraishi T. Mechanical Properties of AlsicuAlloys Produced by the Twin Rolled Continuous Casting Process[J]. Materials Science andEngineering: A,2012,534(0):614-623.
    [26] Girgensohn A, Buchner A R. Twin roll strip casting of low carbon steels[J]. Ironmaking&Steelmarking2000,27(4):317-323.
    [27] Strezov L, Herbertson J. Experimental studies of interfacial heat transfer and initial solidificationperinent to strip casting[J]. ISIJ International1998,38(9):959-966.
    [28] Zhou G P, Liu Z Y, Yu S C, Chen J, Qiu Y Q, Wang G D. Formation of PhosphorousSurface Inverse Segregation in Twin-Roll Cast Strips of Low-Carbon Steels[J]. Journal of Ironand Steel Research, International,2011,18(2):18-23.
    [29] Zhu Y Z, Li J C, Liang D M, Liu P. Distribution of Arsenic on Micro-Interfaces in a Kind ofCr, Nb and Ti Microalloyed Low Carbon Steel Produced by a Compact Strip ProductionProcess[J]. Materials Chemistry and Physics,2011,130(12):524-530.
    [30]曹光明,李成刚,刘振宇,吴迪,王国栋,刘相华.双辊铸轧工艺温度场和流场耦合的数值模拟[J].钢铁研究学报,2008,09:23-27.
    [31]吴建春,方园,于艳,叶长宏,王成全.双辊薄带铸轧0Cr18Ni9不锈钢的直接冷轧研究[J].钢铁,2006,41(8):46-48.
    [32]巨东英,赵红阳,胡林,等.双辊薄带铸轧工艺的进展[J].鞍山科技大学学报,2003,26(3):188-192.
    [33]朱苗勇,萧泽强.钢的精炼过程数学物理模拟[M].北京:冶金工业出版社,1998:1-12.
    [34]黄锋,邸洪双,王广山.薄带双辊铸轧过程凝固组织的数值模拟[J].热加工工艺,2011,05:57-60.
    [35]陈海清,李华基,曹阳.铸件凝固过程数值模拟[M].重庆:重庆大学出版社,1991:1-5.
    [36] Hunter A, Ferry M. Comparative study of texture development in strip-cast ferritic and austeniticstainless steels[J]. Scripta Materialia2002,47:349–355
    [37] Kim S H, Moon H K, Kang T, Lee C S. Dissolution kinetics of delta ferrite in AISI304stainlesssteel produced by strip casting process[J]. Materials Science and Engineering A2003,356:390-/398.
    [38] Spinelli J E, Tosetti J P, Santos C A, Spim J A, Garcia A. Microstructure and solidificationthermal parameters in thin strip continuous casting of a stainless steel[J]. Journal of MaterialsProcessing Technology2004,150:255–262.
    [39] Hunter A, Ferry M. Phase formation during solidification of AISI304austenitic stainless steel[J].Scripta Materialia2002,46:253–258.
    [40]齐春雨,邸洪双,张晓明,高德福.双辊铸轧薄带钢检测与控制的现状和发展方向[J].钢铁研究,2002,03:53-56.
    [41] Tavares R, Isac M, Guthrie R I L, Roll-strip interfacial heat fluxes in twin-roll casting oflow-carbon steels and their effects on strip microstructure[J]. ISIJ International1998,38(12):1353–1361.
    [42] Santos C A, Spim J A, Garcia A, Modeling of solidification in twin-roll strip casting[J]. Journalof Materials Processing Technology2000,102:33–39.
    [43]邸洪双,鲍培玮,苗雨川,等.双辊铸轧薄带钢的实验研究及工艺稳定性分析[J].东北大学学报,2000,21(3):274-277
    [44]胡林,赵连钢,段振虎,赵红阳,巨东英.双辊铸轧薄带工艺中的相关技术[J].轧钢,2004,01:34-38.
    [45]曹光明.双辊铸轧薄带钢液位控制、铸轧力模型及工艺优化的研究[D].东北大学,2008.
    [46] Miao Y C, X. M. Zhang X M, Wang G D. Coupled simulation of flow and thermal field oftwin-roll strip casting process[J]. Journal of Iron&Steel International2001,8(2):16-19.
    [47]王成建.双辊铸轧薄带钢数值模拟的研究[D].东北大学,2009.
    [48]梁高飞,王成全,方园. AISI304不锈钢加热过程中高温相形核与生长的原位观察[J].金属学报,2006,42(8):805-809.
    [49]梁高飞,王成全,方园. AISI304不锈钢熔化过程中夹杂物在固-液糊状区漂移与聚集行为的原位观察[J].金属学报,2006,42(7):708-714.
    [50]曹光明,刘振宇,吴迪,刘相华,王国栋.双辊铸轧过程轧制力计算的研究[J].钢铁,2008,08:49-53.
    [51]崔小朝,史荣,曾建潮.变形体凝固传热焓式有限元数学模型与过程仿真[J].系统仿真学报,1997,9(4):29-34.
    [52] Gupta M, Sahai Y. Mathematical modeling of thermally induced stresses in two-roll melt dragthin strip casting of steel[J]. ISIJ International2000,40(2):137-143.
    [53]彭成章.铝双辊铸轧过程数值模拟及工艺因素对纯铝带坯显微组织的影响[D].中南大学,2004.
    [54]肖磊.双辊铸轧宽幅镁合金薄板温度场与铸轧力研究[D].重庆大学,2012.
    [55] Liang D, Cowley C B. The twin-roll strip casting of magnesium[J]. JOM,2004,56(5):26-28.
    [56] Kurz G, Bohlen J, Letzig D, et al. Influence of Process Parameters on Twin Roll Cast Strip of theAlloy AZ31[C]//Materials Science Forum.2013,765:205-209.
    [57] Kurz G, Bohlen J, Stutz L, et al. Infuence of Temperature and Rolling Speed on Twin Roll CastStrip[J]. Magnesium Technology2013,2013:365.
    [58]孙逊,安阁英,苏仕方,等.铸件充型凝固过程数值模拟发展现状[J].铸造,2000,49(2):84-88
    [59] Sarjant R J, Slack M R. Internal temperature distribution in the cooling and reheating of steelingots[J]. ISIJ International1954,177:428-444.
    [60] Mizikar E A. Mathematical heat transfer model for solidification of continuously cast steelslabs[J]. Trans, TMS-AIME1967,239:1747-1753.
    [61] Seyedein S H, Hasan M. Numerical simulation of turbulent flow and heat transfer in thewedge-shaped liquid metal pool of a twin-roll caster[J]. Numerical Heat Transfer, Part A1997,31(4):393-410.
    [62] Brimacombe J K. Design of continuous casting machines based on a heat-flow analysis[J].Metall.Quarterly1976,15(2):163-175.
    [63] Santos C A, Spim J A, Garcia A. Modeling of solidification in twin-roll strip casting[J]. Journalof Material Processing Technology2000,102:33-39.
    [64] Kim W S, Kim D S, A. V. Kuznetsov. Simulation of coupled turbulent flow and heat transfer inthe wedged-shaped pool of a twin-roll strip casting process[J]. International Journal of Heat andMass Transfer2000,43:3811-3822.
    [65]杨明波,潘复生,丁培道.熔池高度对双辊薄带凝固组织影响的模拟预测[J].金属成形工艺,2004,22(3):42-46.
    [66]王波,张捷宇,张胤,贺友多,樊俊飞,方园,安胜利.双辊薄带铸轧布流系统的模拟优化研究[J].铸造技术,2006,27(7):707-710.
    [67]梁高飞,方园.双辊薄带铸轧过程与凝固组织多场耦合数学模型[J].铸造技术,2006,27(1):90-92.
    [68]王勋成,邵敏.有限单元法基本原理与数值方法[M].清华大学出版社,1988:40-48
    [69] Uchino K, Debus J C. Applications of ATILA FEM software to smart materials: Case studies indesigning devices[M]. Woodhead Publishing, Limited,2013.
    [70] Klocke F, Lung D, Puls H. FEM-modelling of the thermal workpiece deformation in dryturning[J]. Procedia CIRP,2013,8:239-244.
    [71] Dhatt G, Lefran ois E, Touzot G. Finite element method[M]. John Wiley&Sons,2012.
    [72] Morgan K, Lewis R W, Zienkiewiez O C. An improved algorithm for heat conduction problemswith phase change[J]. International Journal for Numerical Methods in Engineering1978,12:1191-1195.
    [73] Kelly J E, Michalek K P, Oconnor T G, et al. Initial development of the thermal and stress field incontinuously cast steel billets[J]. Metallurgical and Materials Transactions A1988,19:2589-2602.
    [74] Claus H, Thyseen S, Dudsburg A G. Strip casting technology-a revolution in the steel industry[J].MPT International1995,18(3):42-49.
    [75]佐成弘毅,井上達雄.双ロ—ル形薄板連続鋳造過程のシミユレ—シヨン[J].日本機械学会論文集(A編),1990,56(524):310-316.
    [76] Flick A. Status of direct strip casting of carbon steels with Euro-strip[J]. Steel Times2002,26(10):20-22.
    [77] Han D D, Wang C J, Chang J, et al. Numerical Simulation of Filling and Solidification in SandCasting by Procast[J]. Advanced Materials Research,2013,791:550-553.
    [78]金仁杰.双辊液态铸轧凝固传热数学模型的分析[D].东北工学院硕士学位论文.1986:1-12
    [79]韩华伟.异径双辊薄带连铸熔池中流动及传热特性的研究[D].东北大学硕士学位论文.1997:1-13.
    [80]马少武,韩华伟,赫冀成,等.异径双辊薄带铸轧熔池中钢液的流动特性[J].东北大学学报,1999,20(3):290-293.
    [81]金珠梅.双辊铸轧工艺中流动传热问题的仿真模拟研究[D].东北大学博十学位论文.1999:1-8.
    [82]秦永健,吴卫平.双辊铸轧过程金属流动与传热的数值模拟研究[J].上海钢研,1996,(5):11-23.
    [83] Simon R W, Senk D, Mollers C. Direct strip casting on the Myosotis industrial pilot plant[J].MPT International1997,20(3):78-82.
    [84] Miao Y C, Di H S, Wang G D, et al. Simulation of the twin roll stainless strip casting process[J].acta metallurcica sinica2001,14(3):199-204.
    [85]苗雨川,邸洪双,张晓明,等.双辊铸轧不锈钢薄带的三维有限元数值模拟[J].金属学报,2000,36(10):1109-1112.
    [86]苗雨川,邸洪双,王国栋,等.液固两相区本构方程的研究[J].钢铁研究学报,2001,13(4):14-18.
    [87]方园,樊俊飞,于艳.双辊薄带铸轧过程数学模拟及水模试验研究[J].上海宝钢研究院内部资料,2003.12.
    [88]金珠梅,赫冀成,徐广儁.双辊连续铸轧工艺中流场、温度场和热应力场的数值模拟[J].金属学报,2000,36(4):391-394.
    [89]张晓明,苗雨川,刘相华.薄带铸轧过程中微观偏析的模拟[J].东北大学学报(自然科学版),2001,22(2):162-164.
    [90]侯仕东,彭晓东,杨明波,潘复生.双辊铸轧薄带凝固组织仿真模拟的微观模型[J].重庆大学学报(自然科学版),2000,24(2):24-29.
    [91]梁高飞,方园.双辊薄钢带-铸辊界面热流特征的研究进[J].材料导报,2006,20(6):85-89.
    [92]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999:.45-58.
    [93] Ji C, Zhang J, Huang F, Wang X, Fang Y, Yu Y. Microstructure of Aisi304StainlessSteel Strips Produced by a Twin-Roll Caster[J]. Journal of University of Science and TechnologyBeijing, Mineral, Metallurgy, Material,2008,15(6):678-682.
    [94]张小平,梁爱生.近终形连铸技术[M].北京:冶金工业出版社,2001:1-10.
    [95] Seol D J, Won Y M, Oh K Y. Mechanical behavior of carbon steels in the temperature range ofmushy zone[J]. IS IJ International2000,40(4):356-363.
    [96]贺宏,李静媛,秦丽雁,王一德,房菲.不同变形工艺后0Cr32Ni7Mo4N双相不锈钢的组织及性能[J].金属学报,2014,01:1-10.
    [97]孟亚惠,季根顺,樊丁,张建斌.不锈钢高温组织与高温力学性能研究进展[J].热加工工艺,2009,04:12-16.
    [98]毛莉萍,杨柯,苏国跃.铸态奥氏体不锈钢的热变形行为[J].金属学报,2001,37(1):39-41.
    [99]郭洪志,张欣欣.传输过程数值模拟[M].北京:冶金工业出版社,1998:1-8.
    [100]陈良生,徐有容.高钼不锈钢热加工特性与综合流变应力模型[J].钢铁,2000,35(5):55-59.
    [101]徐有容,陈良生.高钼不锈钢热变形软化行为及微观组织研究[J].钢铁,2000,35(10).51-54.
    [102] Kim S, Chul Y, Dynamic recrystallization behavior of AISI304stainless stee1[J]. MaterialsScience and Engineering A2001:113:110-113.
    [103] Girgensohn A, Buchner A R. Twin roll strip casting of low carbon steels[J]. Ironmaking&Steelmarking2000,27(4):317-323.
    [104] Strezov L, Herbertson J. Experimental studies of interfacial heat transfer and initial solidificationperinent to strip casting[J]. ISIJ International1998,38(9):959-966.
    [105] Liu H, Liu Z, Li C, Cao G, Wang G. Solidification Structure and CrystallographicTexture of Strip Casting Non-Oriented Silicon Steel[J]. Materials Characterization,2011,62(5):463-468.
    [106]彭雄,张晓明,向浪涛,魏凡杰,汪涛,曾兢,肖亚.冷轧变形率对双辊铸轧3%Si无取向硅钢再结晶织构的影响[A].中国金属学会.第九届中国钢铁年会论文集[C].中国金属学会:,2013:7.
    [107]谢贤清,刘金水,虞觉奇.双辊快速凝固技术及其工艺探讨[J].四川冶金,1999,1:30-33.
    [108]钱才富,乔立杰,褚武扬.钝裂纹发射位错的应力场分布及有效应力强度因子[J].中国科学E辑,2000,30(6):197-504
    [109]戴品强,何泽荣,毛志远.珠光体裂纹萌生与扩展的TEM原位观察[J].材料热处理学报,2003,24(2):41-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700