用户名: 密码: 验证码:
大冶铁矿井下开采巷道围岩稳定性分析及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部岩体所受地应力是巷道围岩变形所处的大环境,同时岩体的结构、岩性、岩体的强度等自身指标因素影响围岩变形的大小,还有节理、裂隙、断层控制着围岩变形。这些构造的切割作用把岩体分割成连续又不连续的岩体,使得岩体本身的受力变成了多场(应力场,温度场,渗流场)与多相(气,液,固)影响下的地质构造和工程结构相互作用的耦合问题。所以说围岩变形综合反映了开挖后围岩形态的变化,也是巷道稳定性的直观依据,而支护设计是控制变形的基本手段。巷道围岩位移按时间历程分为三部分;(1)断面开挖时瞬间产生的弹性位移;(2)荷载释放产生的弹性或弹塑性位移;(3)释放荷载达到最大而保持不变的情况下,时间效应产生的粘弹性位移。实际测量面滞后于开挖面,因此实践测量所得的收敛量是部分的,主要是第三部分。因此,分析围岩变形原因及其机理,合理适时进行支护是确保巷道稳定的核心,也是保证矿山安全正常生产的关键。目前主要从现场监测,相似材料模拟实验,计算机数值模拟计算和理论分析等手段对围岩变形进行研究,分析围岩变形机理,以达到合理支护和准确预测的效果。
     大冶铁矿尖林山Ⅱ号矿体上盘围岩为变质闪长岩,矿岩接触带破碎,被列为不稳定的Ⅵ类区和极不稳定的V类区。从-20m水平开始,上盘巷道及其附近矿岩出现地压活动,巷道垮塌,使得一部分矿石无法回收;-30m水平对应部分也出现类似情况;1993年下半年,采矿进入-40m水平,-40m水平对应部位的上盘巷道出现明显的裂纹和局部冒落,垮塌围岩砸坏凿岩台车,堵塞运输巷道;1996年后,-50m水平、-60m水平,包括龙洞采区的-62m水平、-74m水平均不同程度出现了进路巷道垮塌、运输巷道大面积垮塌现象。
     大冶铁矿矿床赋存在裂隙带内,矿岩接触带的稳定性差,掘进与支护困难,以及矿山工程技术人员与工人对复杂岩体开挖的力学性态特别是变形与破坏规律的认识不清楚,矿山开采存在重大安全隐患。为了做好井下的安全生产,杜绝井下巷道重大伤亡事故的发生,不断提高劳动生产率,必须对地下岩体的地质特性、岩体的稳定性、巷道围岩变形与破坏机理进行深入研究。因此,论文结合《大冶铁矿井下开采不稳定区域采场巷道稳定性控制及支护方法研究》项目,以大冶铁矿主要在用巷道围岩为研究对象,运用资料收集、现场调查、理论分析、室内试验、数值模拟和现场测试等方法,揭示巷道围岩失稳机理和影响巷道围岩稳定性的因素,分析不稳定区域巷道围岩变形规律(交叉巷道、矿岩接触带处巷道和粉矿巷道)、微观失稳机理及控制方法,开发喷锚支护设计智能系统,为大冶铁矿井下开采的施工提供理论依据和技术支持,研究成果具有较为重要的理论和工程应用价值。
     论文系统开展了大冶铁矿井下开采巷道围岩稳定性分析及控制技术研究,主要完成了以下工作:
     1.研究区工程地质条件和岩石物理力学性质研究
     (1)在系统分析研究区工程地质特征和现场工程地质勘查基础上,确定了大冶铁矿井下开采巷道不稳定区域为巷道交叉点、矿岩接触带及粉矿地带。
     (2)通过对尖林山-60水平6#、8#和13#进路进行岩体节理裂隙调查,可知节理裂隙存在着以下分布规律:
     a.6#进路的节理走向在130°-160°之间分布较多,在1350方向的节理裂隙数量最多;优势节理组有两组,即S1:76/229,S2:28/255,以急倾斜节理为主,700-800占50%,平均间距5.7条/m;
     b.8#进路的节理走向主要集中在115°~130°之间,近似于正态函数分布;有一组优势节理组,即S1:44/011,节理倾角分布范围较广,主要以倾斜、急倾斜为主,平均间距4.2条/m;
     c.13#进路的节理走向主要集中在25°方向上和115°~135°之间;有两组优势节理组,即S1:69/043,S2:85/030,以急倾斜节理为主,平均间距3.8条/m:
     d.节理裂隙除几处张开度很大外,其他的张开度一般都很小,延展性较差。节理裂隙中的充填物也很少,调查发现的节理裂隙充填物有方解石、绿泥石。
     (3)通过现场岩石取样测定获得了岩石物理力学参数;试验得到的蚀变闪长岩的平均单轴抗压强度为98.8MPa,所测得的弹性模量的平均值为4.42×104MPa,获得了变质闪长岩的应变值以及泊松比,为后续的研究打下了良好的基础。
     (4)矿岩体声波特性现场测试表明:尖林山采区-60m回采进路两帮围岩松动圈范围大致在1.80m左右,现场矿体的纵波平均速度大致为4035.50m/s;龙洞采区-62m水平巷道两帮围岩松动圈范围在2.40m左右,现场大理岩组岩体的纵波平均速度为3625.90m/s;根据研究区巷道松动圈松动范围为1.80-2.40m,可大致计算出研究区巷道锚杆支护长度可参考设计为2.10-2.80m。
     2.巷道围岩失稳机理分析
     (1)巷道围岩主要的失稳形式:拉断破坏、局部落石破坏、剪切破坏与复合破坏、重剪破坏、潮解膨胀破坏、岩爆破坏。
     (2)影响主导围岩的稳定性因素:围岩地应力、地下水、岩体的完整性、围岩材料的质量、巷道断面以及综合因素。
     (3)影响巷道围岩稳定性的主要指标:围岩成分及其结构构造是影响围岩稳定性的基本因素;构造结构面发育特征是影响围岩稳定性的主导因素;围岩稳定性的控制因素受围岩风化程度和蚀变程度的影响;确定巷道围岩的稳定性基本因素之一是巷道埋深;地下水存在对围岩稳定性也有一定的影响;巷道跨度影响巷道围岩应力状态,对巷道支护设计指标选取有影响;爆破扰动易引起相邻巷道的围岩松动、开裂或失稳破坏。
     3.不稳定区域巷道失稳数值模拟
     (1)不合理的开挖及支护顺序是影响交叉巷道失稳的重要因素,通过对不同类型交叉巷道开挖过程的数值模拟研究得出以下规律:
     a.对十字形、Y字形交叉巷道开挖数值模拟分析可知:交叉巷道选取不同的开挖顺序,巷道周围岩体的应力和巷道产生的应变不同。交叉巷道的开挖应该选择巷道开挖以后产生的变形量小、应力集中少的顺序为最优开挖顺序。开挖完一条巷道后要先对其支护,然后再开挖与其相交的巷道。
     b.巷道围岩的变形特征明显与施工过程相关。因此,在设计和施工交叉巷道时必须分析各个加、卸载过程,对比不同加、卸载顺序而导致的巷道塑性区范围、应力分布结果以及巷道围岩位移变形情况,选择最佳的卸载开挖顺序,从而采用优化的施工方法与优化的支护措施,以保证巷道交叉点在施工期和运营期的安全稳定。
     (2)矿岩接触带巷道围岩失稳特点及机理
     a.在研究区当前的采区分段水平和巷道断面尺寸形状下,大部分巷道和围岩可以保持自稳,虽然掘进后会产生次生应力场,但对于以铁矿石、大理岩、闪长岩等各种硬岩为主的采区备采巷道来说,这些硬岩本身的强度足以抵抗掘进后引起的附加应力。
     b.在矿岩接触带等岩性弱结构位置发生的破坏一般为沿着接触带层位的剪切破坏,相对巷道中心线不对称;局部巷道两帮会发生轻微的片帮,应力集中区随着塑性区的出现从岩壁向纵深转移,如果应力集中的强度超过围岩屈服强度,这个时候将产生新的塑性区,于是塑性区将随着新的塑性区的出现不断向纵深发展。
     (3)因为粉矿结构松散,物理力学性质差,强度低,因此对巷道围岩的稳定性极其不利。
     (4)尖林山采区巷道稳定性数值模拟计算表明:巷道交差点以及矿岩接触带是巷道应力集中的主要区域,数值计算结果与课题组现场调查所确定的研究区不稳定区域基本吻合。进行不稳定区域巷道失稳机理的深入分析可为巷道稳定性支护提供可靠依据
     4.井下开采巷道围岩稳定性控制技术
     (1)不稳定区域巷道围岩稳定性控制技术
     a.在实际工程实践中,可以采用数值模拟分析方法,以确定交叉巷道的最优开挖顺序,确保巷道开挖后的稳定性,并对其进行支护设计,避免生产巷道的失稳垮塌,保证生产安全高效进行,提高矿山经济效益与社会效益。
     b.锚杆加固对减少剪切和拉伸破坏的效果明显。喷混凝土对减少拉伸破坏优于锚杆支护,但在抵抗剪切破坏方面明显不如锚杆有效。锚喷联合支护下优势互补,剪切和拉伸破坏区以及围岩塑性区均有一定程度的减少。
     c.采用超前支护方法。粉矿中的巷道掘进程序一般是:可以考虑在稳定性较好的地段直接掘进后进行临时支护,而在粉矿地段则必须采用超前支护,也就是首先将若干矿用工字钢插入掌子面顶部沿巷道走向,随后掏挖出矿石,安设临时支护紧接其后。
     d.优化粉矿巷道支护型式及结构尺寸。根据粉矿巷道围岩受力特点,增加巷道稳定性可以采用曲墙替代直墙,增加墙厚,增加底拱以及改善配筋这些方法。在粉矿巷道中,锚杆对顶拱的加固作用是有限的,若设计合理的锚杆参数,则对侧墙加固有一定效果。
     e.增加粉矿巷道稳定性的关键是改善施工方法。采用以下措施可以有效的避免初期冒落的产生和大的空隙发生在围岩与支护结构之间:在支护结构与围岩之间采用注浆和混凝土回填密实;改善似块状结构粉矿爆破参数,并减少扰动,最后喷射喷射混凝土;注浆小导管、管棚等超前支护措施可用在粉矿状结构和粉块夹杂状结构粉矿上。
     (2)根据所分析的影响巷道围岩稳定性的因素,以及研究了分类指标选取的目的和原则,从单轴抗压强度Rc、结构面隙壁状态以及实测RQD值三个指标对大冶铁矿研究区的巷道围岩的稳定性进行了分类选取,确定了大冶铁矿特征围岩作为神经网络学习的样本。通过利用神经网络非线形和具有学习与记忆功能,运用训练样本训练网络结构,最终建立了巷道围岩稳定性的神经网络识别模型。运用神经网络对巷道围岩稳定性进行了分级。
     (3)进行了基于间接工程类比和整体加固设计计算的巷道喷锚支护设计的智能系统的研究,并利用Visual Basic6.0开发设计了此系统。
     (4)阐述了巷道围岩注浆与岩体锚注加固的作用,并根据大冶铁矿不稳定区域采场的实际情况,对注浆材料和锚注设备进行了选择,对巷道锚注施工方法进行了介绍。
     论文综合运用岩体力学、弹塑性力学、非连续介质力学、地下工程、工程地质学及现代数学、计算机编程等学科的相关理论,着力分析大冶铁矿井下开采巷道围岩稳定性,开发设计喷锚支护智能系统。论文选题具有多学科交叉、涉及面广等特点,同时课题研究面向我国国民经济建设需要,为大冶铁矿井下开采的施工提供理论依据和技术支持,研究成果具有较为重要的理论和工程应用价值。
     综合分析国内外已有研究成果,论文在以下两个方面具有创新性:
     (1)综合运用解析方法和数值方法研究了大冶铁矿井下开采巷道围岩破坏规律和失稳机理。基于数值模拟方法确定了交叉巷道的最优开挖顺序,分析了矿岩接触带处巷道与岩性弱结构巷道围岩失稳特点及机理。
     (2)运用Visual Basic6.0开发设计了巷道喷锚支护智能系统。基于知识的人工智能程序,遵循支护设计的工程类比法和解析设计法的思想,利用神经网络的非线形和学习记忆功能,运用训练样本网络结构,确定了神经网络识别模型;运用神经网络对巷道围岩稳定性进行了分级,基于间接工程类比和整体加固设计计算,运用Visual Basic6.0开发设计了巷道喷锚支护智能系统。
     论文在研究矿山井下开采巷道围岩破坏规律、失稳机理及控制技术等方面取得了一些进展,然而在实际工程中,岩体所处的地质环境及其本身的内部结构是很复杂的,若要更深入地了解井下开采巷道围岩破坏规律和失稳机理,以下几个方面的问题有待进一步研究:
     (1)在运用数值模拟方法对矿岩接触带处巷道失稳机理分析时,忽略了周边巷道的影响,而矿岩接触带处巷道围岩的稳定性会受到周边巷道卸压的影响,因此在进行数值模拟时,造成了边界条件的不均匀性。
     (2)关于矿山井下开采巷道围岩破坏规律与地质构造、矿山压力、开采空间之间的关系有待进一步研究,探讨共同作用机理。
     (3)本文在运用三层MBP神经网络模型进行回采巷道围岩稳定性的分类时,采用了3个指标,分别为围岩的RQD值、抗压强度和节理裂隙隙壁状态。然而,影响巷道围岩稳定性的因素远不止3个,因此,在今后的研究中,分类指标的选择有待进一步优化。
Deep surrounding rock stress is the inevitable atmosphere of the roadway surrounding rock deformation, when rock structure, lithology, rock strength and other self-affecting index factors have effects on the rock deformation amount, as well as joints, cracks, faults control the rock deformation. These structural cutting action make these rocks into continuous rocks but discontinuous rocks, making the rocks carried the forces from multi-field (stress, temperature, seepage) and heterogeneous (gas, liquid, solid) by the influence of the geological structure and engineering structure interaction coupling. Therefore those surrounding rock deformations comprehensively reflect surrounding rock morphological changes after excavation, and it is also the stability of roadway intuitive basis, and support design is the basic means to control the deformation. Surrounding rock displacement can be divided into three parts according to time history;(1) section excavation instant elastic displacement;(2) load releasing elastic or inelastic displacement;(3) timely visco-elastic displacement in case of the release of the maximum load while maintaining constantly. The actual measuring surfaces are later than excavation surfaces, so the convergence measured is just a portion, mainly the third part. Therefore, the analysis of rock deformation causes and mechanism and reasonable support to ensure timely roadway stable is core of this research, and it is also the key to ensure normal production and mine safety. Currently, on-site monitoring, similar material simulation experiment, the computer numerical simulation and theoretical analysis by means of rock deformation research, analysis of surrounding rock deformation mechanism in order to achieve a reasonable support and accurately predict results.
     Daye Iron Mine Jianlinshan NO.2ore body metamorphic rocks, on the plate diorite contact zone ore crushing, is listed as an unstable region and type IV unstable areas class and V ultimate unstable areas. From-20m level beginning, the roadway on the plate appears ore ground pressure activities, and roadway collapsed make that part of the ore cannot be recycled; form-30m horizontal section also corresponds to a similar situation; in the half of1993, the mining enter-40m level,-40m level corresponding parts of the roadway on the plate apparent cracks and local caving, rock smashed drill rig collapsed, blocking transport roadway; after1996,-50m level,-60m level, including cave mining district-62m level,-74m average varying degrees of water into the road tunnel collapsed, large haulage collapse phenomenon.
     Daye iron ore deposits are hosted in the fracture zone, while the stability of the contact zone ore is poor and boring and support are difficult, as well as mining engineering and technical personnel and workers of the complex mechanical behavior of rock excavation particular understanding of the laws of deformation and destruction unclear, mining there are significant security risks. In order to ensure mine production safety, to prevent the occurrence of major casualties in underground tunnel, to increase labor productivity, underground geological characteristics of rock, rock stability, surrounding rock deformation and failure mechanism of must be study deeply. Therefore, the paper combined with Daye Iron unstable region underground mining roadway stability control and support methods research project to Daye Iron Mine Roadway mainly used for the study, the use of data collection, site investigation, theoretical analysis, laboratory tests, numerical simulation and field testing and other methods, revealing instability mechanism of roadway surrounding rock stability and influence factors analysis of surrounding rock deformation instability region (cross roadway, roadway ore at the contact zone and fine ore roadway), micro-instability mechanism and control methods, development spray-anchor support design intelligent systems for underground mining Daye iron construction provides a theoretical basis and technical support, research results with a more important theoretical and engineering application value.
     After reviewing a large number of papers relevant literature, a comprehensive summary of previous studies based on the results, the system launched Daye Iron Mine underground mining tunnel surrounding rock stability and control technology research, and mainly to complete the following work:
     1. Engineering geological conditions and the physical and mechanical properties of rock study
     (1) By on-site investigation and geological data on the Daye Iron Mine Based on the analysis, summarized overview mining and engineering geology, hydrogeology, Jianlinshan workshop is identified as major research area for the project.
     (2) Through Jianlinshan-60level6#,8#, and13#road jointed rock mass survey it shows jointed existence of the following distribution:
     a.6#jointed approach towards the130°~160°between the distribution of more in the direction of135°jointed largest number; joint set has two advantages, namely S1:76/229, S2:28/255to steeply inclined joints based,70°~80°(50%), with an average spacing of5.7/m;
     b.8#approach jointed to mainly concentrated in the115°~130°, between approximately normal function of distribution; has a set of advantages joint sets, namely S1:44/011, jointed angle wide distribution, mainly in the tilt, steeply inclined and the average spacing of4.2/m;
     c.13#into the road joints strike mainly concentrated in25°direction and115°~135°between; has two advantages of joint sets, namely S1:69/043, S2:85/030, with steeply inclined joints as Lord, the average spacing of3.8/m;
     d. Joints are generally very small aperture, and scalability is poor, but there are several also great. Joints fill rarely, and the survey found jointed filling calcite, chlorite.
     (3) Achieving rock mechanical parameters by field rock sampling, experiments derived altered diorite average uniaxial compressive strength of98.8MPa, the measured elastic modulus of the average of4.42×104MPa, obtained the metamorphosed diorite strain values and Poisson's ratio for subsequent research has laid a good foundation.
     (4) The acoustic properties of ore/rock field test show that the peak forest mining area-60m stoping in two surrounding rock loose circle range in roughly1.80m or so, the ore body of the average speed of longitudinal wave is roughly4035.50m/s. Longdong mining area-62m level of roadway surrounding rock loose circle two range around2.40m, the marble rock set of p-wave average speed of3625.90m/s; According to the research area of roadway loose loose circle range of1.80~2.40m, the study area can be roughly calculated length of roadway bolt support can be reference design is2.10~2.80m.
     2. The instability mechanism of roadway surrounding rock analysis
     (1) The main form of instability of roadway surrounding rock:tensile failure, local rock fall failure, shear failure and composite failure and shear failure, deliquescence expansive destruction, destruction of rock burst.
     (2) The factors affecting the stability of the dominant, ground stress, groundwater and the integrity of the rock mass surrounding rock roadway cross section, the quality of the surrounding rock materials, as well as the comprehensive factors.
     (3) The main indicators which influence the stability of surrounding rock of roadway, composition and structure of surrounding rock are the basic factors affecting the stability of surrounding rock; Development characteristic tectonic structural planes are the dominant factors affecting the stability of surrounding rock; Control factors of the stability of surrounding rock influenced by rock weathering degree and alteration degree; To determine the stability of the roadway surrounding rock tunnel buried depth is one of fundamental factors; The groundwater is also have certain influence to the stability of surrounding rock; Span affect the stress state of roadway surrounding rock of roadway, have an effect on roadway support design index selection; Easy cause of adjacent tunnel surrounding rock loose blasting disturbance, crack or failure.
     3. The unstable area roadway instability of numerical simulation
     (1) Unreasonable excavation and supporting sequence is one of the important factors affect cross drift instability, based on the numerical simulation of different types of cross tunnel excavation process study the following pattern:
     a. To cross, cross Y numerical simulation analysis of roadway excavation:cross tunnel choose different excavation sequence, roadway surrounding rock mass of stress and strain of different roadway. Cross tunnel after excavation roadway excavation should choose the small deformation and stress concentration for optimal excavation order less order. After digging a tunnel to the support, and then the excavation and roadway intersection.
     b. Deformation characteristics of roadway surrounding rock significantly related to the construction process. Therefore, in the design and construction of crossing roadway must analyze each addition, unloading process, when comparing different addition, unloading order due to the scope of the plastic zone of roadway, the results of the stress distribution and displacement of surrounding rock deformation of roadway, choosing the best unloading of excavation sequence, so as to optimize the construction method and the optimization of supporting measures, to ensure the roadway intersection in construction period and operation period of security and stability.
     (2) The contact zone in ore characteristics and mechanism of roadway surrounding rock instability
     a. In the study area of the current level of mining section roadway section size and shape, the most and can keep the stability of surrounding rock of roadway, although after the excavation will produce secondary stress field, but for iron ore, marble, diorite and other hard rock of mining roadway, for these hard rock itself strong enough to resist cause additional stress after excavation.
     b. In the ore-bearing rock contact zone, and other general location of weak lithology structure damage to shear failure along the contact zone horizon, relative roadway centerline asymmetry; Local mild piece for two gang, stress, high with the further transfer of appeared from the wall of plastic zone, if the strength of the stress concentration exceeds the yield strength of surrounding rock, this time will produce new plastic zone, plastic zone will appear as the new plastic zone and the further development of continuously.
     (3) Because of loose powder ore structure, physical and mechanical properties is poor, low intensity, so detrimental to the stability of surrounding rock of roadway.
     (4) Peak forest mining roadway stability numerical simulation shows that the roadway crossing and ore-bearing rock contact zone is the main area of roadway stress concentration, the results of numerical calculation and field investigation discovers the identified unstable regions in the study area. Unstable area roadway instability mechanism of in-depth analysis can provide reliable basis for the stability of roadway supporting.
     4. The underground mining roadway surrounding rock stability control technology
     (1) Unstable area of roadway surrounding rock stability control technology
     a. In the actual engineering practice, can be used in a numerical simulation analysis method, to determine the optimal excavation sequence of cross tunnel, to ensure the stability of the tunnel after excavation, and carries on the supporting design, avoid the production of instability of roadway collapse, carry out the production safety, to improve mine economic benefit and social benefit.
     b. Anchor reinforcement to reduce the effect of the shear and tensile damage is obvious. Sprayed concrete to reduce the tensile failure is better than that of bolt support, but in terms of resistance to shear failure is more efficient than bolt. Under the joint support by rockbolt and shotcrete in complementary advantages, shear and tensile damage zone and the plastic zone of surrounding rock has decreased to a certain extent.
     c. The forepole method. Powder ore in the roadway drivage program is commonly:consider directly in a stability better location for temporary support after excavation, in powder ore district, it must adopt advanced support, which is the first insert some mine i-steel constraints along the roadway to the top, then dug out ore, setting temporary support followed by.
     d. To optimize roadway support type and structure of powder ore size. According to characteristics of powder ore roadway surrounding rock stress, increase the stability of roadway can be used in a curved wall instead of straight wall, increase the wall thickness, increase the bottom arch and improve the reinforcement of these methods. In powder ore roadway bolt on top of the arch reinforcement effect is limited, if the reasonable design of anchor parameters, is has certain effect on side wall reinforcement.
     e. Increase powder ore roadway stability is the key to improve construction method. Adopting the following measures can effectively avoid the generation of initial caving and the big gap in between surrounding rock and supporting structure:between the supporting structure and surrounding rock grouting and concrete backfill compacted; Improving the structure of the block like powder ore blasting parameters, and reduce the disturbance, finally jet sprayed concrete; Advance small duct grouting and pipe roof support measures available in powder ore structure and mixed structure powder mine.
     (2) Based on the analysis of the factors affecting the stability of surrounding rock of roadway, and studies the purpose and principles of classification index selection from the uniaxial compressive strength of Re, gap wall condition of structure surface, the measured RQD value of three indicators of daye iron mine roadway surrounding rock classification is made on the stability of the selection of the research region, determines the characteristics of surrounding rock of daye iron mine as learning samples of neural network. By using neural network nonlinear and with learning and memory function, using the training sample training network structure, the stability of roadway surrounding rock was established neural network identification model. Using the neural network has carried on the classification on the stability of surrounding rock of roadway.
     (3) Based on engineering analogy and indirect integral reinforcement design and calculation of spray anchor supporting design of drift intelligent system research, and making use of the Visual Basic6.0development and design of the system.
     (4) Describes the roadway surrounding rock grouting and rock anchor injection reinforcement effect, and according to the actual situation of the unstable region of daye iron mine stope, the grouting material and the anchor note equipment choice, the roadway anchor note construction method are introduced.
     Integrated use of rock mechanics papers, plastic mechanics, non-continuum mechanics, underground engineering, engineering geology and modern mathematics, computer programming and other disciplines related theories focus on analysis of Daye Iron Mine underground mining roadway stability, development and design spray-anchor support intelligent systems. Thesis topics are multidisciplinary, involving a wide range of features, but the research needed for the construction of China's national economy, for the construction of underground mining Daye Iron provide a theoretical basis and technical support, research results with a more important theoretical and engineering applications value.
     Comprehensive analysis of existing research results, the paper in the following two aspects innovative:
     (1) Integrated use of analytical methods and numerical methods studied Daye Iron Mine Roadway destroy underground mining laws and instability mechanism. Based on numerical simulation method to determine the optimal cross the roadway excavation sequence analysis of ore at the contact zone of roadway surrounding rock with lithological weak structure characteristics and mechanism of instability.
     (2) Application of Visual Basic6.0development and design of the tunnel spray-anchor support intelligent systems. Knowledge-based artificial intelligence program, follow the analogy support design engineering design methods and analytical thinking, the use of non-linear neural network learning and memory functions, the use of the network structure of training samples to determine the NN model; using neural networks roadway stability was graded based on indirect engineering analogies and overall reinforcement design calculations, using Visual Basic6.0development and design of roadway spray anchor intelligent systems. Thesis research in underground mining roadway damage law, instability mechanism and control technology has made some progress, but in practical engineering, geological environment in which the rock mass and its own internal structure is very complex, if to better understand the law underground mining roadway damage and failure mechanism, the following aspects of the issues to be further studied:
     (1) in the use of numerical simulation method roadway ore at the contact zone Instability Mechanism, it neglected the impact of the surrounding roadway, and ore at the contact zone will be the stability of surrounding rock roadway surrounding the impact of relief, so during simulation, resulting in unevenness of the boundary conditions.
     (2) underground mining on mine roadway failure regularity and geological formations, rock pressure, the relationship between space exploration needs further study to examine the common mechanism of action.
     (3) In this paper, the use of three-layer neural network model MBP roadway surrounding rock stability classification, using three indicators, namely rock RQD value, compressive strength and jointed wall-gap state. However, the factors affecting the stability of surrounding rock far more than three, therefore, in future studies, the choice of classification index to be further optimized.
引文
[1]徐志应.岩石力学[M].北京:中国水利水电出版社,1993.
    [2]沈明荣.岩体力学[M].上海:同济大学出版社,1998.
    [3]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [4]刘佑荣,唐辉明.岩体力学[M].北京:化学工业出版社,2008.
    [5]Kidybinski A, Dubinski J. Strata control in deep mines[M]. Rotterdam:A. A. Balkema, 1990.
    [6]Faithurst C. Deformation, yield, rupture and stability of excavations at great depth[A]. In: Fairhust C ed. Rock burst and Seismacity in Mines. Rotterdam:A. A. Balkema,1990, 1103-1113.
    [7]Hoek E, Grabinsky M W, Diederich M S. Numerical modeling for underground exeavation[J]. Inst. Min.& Metal,1989,16(2):45-52.
    [8]Diering J A C, Laubscher D H. Practical approach to the numerical stress of mass mining operation[J]. Inst. Min.& Metal,1987,14(1):17-21.
    [9]Karanagh K, Clough R W. Finite element application in the characterization of elastic solids[J]. Int. J Solids Structure,1971, (7):23-25.
    [10]ChenW. F. Constitutive equations for engineering materials[M]. Amsterdam:Elsevier, 1994.
    [11]Chu J. etc. Strain softening and shear band formation of sand in muti-axial testing[J]. Geotechnique,1996,46(1):67-73.
    [12]Oka Fusao etc. A constitutive model for natural soft clay with strain softening[J]. Soils and Foundations,1989,29(8):922-931.
    [13]Adachi T, Oka F. An elasto-plastic constitutive model for soft rock with strain-softening[J]. International Journal for numerical and analytical Methods in Geomechanics,1995, 19(1):79-87.
    [14]Vermeer P A. The orientation of shear bands in biaxial tests[J]. Geotechnique,1990,40(2): 137-143.
    [15]Frantziskonis G. etc. Constitutive model with strain softening[J]. Int. Journal of Solids Structures,1987,23(6):45-53.
    [16]Malan D F. Time-dependent behavior of deep level tabular excavations in hard rock[J].Rock Mechanics and Rock Engineering,1999,3(2):123-155.
    [17]Grgic D, Homand F, Hoxha D. A short and long-term rheological model to understand the collapses of iron mines in Lorraine, France[J]. Computers and Geotechnics,2003,30(7): 557-570.
    [18]Aydan O. The stabilization of rock engineering structures by bolts[M]. Rotterdam:A.A. Balkema,1989.
    [19]Haramy K. Floor heave analysis in a deep coal mine[A]. Proc. of the 27th U. S. Symposium on Rock Mechanics, Alabama,1996:520-525.
    [20]Frouz A. Geotechnical assessment of the bearing capacity of coal mine Floors[J]. International Journal of Mining and Geological Engineering,1996(6):297-312.
    [21]Chugh Y P. Analysis of soft floor interaction in underground mining at an iuinoif basin coal Mine[J]. Design and Performance of Underground Excavations, ISIM/BGS, Cambridge,1984:383-390.
    [22]Wilson A H. The Stability of Tunnels in Soft Rock at Depth[A]. Proc. Conf. on Rock Engineering, University Newcasale upon Tyne.511-515(1977).
    [23]Rockaway D J. Investigation into the effects of weak floor conditions on the stability of coal pillar[A]. United States Bureau of Mines Open File Report Final,237-243(1979).
    [24]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36.
    [25]陆庭侃,刘玉洲,许福胜.大埋深煤巷顶板离层研究[J].矿山压力与顶板管理,2005,3:110-112.
    [26]柏建彪,侯朝炯.复合顶板极软岩煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,42(1):131-139.
    [27]柏建彪,王卫军,侯朝炯.综放沿空掘巷围岩控制机理及支护技术研究[J].煤炭学报,2000,25(5):478-481.
    [28]李树清,王卫军,潘长良.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006,28(3):377-381.
    [29]王卫军,李树清,欧阳广斌.深井煤层巷道围岩控制技术及试验研究[J].岩石力学与工程学报,2006,25(10):2012-2017.
    [30]何满潮,齐干,程骋,等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007,26(5):987-993.
    [31]杨峰,王连国,贺安民,等.复合顶板的破坏机理与锚杆支护技术[J].采矿与安全工程学报,2008,25(3):286-289.
    [32]高明仕,张农,郭春生.三维锚索与巷帮卸压组合支护技术原理及工程实践[J].岩土工程学报,2005,27(5):587-590.
    [33]张久锋,王成,韩国将,等.厚层复合顶板留小煤柱沿空掘巷综合控制技术[J].能源技术与管理,2009,(1):7-9.
    [34]李东印,刑奇生,张瑞林.深部复合顶板巷道变形破坏机理研究[J].河南理工大学学报,2006,26(6):457-460.
    [35]郝进海.薄层状巨厚复合顶板回采巷道锚杆锚索支护理论及应用研究[D].太原:太原理工大学,2005.
    [36]康立勋,杨双锁.全煤巷道拱形整体锚固结构稳定性分析[J].矿山压力与顶板管理,2002,19(3):19-21.
    [37]陈喜恩,王唐龙.深井高应力复合顶板巷道卸压让压综合支护技术[J].煤,2008,13(3):15-19.
    [38]贾剑青,王宏图,李晓红,等.深埋隧道软硬交替复合顶板岩体变形破坏分析[J].岩土力学,2006,06:937-940,950.
    [39]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [40]侯朝炯.巷道金属支架[M].北京:煤炭工业出版社,1989.
    [41]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [42]李大伟,侯朝炯.低刚度软岩巷道大变形围岩稳定控制试验研究[J].煤炭科学技术,2006,34(3):36-39.
    [43]钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1984.
    [44]何满潮,高尔新.软岩巷道祸合支护力学原理及其应用[J].水文地质工程地质,1998,(2):1-4.
    [45]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,(16):2803-2813.
    [46].何满潮,杨军,齐干,等.深部软岩巷道耦合支护优化设计及应用[J].辽宁工程技术大学学报,2007,26(01):40-42.
    [47]Dyskin A V. On the role of stress fluctuations in brittle fracture[J]. Int. J. Fracture,1999, 100:29-35.
    [48]Bai Jianbiao, Wang Xiangyu, Wang Hao. Research on technology and mechanism of grouting by using high-moisture quick-concreting material[J]. Key Engineering Materials, 2009,13(6):30-36.
    [49]Li Xuehua, Yao Qiangling, Ding Xiaolei, etal. Application research on stability control of water-enriched roof stability control of coal drift[J]. Milling Science and Technology,2009, 19(4):467-472.
    [50]Indraratria B, etal. Design for Grouted Rock Bolts Based on the Convergence Control Method. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1990(27).
    [51]Anchoring & Grouting, Proceedings of International Conference on Anchoring & Grouting toward the new century, Zhongshan University Publisher,1999.
    [52]Application & Development of Anchoring & Grouting Technology. Proceedings of the International Symposium on Anchoring and Grouting Techniques. Econarc Communication Hong Kong,1994.
    [53]Carlsson A. Tunneling and rock Support work at Juktan hydropower plant Sweden[J]. Tunneling,1982:65-72.
    [54]Johnslon J C, Einstein H H. A Survey of mining associated seismicity[J]. Proceedings,2nd International Symposium on Rock bursts and Seismicity in Mines, Minneapolis, Minnesota,1988, Fairhurst, Charles (Editor), A A Balkema, Rotterdam, Netherlands, 1990:121-127.
    [55]Brady B H G, Brown E T. Energy changes and stability in underground mining design application of boundary element methods[M]. IMM,1981.
    [56]Hoek E, Brown E T. Underground Excavation in Rock[M]. London:Institute of Mining and Metallurgy,1980.
    [57]Ortlepp W D. Grouted rock-studs as rockburst support[J]. Journal of the south institute of mining and metallurgy,1994,94(2):47-63.
    [58]陈贵林,马开玉.深部软岩巷道修复支护设计和工程实践[J].中国煤炭,2009,(04):55-57.
    [59]冯豫.新奥法与中国煤炭软岩巷道支护[J].中国煤矿软岩巷道支护理论与实践[M].中国矿业大学,1996.
    [60]郑雨天.岩石力学的弹塑粘性理论基础[M].煤炭工业出版社,1988.
    [61]郑雨天.论我国软岩巷道支护的基本框架和几个误区-中国煤矿软岩巷道支护理论与实践[M].徐州:中国矿业大学出版社,1996.
    [62]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-23.
    [63]孔德森,蒋金泉.深部巷道在构造应力场中稳定性分析[J].矿山压力与顶板管理,2000,(04):56-58.
    [64]何满潮,景海河.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [65]米勒L.著,李世平,冯震海,译.岩石力学[M].北京:煤炭工业出版社,1981.
    [66]吉迪宾斯基A.,刘天泉,于振海,译.采矿工程于矿井地质技术[M].北京:煤炭科学总院,1989
    [67]斯塔西T.R.著,朱浮声,译.地下岩石力学实用手册[M].北京:煤炭工业出版社,1990.
    [68]布雷切夫H.C.著,王明恕,译.地下结构力学[M].北京:煤炭工业出版社,1985.
    [69]马世志,张茂林.巷道围岩稳定性分类方法评述[J].建井技术,2004,25(5):24-27.
    [70]何满潮,袁和生,靖洪文.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [71]杨新安,黄宏伟.围岩变形内表比及一种新的巷道围岩分类法[J].岩土工程学报,1998,20(3):23-26.
    [72]靖洪文,马世志.大松动圈软岩工程分类及对策[J].矿山压力与顶板管理,1999,(1):30-32.
    [73]徐干成,白洪才,郑颖人.地下工程支护结构[M].北京:中国水利水电出版社,2001.
    [74]于学馥,郑颖人,刘怀恒.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    [75]薛琴勋,聂光国,姜光杰,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002
    [76]Blake W. Design considerations for seismic monitoring systems[J]. In:N C Gay, E H Wainwright, eds. Rockbursts and Seismicity in Mines. Rotterdam:balkema,1984.
    [77]Vlaeminck K., Van Hoecke S., De Turck F., et al. Design and implementation of an application server load balancing architecture supporting the end-to-end provisioning of value-added services [C]//Networks 2004-11th International Telecommunications Network Strategy and Planning Symposium,2004:345-350.
    [78]李世平,吴振业,贺永年,等.岩石力学简明教程[M].北京:煤炭工业出版社,1996.
    [79]曾杰.走马岭隧道岩体结构特征及围岩稳定性研究[D].重庆:重庆大学硕士学位论文,2006.
    [80]王思敬,杨志法,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984.
    [81]田昌贵.声波测试技术在丰山铜矿的应用[J].矿业研究与开发,2002,22(5):45-47.
    [82]朱焕春.某高边坡岩体声波测试与分析[J].岩石力学与工程学报,1999,18(4):378-381.
    [83]马荣田.岩体声波测试技术及其在巷道围岩岩体波速测试中的应用[J].铁道建筑,2006,(10):37-40.
    [84]孙亚飞.小波分析理论应用于岩石松动圈声波测试的研究[D].武汉:武汉理工大学硕士学位论文,2008.
    [85]陈庆发,周科平,胡建华,等.缓倾薄层弱结构松动圈声波测试时测孔布置的理论依据与验证[J].中南大学学报(自然科学版),2009,40(5):1406-1410.
    [86]常聚才,谢广祥.深部巷道围岩力学特征及其稳定性控制[J].煤炭学报,2009,34(07):881-886.
    [87]王其胜,李夕兵,李地元.深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭学报,2008,33(04):364-367.
    [88]李德忠,李冰冰,檀远远.矿井深部巷道围岩变形浅析及控制[J].岩土力学,2009,30(01):109-112.
    [89]陈金平.金山店铁矿粉矿岩体巷道围岩稳定性分析及支护措施模拟研究[D].武汉:武汉科技大学硕士学位论文,2011.
    [90]王果.回采巷道围岩稳定性分类及锚杆支护设计决策系统研制与应用[D].太原:太原理工大学硕士学位论文,2006.
    [91]李效甫姚建国.回采巷道支护形式与参数合理选择专家系统[M].北京:煤炭工业出版社,1993.
    [92]蒋金泉,冯增强,韩继胜.跨采巷道围岩结构稳定性分类与支护参数决策[J].岩石力学与工程学报,1999,18(1):81-85.
    [93]杨朝晖,刘浩吾.地下工程围岩稳定性分类的人工神经网络模型[J].四川联合大学学报,1999,3(4):66-72.
    [94]胡建华.巷道围岩稳定性分析及其支护智能研究[D].武汉:武汉理工大学硕士学位论文,2001.
    [95]傅鹤林,范臻辉,刘宝琛.人工神经网络模型及其在隧道围岩分类中的应用[J].化工矿物与加工,2002,(6):20-22.
    [96]霍润科,刘汉东.神经网络法在地下洞室围岩分类中的应用[J].华北水电学院学报, 1998,19(2):61-66.
    [97]蔡广奎.围岩稳定性分类的BP网络模型研究[D].南京:河海大学硕士学位论文,2001.
    [98]王存文.基于BP人工神经网络的煤巷围岩稳定性分类研究[[)].济南:山东科技大学硕士学位论文,2005.
    [99]胡建华,王福寿,张世雄.地下工程围岩稳定性的MBP神经网络识别[J].岩土工程界,2001,4(12):63-64.
    [100]汤雷.锚固力作用机理及锚固技术研究[D].中国矿业大学博士学位论文,1998.
    [101]杨双锁.回采巷道围岩控制理论及锚固体支护原理[M].北京:煤炭工业出版社,2004.
    [102]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700