用户名: 密码: 验证码:
表面和界面对Mg-H体系吸放氢性能影响的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁氢化合物(MgH2)储氢容量相对较高,氢重量密度达到7.6wt%,体积容量达到110g L-1,能量密度为9MJ kg-1,而且镁在自然界广泛地大量存在,成本极低,在未来很有希望成为商业使用的储氢材料。
     本文在绪论部分首先简要地介绍了目前世界能源的困局和中国面对的能源问题,进而引申到对清洁能源氢能源的应用问题,继而详细地回顾了储氢材料概况,并突出了镁基储氢材料的潜质及其应用上的技术困难,再而详述了解决该技术困难的常用方法和仍然存在的问题。在绪论部分的最后指出目前的镁基储氢材料需要更多对镁表面的储氢机理的基础研究。
     本文以第一性原理计算为手段,在第二章里系统地研究了镁不同的密勒指数表面的稳定性和表面弛豫,在第三章研究了应变效应对Mg(0001)表面的储氢性质影响,在第四章里研究Mg/MgH2界面的理论建模方法和决定稳定性的因素,最后在第五章里研究Mg(1013)表面的氢吸附和迁移机理。
     本文首先在第二章里系统地研究了镁的各种高低指数面的表面能和表面弛豫。通常高指数面较低指数面的稳定性要差,但在镁的表面上这个预测并不成立。计算结果显示Mg(1010)是Mg(101n)(n=0-9)的一系列表面中是稳定性最低的,也就是说低指数面并不一定稳定。由于在hcp结构的镁当中存在两种键——基键与非基键,而且这两种键的键能是不同的,当产生表面涉及到断键的时候,这两种键的断键数会直接影响表面能,所以在镁表面上并不一定是以低指数面的稳定性更高。最后在第二章中建立一个表面能估测模型来从量化角度解释表面能,并且发现镁低指数面的表面弛豫符合Friedel振荡机制,但该机制对于高指数面则有所不同。在高指数面上,影响表面弛豫的主要机制为电荷平缓效应和剧烈的电荷耗散两方面。
     本文进而在第三章里系统地研究了二维应变对镁的最稳定表面Mg(0001)面的储氢性质的影响,计算得到的结构稳定性相图显示表面二维应变对体系吸放氢性质的影响非常大。在氢的覆盖度较低(少于2ML)时,主导的吸附结构为H-Mg-H三层结构。我们发现该三层结构的最优晶格常数小于Mg(0001)对应的晶格常数,因而从热力学的角度,负的应变对该结构的形成有帮助,即负应变(即压应变)有助于体系初始阶段的吸氢。当氢的覆盖度不断增加时(超过2ML),MgH2(110)的体材料结构开始占据能量优势。由于该结构的晶格常数比Mg要大,所以拉伸性应变对其有优势。随着氢覆盖度的增加, H-Mg-H三层结构和MgH2(110)结构之间的能量优势会发生反转,就会引致Mg向MgH2的相变的发生。在第三章的最后得出可以通过应变调节镁材料的吸放氢性能。
     本文在第四章里系统地研究了Mg/MgH2界面的建模方法、界面稳定性决定因素以及氢缺陷在界面处的形成情况。在对不同的两相界面组合中,我们在密度泛函理论基础上考虑了影响界面能的因素,其中具体包括两个相的表面能、界面模型的共同晶格常数、以及两个相之间的相对位置。我们提出了通过共同晶格常数研究界面存在的弹性效应,并通过调节界面模型的晶格常数和两相相对位置变化来研究弹性效应对界面稳定性的影响。结果发现Mg和MgH2的表面能对Mg/MgH2界面能的影响最大,而共同晶格常数和两相的相对位置也会导致界面能的变化。我们提出在界面模型的建立过程中应充分考虑这三个方面的影响。Mg/MgH2界面处的镁氢键是界面稳定性的决定性因素。在第四章的最后研究了界面和应变对缺陷形成的影响,并发现这两者都有利于缺陷的形成。
     本文在第五章研究了高指数Mg(1013)面上的氢吸附的难易程度和氢迁移的机理,并与Mg(0001)面上的情况进行比较。首先,实验组成功制备了Mg(1013)薄膜,并证实了Mg(1013)薄膜良好的吸放氢性质,在392K就可以吸氢,比Mg(0001)薄膜的592K要好。然后,理论计算的结果显示在低覆盖度下,由于其悬挂键数目更多,导致Mg(1013)的氢吸附比在Mg(0001)表面更加容易。有趣的是,由于Mg(1013)和Mg(0001)的结构不同,Mg(1013)上大量存在非密堆面通道让氢的迁移变得更加容易,这是由于氢通过密堆面时所需的能垒要远高于通过非密堆面。理论计算很好对Mg(1013)的高速氢渗透的实验结果给出了验证和机制解释。
The hydrogen storage content of mangesium hydride is relativelyhigh with a gravimetricdensity of7.6wt%, a volumetric density of110gL-1,and an energy density of9MJkg-1. Thenature has a wide abundance of low cost magnesium, leading Mg a promising candidate forthecommercial hydrogen storage materials.
     In the Introduction,this dissertationintroduces the world energy crisis and the energydilemma that China is facing, and then comes up with a solution of application of cleanhydrogen energy. Afterwards, a detailed review of hydrogen storage materials, whichemphasizes the potential and application obstacles of Mg-based hydrogen storage materials, isprovided.The review continues to focus on solutions for hydrogen storage improvements, andsome other existing problems. It is further indicated that the present Mg-based hydrogen storagematerials still need more fundamental researches on hydrogenation properties of Mg surfaces.
     Using the first-principles approaches, we systematically studythe stabilities andrelaxations of various Mg surfaces with different Miller indexes in Chapter Two, researches thestrain effect on the Mg(0001) hydrogen storage properties in Chapter Three, investigates thetheorectical modelling methods and the stability-determining factors of Mg/MgH2interfaces,and discovers the atoimic adsorption and diffusion mechanism of hydrogen on Mg(1013) slab.
     In Chapter Two, we systematically discussthe stabilities and relaxations of various Mgsurfaces with different Miller indexes. Usually the stabilities of high index surfaces arelowerthan that of low index ones, but this prediction is not always true for Mg surfaces. Thecomputational results show that Mg(1010) is the most unstable surface in the series of Mg(101n)(n=1-9). Due to the fact that two kinds of bonds, i.e. the basal bonds and non-basal bonds, withvarying bond energies exist in hcp Mg, the number of breaking these two kinds of bonds willdirectly impact surface energies.Therefore the low-index Mg surfaces are not necessarily stable,as they may possess of higher density of broken bonds. Later, a surface-energy predicting modelis built to quantitatively explain the relative Mg surface stabilities. The last part of Chapter Twofinds that the Friedel oscillation is the mechanism of low index Mg surface relaxations. But for the high index ones, the mechanism is a combination of charge smoothing effect and dramaticcharge depletion, rather than the Friedel oscillations.
     In Chapter Three, we further investigate biaxial strain effects on hydrogenation propertiesof Mg(0001) slab. The phase diagram of structural stabilities shows biaxial strains significantlyinfluence the hydrogenation properties of the system. When the coverage is less than2ML, thedominating adsorption structure is H-Mg-H trilayer. The lattice constants of the trilayer arefound to be less than those of Mg(0001), thus, from a thermodynamic perspective, negativestrains (i.e., compress) are helpful for the formation of trilayers in initial stage of hydrogenstorage. As the H coverage increases, the MgH2(110) bulk-like structure starts to prevailenergetically. Sinceits lattice constants are larger than those of Mg, the tensilestrains arebeneficial for the MgH2(110) bulk-like structure. As the H coverage increases further, theenergy advantage between the H-Mg-H trilayer and MgH2(110) bulk-like structure is reversed,thus leading to a phase transition from Mg to MgH2. In Chapter Three, it is concluded that thestrains is capable of tuning the Mg hydrogenation/dehygrogenation properties.
     In Chapter Four, we systematically discussthe theorectical modelling methods and thestability-determining factors of Mg/MgH2interfaces, and the defect formations in interfaceregions. The considered interface stalibity-determining factors include the surface energies oftwo phases, the interface mutual constants, and the relative position of two phases. The conceptof the mutual constants is proposed to study the elastic effects on interface stabilities by tuningthe lattice constants and two phase relative position of interface models. The results manifestthat the surface energies of Mg and MgH2have the biggest influence on the Mg/MgH2interfacial energies. The mutual constants and two phase relative position also induce thechange in interfacial energies. It is suggested that these three factors should be fully consideredduring the modelling process. Mg-H bonds are the key to interface stabilities. Lastly in ChapterFour, the interface and strain effects on defect formation are studied and both found to bebeneficial to defect formations.
     In Chapter Five, the atoimic adsorption and diffusion mechanism of hydrogen onMg(1013) slab are discovered and made comparisons with the Mg(0001) cases. Firstly, the Mg(1013) slab is successfully prepared by experimental groups, and the excellent H soroptionproperites of the slab, i.e. H desorption temperature of392K, are verified, compared to592Kof Mg(00001) slab. Then, the theoretical results indicate that the more numbers of danglingbonds on Mg(1013) lead to easier hydrogen adsorption at low coverage. Interestingly, the largenumber of non-closed-packed tunnels on Mg(1013) highly facilitates the hydrogen diffusionand makes a big difference with the Mg(0001) cases. Verification and explanation of H expresspenetration on Mg(1013) is proved by the theoretical calculation results.
引文
[1] Salameh M. G. Technology, oil reserve depletion and the myth of the reserves-to-production ratio [J]. OPEC Review,1999,23(2):113-125
    [2] de Almeida P., Silva P. D. The peak of oil production—Timings and market recognition[J]. Energy Policy,2009,37(4):1267-1276
    [3] IEA. World Energy Outlook2012[R]. OECD Publishing,
    [4] Wang W., Zhang M., Li P. Exploring temporal and spatial evolution of global energyproduction and consumption [J]. Renewable and Sustainable Energy Reviews,2014,30(0):943-949
    [5] Sun M., Gao C., Shen B. Quantifying China's oil import risks and the impact on thenational economy [J]. Energy Policy,2014,67(0):605-611
    [6] OPEC.2013World Oil Outlook [R]. OECD Publishing,187-188
    [7] IEA. World Energy Outlook2012[R]. OECD Publishing,75
    [8]时寒冰.时寒冰说欧债危机警示中国[M].1st Edition.宁姗,白春玲.北京:机械工业出版社,2012:107-111
    [9] Su Y., Chen X., Li Y., et al. China s19-year city-level carbon emissions of energyconsumptions, driving forces and regionalized mitigation guidelines [J]. Renewable andSustainable Energy Reviews,2014,35(0):231-243
    [10]新华网.中国政府确立能源发展新战略清洁能源撬动经济发展[EB/OL].中央政府门户网站, http://www.gov.cn/xinwen/2014-04/21/content_2663729.htm,2014-4-21
    [11] IEA. World Energy Outlook2012[R]. OECD Publishing,58
    [12] Dresselhaus M. S., Thomas I. L. Alternative energy technologies [J]. Nature,2001,414(6861):332-337
    [13] Lim K. L., Kazemian H., Yaakob Z., et al. Solid-state Materials and Methods forHydrogen Storage: A Critical Review [J]. Chemical Engineering&Technology,2010,33(2):213-226
    [14] Niemann M. U., Srinivasan S. S., Phani A. R., et al. Nanomaterials for HydrogenStorage Applications: A Review [J]. Journal of Nanomaterials,2008,950967
    [15] Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications [J].Nature,2001,414(6861):353-358
    [16] Sakintuna B., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solidhydrogen storage: A review [J]. International Journal of Hydrogen Energy,2007,32(9):1121-1140
    [17] Johnston B., Mayo M. C., Khare A. Hydrogen: the energy source for the21st century[J]. Technovation,2005,25(6):569-585
    [18] Jiang T., Sun L.-X., Li W.-X. First-principles study of hydrogen absorption onMg(0001) and formation of magnesium hydride [J]. Physical Review B,2010,81(3):035416
    [19] Jain I. P., Lal C., Jain A. Hydrogen storage in Mg: A most promising material [J].International Journal of Hydrogen Energy,2010,35(10):5133-5144
    [20] USDOE. Hydrogen Storage Program Overview [EB/OL]. US Department of Energy,http://www.hydrogen.energy.gov/pdfs/progress13/iv_0_stetson_2013.pdf,2013
    [21] Ahluwalia R. K., Hua T. Q., Peng J. K. On-board and Off-board performance ofhydrogen storage options for light-duty vehicles [J]. International Journal of HydrogenEnergy,2012,37(3):2891-2910
    [22] Aceves S. M., Espinosa-Loza F., Ledesma-Orozco E., et al. High-density automotivehydrogen storage with cryogenic capable pressure vessels [J]. International Journal ofHydrogen Energy,2010,35(3):1219-1226
    [23] Aceves S. M., Berry G. D., Martinez-Frias J., et al. Vehicular storage of hydrogen ininsulated pressure vessels [J]. International Journal of Hydrogen Energy,2006,31(15):2274-2283
    [24] Bogdanovi B., Brand R.A., Marjanovi A., et al. Metal-doped sodium aluminiumhydrides as potential new hydrogen storage materials [J]. Journal of Alloys and Compounds,2000,302(1–2):36-58
    [25] Sandrock G., Gross K., Thomas G. Effect of Ti-catalyst content on the reversiblehydrogen storage properties of the sodium alanates [J]. Journal of Alloys and Compounds,2002,339(1–2):299-308
    [26] Ahluwalia R. K. Sodium alanate hydrogen storage system for automotive fuel cells [J].International Journal of Hydrogen Energy,2007,32(9):1251-1261
    [27] Graetz J., Reilly J. J. Decomposition Kinetics of the AlH3Polymorphs [J]. The Journalof Physical Chemistry B,2005,109(47):22181-22185
    [28] Ahluwalia R. K., Hua T. Q., Peng J. K. Automotive storage of hydrogen in alane [J].International Journal of Hydrogen Energy,2009,34(18):7731-7740
    [29] Furukawa H., Miller M. A., Yaghi O. M. Independent verification of the saturationhydrogen uptake in MOF-177and establishment of a benchmark for hydrogen adsorption inmetal-organic frameworks [J]. Journal of Materials Chemistry,2007,17(30):3197-3204
    [30] Rowsell J. L. C., Yaghi O. M. Effects of Functionalization, Catenation, and Variation ofthe Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen AdsorptionProperties of Metal Organic Frameworks [J]. Journal of theAmerican Chemical Society,2006,128(4):1304-1315
    [31] Hynek S., Fuller W., Bentley J. Hydrogen storage by carbon sorption [J]. InternationalJournal of Hydrogen Energy,1997,22(6):601-610
    [32] Noh J. S., Agarwal R. K., Schwarz J. A. Hydrogen storage systems using activatedcarbon [J]. International Journal of Hydrogen Energy,1987,12(10):693-700
    [33] Kelly M. T., Ortega J. V., Moreno O. A., et al. Process for the regeneration of sodiumborate to sodium borohydride [R]. DOE Annual Program Review, Washington DC,2006:
    [34] Copper A. C., Campbell K. M., Perez G. P. in Proc.16th World Hydrogen EnergyConference, Lyon, France2006).
    [35] Himmelberger D. W., Alden L. R., Bluhm M. E., et al. Ammonia Borane HydrogenRelease in Ionic Liquids [J]. Inorganic Chemistry,2009,48(20):9883-9889
    [36] Vajo J. J., Mertens F., Ahn C. C., et al. Altering Hydrogen Storage Properties byHydride Destabilization through Alloy Formation: LiH and MgH2Destabilized with Si [J].The Journal of Physical Chemistry B,2004,108(37):13977-13983
    [37] Iyakutti K., Kawazoe Y., Rajarajeswari M., et al. Aluminum hydride coated single-walled carbon nanotube as a hydrogen storage medium [J]. International Journal of HydrogenEnergy,2009,34(1):370-375
    [38] Kohno T., Tsuruta S., Kanda M. The Hydrogen Storage Properties of New Mg2NiAlloy [J]. Journal of The Electrochemical Society,1996,143(9): L198-L199
    [39] Lanyin S., Fangjie L., Deyou B. An advanced TiFe series hydrogen storage materialwith high hydrogen capacity and easily activated properties [J]. International Journal ofHydrogen Energy,1990,15(4):259-262
    [40] Maeda T., Fuura T., Matsumoto I., et al. Cyclic stability test of AB2type (Ti, Zr)(Ni,Mn, V, Fe)2.18for stationary hydrogen storage in water contaminated hydrogen [J]. Journalof Alloys and Compounds,2013,580, Supplement1(0): S255-S258
    [41] Liu W., Wang X., Hu W., et al. Electrochemical performance of TiVNi-Quasicrystaland AB3-Type hydrogen storage alloy composite materials [J]. International Journal ofHydrogen Energy,2011,36(1):616-620
    [42] Karwowska M., Jaron T., Fijalkowski K. J., et al. Influence of electrolyte compositionand temperature on behaviour of AB5hydrogen storage alloy used as negative electrode inNi-MH batteries [J]. Journal of Power Sources,(0):
    [43] Van Vucht J., Kuijpers F., Bruning H. REVERSIBLE ROOM-TEMPERATUREABSORPTION OF LARGE QUANTITIES OF HYDROGEN BY INTERMETALLICCOMPOUNDS [J]. Philips Res. Rep.25:133-40(Apr1970).1970,
    [44] Tian X., Yun G., Wang H., et al. Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5multiphase hydrogen storage alloy as negative materialof Ni/MH battery [J]. International Journal of Hydrogen Energy,2014,(0):1-8
    [45] Zhang H.-g., Lv P., Wang Z.-m., et al. Effect of Mg content on structure, hydrogenstorage properties and thermal stability of melt-spun Mgx(LaNi3)100x alloys [J].International Journal of Hydrogen Energy,(0):
    [46] Huang L.-J., Wang Y.-X., Wu D.-C., et al. Electrode properties and thedehydrogenation process of amorphous Mg–Ni–La alloys [J]. Journal of Power Sources,2014,249(0):35-41
    [47] Peng C. H., Zhu M. Microstructure and hydrogen storage properties of a multi-phaseMl0.7Mg0.3Ni3.2hydrogen storage alloy [J]. Journal of Alloys and Compounds,2004,375(1–2):324-329
    [48] Zhu M., Peng C. H., Ouyang L. Z., et al. The effect of nanocrystalline formation on thehydrogen storage properties of AB3-base Ml–Mg–Ni multi-phase alloys [J]. Journal of Alloysand Compounds,2006,426(1–2):316-321
    [49] Züttel A. Materials for hydrogen storage [J]. Materials Today,2003,6(9):24-33
    [50] Stampfer J. F., Holley C. E., Suttle J. F. The Magnesium-Hydrogen System [J]. Journalof American Chemical Society,1960,82(14):3504-3508
    [51] Ellinger F. H., Holley C. E., McInteer B. B., et al. The Preparation and Some Propertiesof Magnesium Hydride [J]. Journal of the American Chemical Society,1955,77(9):2647-2648
    [52] Zachariasen W. H., Holley C. E., Stamper J. F. Neutron diffraction study of magnesiumdeuteride [J]. Acta Crystallographica,1963,16(5):352-353
    [53] Domenech-Ferrer R., Sridharan M. G., Garcia G., et al. Hydrogenation properties ofpure magnesium and magnesium-aluminium thin films [J]. Journal of Power Sources,2007,169(1):117-122
    [54] Gennari F. C., Castro F. J., Urretavizcaya G. Hydrogen desorption behavior frommagnesium hydrides synthesized by reactive mechanical alloying [J]. Journal of Alloys andCompounds,2001,321(1):46-53
    [55] Bastide J. P., Bonnetot B., Letoffe J. M., et al. Polymorphism of magnesium hydrideunder high pressure [J]. Materials Research Bulletin,1980,15(9):1215-1224
    [56] Bortz M., Bertheville B., Bottger G., et al. Structure of the high pressure phase gamma-MgH2by neutron powder diffraction [J]. Journal of Alloys and Compounds,1999,287(1-2):L4-L6
    [57] Mushnikov N. V., Ermakov A. E., Uimin M. A., et al. Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen [J]. Physics of Metals and Metallography,2006,102(4):421-431
    [58] Noritake T., Aoki M., Towata S., et al. Chemical bonding of hydrogen in MgH2[J].Applied Physics Letters,2002,81(11):2008-2010
    [59] Noritake T., Towata S., Aoki M., et al. Charge density measurement in MgH2bysynchrotron X-ray diffraction [J]. Journal of Alloys and Compounds,2003,356–357(0):84-86
    [60] Yu R., Lam P. K. Electronic and structural properties of MgH2[J]. Physical Review B,1988,37(15):8730-8737
    [61] Stampfer J. F., Holley C. E., Suttle J. F. The Magnesium-Hydrogen System1-3[J].Journal of the American Chemical Society,1960,82(14):3504-3508
    [62] Reilly J. J., Wiswall R. H. Reaction of hydrogen with alloys of magnesium and nickeland the formation of Mg2NiH4[J]. Inorganic Chemistry,1968,7(11):2254-2256
    [63] Pedersen A. S., Kj ller J., Larsen B., et al. Magnesium for hydrogen storage [J].International Journal of Hydrogen Energy,1983,8(3):205-211
    [64] Friedlmeier G. M., Bolcich J. C. Production and characterization of Mg-10wt%Nialloys for hydrogen storage [J]. International Journal of Hydrogen Energy,1988,13(8):467-474
    [65] Shao H., Wang Y., Xu H., et al. Hydrogen storage properties of magnesium ultrafineparticles prepared by hydrogen plasma-metal reaction [J]. Materials Science and Engineering:B,2004,110(2):221-226
    [66] Bardhan R., Ruminski A. M., Brand A., et al. Magnesium nanocrystal-polymercomposites: A new platform for designer hydrogen storage materials [J]. Energy&Environmental Science,2011,4(12):4882-4895
    [67] Morinaga M., Yukawa H. Nature of chemical bond and phase stability of hydrogenstorage compounds [J]. Materials Science and Engineering: A,2002,329–331(0):268-275
    [68] Reilly J. J., Wiswall R. H. Reaction of hydrogen with alloys of magnesium and copper[J]. Inorganic Chemistry,1967,6(12):2220-2223
    [69] Kyoi D., Sato T., R nnebro E., et al. A new ternary magnesium–titanium hydrideMg7TiHx with hydrogen desorption properties better than both binary magnesium andtitanium hydrides [J]. Journal of Alloys and Compounds,2004,372(1–2):213-217
    [70] Porutsky S. G., Zhurakovsky E. A., Mogilevsky S. A., et al. Electronic structure ofMg2FeH6and Mg2CoH5hydrides and binding role of hydrogen in them [J]. Solid StateCommunications,1990,74(7):551-553
    [71] Bogdanovi B., ReiserA., Schlichte K., et al. Thermodynamics and dynamics of theMg–Fe–H system and its potential for thermochemical thermal energy storage [J]. Journal ofAlloys and Compounds,2002,345(1–2):77-89
    [72] Skripnyuk V. M., Rabkin E. Mg3Cd: A model alloy for studying the destabilization ofmagnesium hydride [J]. International Journal of Hydrogen Energy,2012,37(14):10724-10732
    [73] Wagemans R. W. P., van Lenthe J. H., de Jongh P. E., et al. Hydrogen Storage inMagnesium Clusters: Quantum Chemical Study [J]. Journal of theAmerican ChemicalSociety,2005,127(47):16675-16680
    [74] BérubéV., Radtke G., Dresselhaus M., et al. Size effects on the hydrogen storageproperties of nanostructured metal hydrides: A review [J]. International Journal of EnergyResearch,2007,31(6-7):637-663
    [75] Berube V., Chen G., Dresselhaus M. S. Impact of nanostructuring on the enthalpy offormation of metal hydrides [J]. International Journal of Hydrogen Energy,2008,33(15):4122-4131
    [76] Ouyang L. Z., Ye S. Y., Dong H. W., et al. Effect of interfacial free energy on hydridingreaction of Mg–Ni thin films [J]. Applied Physics Letters,2007,90(2):021917
    [77] Lu J., Choi Y. J., Fang Z. Z., et al. Hydrogenation of Nanocrystalline Mg at RoomTemperature in the Presence of TiH2[J]. Journal of the American Chemical Society,2010,132(19):6616-6617
    [78] Li W., Li C., Ma H., et al. Magnesium Nanowires: Enhanced Kinetics for HydrogenAbsorption and Desorption [J]. Journal of the American Chemical Society,2007,129(21):6710-6711
    [79] Paskevicius M., Sheppard D. A., Buckley C. E. Thermodynamic Changes inMechanochemically Synthesized Magnesium Hydride Nanoparticles [J]. Journal of theAmerican Chemical Society,2010,132(14):5077-5083
    [80] Vajo J. J., Salguero T. T., Gross A. F., et al. Thermodynamic destabilization andreaction kinetics in light metal hydride systems [J]. Journal of Alloys and Compounds,2007,446–447(0):409-414
    [81] Zhong H. C., Wang H., Liu J. W., et al. Altered desorption enthalpy of MgH2by thereversible formation of Mg(In) solid solution [J]. Scripta Materialia,2011,65(4):285-287
    [82] Walker G. S., Abbas M., Grant D. M., et al. Destabilisation of magnesium hydride bygermanium as a new potential multicomponent hydrogen storage system [J]. ChemicalCommunications,2011,47(28):8001-8003
    [83] Pinkerton F. E., Meyer M. S., Meisner G. P., et al. Phase boundaries and reversibility ofLiBH4/MgH2hydrogen storage material [J]. Journal of Physical Chemistry C,2007,111(35):12881-12885
    [84] Andreasen A. Hydrogenation properties of Mg–Al alloys [J]. International Journal ofHydrogen Energy,2008,33(24):7489-7497
    [85] Chidambaram P., Bowen C., Chakravarthi S., et al. Fundamentals of silicon materialproperties for successful exploitation of strain engineering in modern CMOS manufacturing[J]. Electron Devices, IEEE Transactions on,2006,53(5):944-964
    [86] Guinea F. Strain engineering in graphene [J]. Solid State Communications,2012,152(15):1437-1441
    [87] Pan W., Xiao J., Zhu J., et al. Biaxial Compressive Strain Engineering inGraphene/Boron Nitride Heterostructures [J]. Scientific Reports,2012,2
    [88] Baldi A., Gonzalez-Silveira M., Palmisano V., et al. Destabilization of the Mg-HSystem through Elastic Constraints [J]. Physical Review Letters,2009,102(22):226102
    [89] Chung C. J., Lee S.-C., Groves J. R., et al. Interfacial Alloy Hydride Destabilization inMg/Pd Thin Films [J]. Physical Review Letters,2012,108(10):106102
    [90] Krozer A., Kasemo B. Hydrogen uptake by Pd-coated Mg: absorption-decompositionisotherms and uptake kinetics [J]. Journal of the Less Common Metals,1990,160(2):323-342
    [91] Zaluska A., Zaluski L., Strom-Olsen J. O. Nanocrystalline magnesium for hydrogenstorage [J]. Journal of Alloys and Compounds,1999,288(1-2):217-225
    [92] Schlapbach L., Shaltiel D., Oelhafen P. Catalytic effect in the hydrogenation of Mg andMg compounds: surface analysis of Mg-Mg2Ni and Mg2Ni [J]. Materials Research Bulletin,1979,14(9):1235-12461246
    [93] Krozer A., Kasemo B. Equilibrium hydrogen uptake and associated kinetics for theMg-H2system at low pressures [J]. Journal of Physics: Condensed Matter,1989,1(8):1533-1538
    [94] Luz Z., Genossar J., Rudman P. S. Identification of the diffusing atom in MgH2[J].Journal of the Less-Common Metals,1980,73(1):113-118118
    [95] Reule H., Hirscher M., Weisshardt A., et al. Hydrogen desorption properties ofmechanically alloyed MgH2composite materials [J]. Journal of Alloys and Compounds,2000,305(1-2):246-252
    [96] Stioui M., Grayevsky A., Resnik A., et al. Macroscopic and microscopic kinetics ofhydrogen in magnesium-rich compounds [J]. Journal of the Less-Common Metals,1986,1239-24
    [97] Vigeholm B., Kjoller J., Larsen B., et al. Formation and decomposition of magnesiumhydride [J]. Journal of the Less-Common Metals,1983,89(1):135-144
    [98] Saita I., Toshima T., Tanda S., et al. Hydriding chemical vapor deposition of metalhydride nano-fibers [J]. Materials Transactions,2006,47(3):931-934
    [99] Hanada N., Ichikawa T., Fujii H. Catalytic effect of Ni nano-particle and Nb oxide onH-desorption properties in MgH2prepared by ball milling [J]. Journal of Alloys andCompounds,2005,404716-719
    [100] Huot J., Liang G., Boily S., et al. Structural study and hydrogen sorption kinetics ofball-milled magnesium hydride [J]. Journal of Alloys and Compounds,1999,293495-500
    [101] Harris I. R., Langmi H. W., Book D., et al. Hydrogen storage in ion-exchangedzeolites [J]. Journal of Alloys and Compounds,2005,404-406637-642
    [102] Wang J., Liu T., Wu G., et al. Potassium-Modified Mg(NH2)(2)/2LiH System forHydrogen Storage [J]. Angewandte Chemie-International Edition,2009,48(32):5828-5832
    [103] Barkhordarian G., Klassen T., Bormann R. Fast hydrogen sorption kinetics ofnanocrystalline Mg using Nb2O5as catalyst [J]. Scripta Materialia,2003,49(3):213-217
    [104] Barkhordarian G., Klassen T., Bormann R. Effect of Nb2O5content on hydrogenreaction kinetics of Mg [J]. Journal of Alloys and Compounds,2004,364(1-2):242-246
    [105] Friedrichs O., Sanchez-Lopez J. C., Lopez-Cartes C., et al. Nb2O5"pathway effect"on hydrogen sorption in Mg [J]. Journal of Physical Chemistry B,2006,110(15):7845-7850
    [106] Zaluski L., Zaluska A., Strom-Olsen J. O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying [J]. Journal of Alloys and Compounds,1995,217(2):245-249
    [107] Grochala W., Edwards P. P. Thermal decomposition of the non-interstitial hydrides forthe storage and production of hydrogen [J]. Chemical Reviews,2004,104(3):1283-1315
    [108] Bobet J. L., Chevalier B., Darriet B. Effect of reactive mechanical grinding onchemical and hydrogen sorption properties of the Mg+10wt.%Co mixture [J]. Journal ofAlloys and Compounds,2002,330738-742
    [109] Rivoirard S., de Rango P., Fruchart D., et al. Catalytic effect of additives on thehydrogen absorption properties of nano-crystalline MgH2(X) composites [J]. Journal ofAlloys and Compounds,2003,356622-625
    [110] Wu C. Z., Wang P., Yao X. D., et al. Effects of SWNT and metallic catalyst onhydrogen absorption/desorption performance of MgH2[J]. Journal of Physical Chemistry B,2005,109(47):22217-22221
    [111] Liang G. Synthesis and hydrogen storage properties of Mg-based alloys [J]. Journal ofAlloys and Compounds,2004,370(1-2):123-128
    [112] Pozzo M., AlfèD. Hydrogen dissociation and diffusion on transition metal (Ti, Zr, V,Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces [J]. International Journal ofHydrogen Energy,2009,34(4):1922-1930
    [113] Du A. J., Smith S. C., Yao X. D., et al. The Role of Ti as a Catalyst for theDissociation of Hydrogen on a Mg(0001) Surface [J]. The Journal of Physical Chemistry B,2005,109(38):18037-18041
    [114] Chen M., Cai Z.-Z., Yang X.-B., et al. Theoretical study of hydrogen dissociation anddiffusion on Nb and Ni co-doped Mg(0001): A synergistic effect [J]. Surface Science,2012,606(13–14): L45-L49
    [115] Dolci F., Di Chio M., Baricco M., et al. The interaction of hydrogen with oxidicpromoters of hydrogen storage in magnesium hydride [J]. Materials Research Bulletin,2009,44(1):194-197
    [116] Malka I. E., Czujko T., Bystrzycki J. Catalytic effect of halide additives ball milledwith magnesium hydride [J]. International Journal of Hydrogen Energy,2010,35(4):1706-1712
    [117] Fu Y., Groll M., Mertz R., et al. Effect of LaNi5and additional catalysts on hydrogenstorage properties of Mg [J]. Journal of Alloys and Compounds,2008,460(1–2):607-613
    [118] Vijay R., Sundaresan R., Maiya M. P., et al. Characterisation of Mg–x wt.%FeTi (x=5–30) and Mg–40 wt.%FeTiMn hydrogen absorbing materials prepared by mechanicalalloying [J]. Journal of Alloys and Compounds,2004,384(1–2):283-295
    [119] Lei H., Wang C., Yao Y., et al. Strain effect on the adsorption, diffusion, andmolecular dissociation of hydrogen on Mg (0001) surface [J]. The Journal of ChemicalPhysics,2013,139(22):-
    [120] Jiang T., Sun L.-X., Li W.-X. First-principles study of hydrogen absorption on Mg(0001) and formation of magnesium hydride [J]. Physical Review B,2010,81(3):035416
    [121] Kolpak A. M., Walker F. J., Reiner J. W., et al. Interface-Induced Polarization andInhibition of Ferroelectricity in Epitaxial SrTiO_{3}/Si [J]. Physical Review Letters,2010,105(21):217601
    [122] Tinkl V., Breitschaft M., Richter C., et al. Large negative electronic compressibility ofLaAlO_{3}-SrTiO_{3} interfaces with ultrathin LaAlO_{3} layers [J]. Physical Review B,2012,86(7):075116
    [123] Fronzi M., Cereda S., Tateyama Y., et al. Ab initio investigation of defect formation atZrO_{2}-CeO_{2} interfaces [J]. Physical Review B,2012,86(8):085407
    [124] Ma Y., Dai Y., Guo M., et al. Graphene-diamond interface: Gap opening andelectronic spin injection [J]. Physical Review B,2012,85(23):235448
    [125] Sclauzero G., Pasquarello A. Carbon rehybridization at the graphene/SiC(0001)interface: Effect on stability and atomic-scale corrugation [J]. Physical Review B,2012,85(16):161405
    [126] Arras E., Lan on F., Slipukhina I., et al. Interface-driven phase separation inmultifunctional materials: The case of the ferromagnetic semiconductor GeMn [J]. PhysicalReview B,2012,85(11):115204
    [127] Marten T., Alling B., Isaev E. I., et al. First-principles study of the SiN_{x}/TiN(001)interface [J]. Physical Review B,2012,85(10):104106
    [128] Kolpak A. M., Ismail-Beigi S. Interface structure and film polarization in epitaxialSrTiO_{3}/Si(001)[J]. Physical Review B,2012,85(19):195318
    [129] Kresse G., Furthmuller J. Efficiency of ab-initio total energy calculations for metalsand semiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6(1):15-50
    [130] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set [J]. Physical Review B,1996,54(16):11169-11186
    [131] Gray J. E., Luan B. Protective coatings on magnesium and its alloys—a criticalreview [J]. Journal of Alloys and Compounds,2002,336(1–2):88-113
    [132] Selvam P., Viswanathan B., Swamy C. S., et al. Magnesium and magnesium alloyhydrides [J]. International Journal of Hydrogen Energy,1986,11(3):169-192
    [133] Fukai Y. The Metal-Hydrogen System: Basic Bulk Properties [M].2nd Edition.Springer Series in Materials Science,2005:497
    [134] Zhu M., Lu Y., Ouyang L., et al. Thermodynamic Tuning of Mg-Based HydrogenStorage Alloys: A Review [J]. Materials,2013,6(10):4654-4674
    [135] Galanakis I., Bihlmayer G., Bellini V., et al. Broken-bond rule for the surface energiesof noble metals [J]. Europhysics Letters,2002,58(5):751-757
    [136] Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation madesimple [J]. Physical Review Letters,1996,77(18):3865-3868
    [137] Perdew J. P., Burke K., Wang Y. Generalized gradient approximation for theexchange-correlation hole of a many-electron system [J]. Physical Review B,1996,54(23):16533-16539
    [138] Perdew J. P., Chevary J. A., Vosko S. H., et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J].Physical Review B,1992,46(11):6671-6687
    [139] Perdew J. P., Yue W. Accurate and simple density functional for the electronicexchange energy: Generalized gradient approximation [J]. Physical Review B,1986,33(12):8800-8802
    [140] Armiento R., Mattsson A. E. Functional designed to include surface effects in self-consistent density functional theory [J]. Physical Review B,2005,72(8):085108
    [141] Perdew J. P., Ernzerhof M., Burke K. Rationale for mixing exact exchange withdensity functional approximations [J]. Journal of Chemical Physics,1996,105(22):9982-9985
    [142] Perdew J. P., Ruzsinszky A., Csonka G. I., et al. Restoring the Density-GradientExpansion for Exchange in Solids and Surfaces [J]. Physical Review Letters,2008,100(13):136406
    [143] Wang Y., Perdew J. P. Spin scaling of the electron-gas correlation energy in the high-density limit [J]. Physical Review B,1991,43(11):8911-8916
    [144] Boettger J. C. Nonconvergence of surface energies obtained from thin-filmcalculations [J]. Physical Review B,1994,49(23):16798-16800
    [145] Fiorentini V., Methfessel M. Extracting convergent surface formation energies fromslab calculations [J]. Journal of Physics-Condensed Matter,1998,10(4):895-895
    [146] Singh-Miller N. E., Marzari N. Surface energies, work functions, and surfacerelaxations of low-index metallic surfaces from first principles [J]. Physical Review B,2009,80(23):235407
    [147] Chen M., Yang X. B., Cui J., et al. Stability of transition metals on Mg(0001) surfacesand their effects on hydrogen adsorption [J]. International Journal of Hydrogen Energy,2012,37(1):309-317
    [148] Du A. J., Smith S. C., Yao X. D., et al. The role of Ti as a catalyst for the dissociationof hydrogen on a Mg(0001) surface [J]. Journal of Physical Chemistry B,2005,109(38):18037-18041
    [149] Skriver H. L., Rosengaard N. M. Surface energy and work function of elementalmetals [J]. Physical Review B,1992,46(11):7157-7168
    [150] Wachowicz E., Kiejna A. Bulk and surface properties of hexagonal-close-packed Beand Mg [J]. Journal of Physics-Condensed Matter,2001,13(48):10767-10776
    [151] Sadhasivam T., Sterlin Leo Hudson M., Pandey S. K., et al. Effects of nano sizemischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2[J].International Journal of Hydrogen Energy,2013,38(18):7353-7362
    [152] Cho J.-H., Ismail, Zhang Z., et al. Oscillatory lattice relaxation at metal surfaces [J].Physical Review B,1999,59(3):1677-1680
    [153] Staikov P., Rahman T. S. Multilayer relaxations and stresses on Mg surfaces [J].Physical Review B,1999,60(23):15613-15616
    [154] Tang S. J., Jeng H. T., Ismail, et al. Surface electronic band structure and temperaturedependence of the surface state atˉA on Mg(10ˉ10) surface [J]. Physical Review B,2009,80(8):085419
    [155] Friedel J., Cimento N.[J]. Supplement,1958,7(2):444-479
    [156] Lang N. D., Kohn W. Theory of metal surfaces: charge density and surface energy [J].Physical Review B (Solid State),1970,1(12):4555-4568
    [157] Kittel C. Introduction to Solid State Physics [M].8th Edition. Johnson S. New Jersey:John Wiley&Sons. Inc.,2005:20
    [158] Sandloebes S., Zaefferer S., Schestakow I., et al. On the role of non-basal deformationmechanisms for the ductility of Mg and Mg-Y alloys [J]. Acta Materialia,2011,59(2):429-439
    [159] Finnis M. W., Heine V. Theory of lattice contraction at aluminium surfaces [J].Journal of Physics F Metal Physics,1974,4(3): L37-41
    [160] Bl chl P. E. Projector augmented-wave method [J]. Physical Review B,1994,50(24):17953-17979
    [161] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B,1999,59(3):1758-1775
    [162] Yu D., Bonzel H. P., Scheffler M. Orientation-dependent surface and step energies ofPb from first principles [J]. Physical Review B,2006,74(11):115408
    [163] Frenken J. W. M., Stoltze P. Are Vicinal Metal Surfaces Stable?[J]. Physical ReviewLetters,1999,82(17):3500-3503
    [164] Feibelman P. J. First-principles step-and kink-formation energies on Cu(111)[J].Physical Review B,1999,60(15):11118-11122
    [165] Perdew J. P., Constantin L. A., Sagvolden E., et al. Relevance of the Slowly VaryingElectron Gas to Atoms, Molecules, and Solids [J]. Physical Review Letters,2006,97(22):223002
    [166] Ropo M., Kokko K., Vitos L. Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems [J]. PhysicalReview B,2008,77(19):195445
    [167] Vegge T. Locating the rate-limiting step for the interaction of hydrogen withMg(0001) using density-functional theory calculations and rate theory [J]. Physical Review B,2004,70(3):035412
    [168] Da Silva J. L. F., Stampfl C., Scheffler M. Converged properties of clean metalsurfaces by all-electron first-principles calculations [J]. Surface Science,2006,600(3):703-715
    [169] STRAUMANIS M. The precision determination of lattice constants by the powderand rotating crystal methods and applications [J]. Journal of Applied Physics,1949,20(8):726-734
    [170] WALKER C., MAREZIO M. Lattice parameters and zone overlap in solid solutionsof lead in magnesium [J]. ACTA METALLURGICA,1959,7(12):769-773
    [171] Schimmel H. G., Huot J., Chapon L. C., et al. Hydrogen cycling of niobium andvanadium catalyzed nanostructured magnesium [J]. Journal of the American ChemicalSociety,2005,127(41):14348-14354
    [172] Smoluchowski R. Anisotropy of the Electronic Work Function of Metals [J]. PhysicalReview,1941,60(9):661-674
    [173] Pauling L. The nature of the chemical bond. application of results obtained from thequantum mechanics and from a theory of paramagnetic susceptibility of the structure ofmelecules [J]. Journal of the American Chemical Society,1931,53(4):1367-1400
    [174] Mans A., Dil J. H., Ettema A. R. H. F., et al. Surface relaxations in quantum-confinedPb [J]. Physical Review B,2005,72(15):155442
    [175] Sun Y. Y., Huan A. C. H., Feng Y. P., et al. Reduction of amplitude and wavelength ofFriedel oscillation on Na(111) surface [J]. Physical Review B,2005,72(15):153404
    [176] Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and CorrelationEffects [J]. Physical Review,1965,140(4A): A1133-A1138
    [177] Sun J., Marsman M., Ruzsinszky A., et al. Improved lattice constants, surfaceenergies, and CO desorption energies from a semilocal density functional [J]. PhysicalReview B,2011,83(12):121410
    [178] Jena P. Materials for Hydrogen Storage: Past, Present, and Future [J]. Journal ofPhysical Chemistry Letters,2011,2(3):206-211
    [179] Schwarz R. B. Hydrogen storage in magnesium-based alloys [J]. Mrs Bulletin,1999,24(11):40-44
    [180] Dillich S. Hydrogen Storage [R]. Arlington, Virginia: U.S. Depeartment of Energy,2009:
    [181] Zaluska A., Zaluski L., Str m–Olsen J. O. Nanocrystalline magnesium for hydrogenstorage [J]. Journal of Alloys and Compounds,1999,288(1–2):217-225
    [182] Krozer A., Kasemo B. Equilibrium hydrogen uptake and associated kinetics for theMgH2system at low pressures [J]. Journal of Physics: Condensed Matter,1989,1(8):1533-15381538
    [183] Jeon K. J., Moon H. R., Ruminski A. M., et al. Air-stable magnesium nanocompositesprovide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J].Nature Materials,2011,10(4):286-290
    [184] Shao H., Felderhoff M., Schüth F., et al. Nanostructured Ti-catalyzed MgH2forhydrogen storage [J]. Nanotechnology,2011,22(23):235401-235407
    [185] Andreasen A. Hydrogenation properties of Mg-Al alloys [J]. International Journal ofHydrogen Energy,2008,33(24):7489-7497
    [186] Berlouis L. E. A., Cabrera E., Hall-Barientos E., et al. Thermal analysis investigationof hydriding properties of nanocrystalline Mg-Ni-and Mg-Fe-based alloys prepared by high-energy ball milling [J]. Journal of Materials Research,2001,16(1):45-57
    [187] Chen M., Yang X. B., Cui J., et al. Stability of transition metals on Mg(0001) surfacesand their effects on hydrogen adsorption [J]. International Journal of Hydrogen Energy,2012,37309-317
    [188] Crivello J. C., Nobuki T., Kuji T. Improvement of Mg-Al alloys for hydrogen storageapplications [J]. International Journal of Hydrogen Energy,2009,34(4):1937-1943
    [189] Zhdanov V. P. Effect of lattice strain on the kinetics of hydride formation in metalnanoparticles [J]. Chemical Physics Letters,2010,492(1-3):77-81
    [190] Edalati K., Yamamoto A., Horita Z., et al. High-pressure torsion of pure magnesium:Evolution of mechanical properties, microstructures and hydrogen storage capacity withequivalent strain [J]. Scripta Materialia,2011,64(9):880-883
    [191] Ye S. Y., Chan S. L. I., Ouyang L. Z., et al. Hydrogen storage and structure variationin Mg/Pd multi-layer film [J]. Journal of Alloys and Compounds,2010,504(2):493-497
    [192] Fujii H., Higuchi K., Yamamoto K., et al. Remarkable hydrogen storage, structuraland optical properties in multi-layered Pd/Mg thin films [J]. Materials Transactions,2002,43(11):2721-2727
    [193] Kresse G., Hafner J. ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J]. Physical Review B,1993,47(1):558-561
    [194] Monkhorst H. J., Pack J. D. SPECIAL POINTS FOR BRILLOUIN-ZONEINTEGRATIONS [J]. Physical Review B,1976,13(12):5188-5192
    [195] Kittel C. Introduction to Solid State Physics [M].8th Edition. New York: Wiley,2005:20
    [196] Kresse G., Dulub O., Diebold U. Competing stabilization mechanism for the polarZnO(0001)-Zn surface [J]. Physical Review B,2003,68(24):245409
    [197] Meyer B., Marx D. Density-functional study of the structure and stability of ZnOsurfaces [J]. Physical Review B,2003,67(3):035403
    [198] Reuter K., Scheffler M. Composition, structure, and stability of RuO2(110) as afunction of oxygen pressure [J]. Physical Review B,2001,65(3):035406
    [199] Reuter K., Scheffler M. First-principles atomistic thermodynamics for oxidationcatalysis: Surface phase diagrams and catalytically interesting regions [J]. Physical ReviewLetters,2003,90(4):046103
    [200] Warschkow O., Chuasiripattana K., Lyle M. J., et al. Cu/ZnO(0001) under oxidatingand reducing conditions: A first-principles survey of surface structures [J]. Physical ReviewB,2011,84(12):125311
    [201] Wagner J. M., Bechstedt F. Properties of strained wurtzite GaN and AlN: Ab initiostudies [J]. Physical Review B,2002,66(11):115202
    [202] Kelekar R., Giffard H., Kelly S. T., et al. Formation and dissociation of MgH2inepitaxial Mg thin films [J]. Journal of Applied Physics,2007,101(11):114311
    [203] Lei H., Wang C., Yao Y., et al. Strain effect on the adsorption, diffusion, andmolecular dissociation of hydrogen on Mg (0001) surface [J]. The Journal of ChemicalPhysics,2013,139(22):224702
    [204] Tang J.-J., Yang X.-B., Chen M., et al. First-Principles Study of Biaxial Strain Effecton Hydrogen Adsorbed Mg (0001) Surface [J]. The Journal of Physical Chemistry C,2012,116(28):14943-14949
    [205] Mooij L. P. A., Baldi A., Boelsma C., et al. Interface Energy ControlledThermodynamics of Nanoscale Metal Hydrides [J]. Advanced Energy Materials,2011,1(5):754-758
    [206] Shevlin S. A., Guo Z. X. MgH2Dehydrogenation Thermodynamics: Nanostructuringand Transition Metal Doping [J]. The Journal of Physical Chemistry C,2013,117(21):10883-10891
    [207] Bobet J. L., Even C., Nakamura Y., et al. Synthesis of magnesium and titaniumhydride via reactive mechanical alloying: Influence of3d-metal addition on MgH2synthesize[J]. Journal of Alloys and Compounds,2000,298(1–2):279-284
    [208] Chen M., Yang X.-B., Cui J., et al. Stability of transition metals on Mg(0001) surfacesand their effects on hydrogen adsorption [J]. International Journal of Hydrogen Energy,2012,37(1):309-317
    [209] Fang Z.-Z., Kang X.-D., Wang P., et al. Improved Reversible Dehydrogenation ofLithium Borohydride by Milling with As-Prepared Single-Walled Carbon Nanotubes [J]. TheJournal of Physical Chemistry C,2008,112(43):17023-17029
    [210] Rafi ud d., Xuanhui Q., Ping L., et al. Enhanced hydrogen storage performance forMgH2-NaAlH4system-the effects of stoichiometry and Nb2O5nanoparticles on cyclingbehaviour [J]. RSC Advances,2012,2(11):4891-4903
    [211] Mooij L., Dam B. Nucleation and growth mechanisms of nano magnesium hydridefrom the hydrogen sorption kinetics [J]. Physical Chemistry Chemical Physics,2013,15(27):11501-11510
    [212] Dura J. A., Kelly S. T., Kienzle P. A., et al. Porous Mg formation upondehydrogenation of MgH2thin films [J]. Journal of Applied Physics,2011,109(9):093501
    [213] Tao S.-X., Notten P. H. L., van Santen R. A., et al. Dehydrogenation properties ofepitaxial MgH2/TiH2multilayers–A DFT study [J]. Computational Materials Science,2011,50(10):2960-2966
    [214] Giusepponi S., Celino M., Cleri F., et al. Hydrogen storage in MgH2matrices: an ab-initio study of Mg-MgH2interface [M]. Edition.2008:23-28
    [215] Grytsyuk S., Cossu F., Schwingenschloegl U. Magnetic exchange at realistic CoO/Niinterfaces [J]. European Physical Journal B,2012,85(8):254
    [216] Hass J., Millán-Otoya J. E., First P. N., et al. Interface structure of epitaxial graphenegrown on4H-SiC(0001)[J]. Physical Review B,2008,78(20):205424
    [217] Grytsyuk S., Peskov M. V., Schwingenschl gl U. First-principles modeling ofinterfaces between solids with large lattice mismatch: The prototypical CoO(111)/Ni(111)interface [J]. Physical Review B,2012,86(17):174115
    [218] Wang S. Q., Ye H. Q. Theoretical studies of solid-solid interfaces [J]. Current Opinionin Solid State&Materials Science,2006,10(1):26-32
    [219] Wang X.-G., Smith J. R. Si/Cu Interface Structure and Adhesion [J]. Physical ReviewLetters,2005,95(15):156102
    [220] Fiorentini V., Methfessel M. Extracting convergent surface energies from slabcalculations [J]. Journal of Physics: Condensed Matter,1996,8(36):6525
    [221] Tang J.-J., Yang X.-B., OuYang L., et al. A systematic first-principles study of surfaceenergies, surface relaxation and Friedel oscillation of magnesium surfaces [J]. Journal ofPhysics D: Applied Physics,2014,47(11):115305
    [222] Arras E., Caliste D., Deutsch T., et al. Phase diagram, structure, and magneticproperties of the Ge-Mn system: A first-principles study [J]. Physical Review B,2011,83(17):174103
    [223] Yu D. K., Bonzel H. P., Scheffler M. The stability of vicinal surfaces and theequilibrium crystal shape of Pb by first principles theory [J]. New Journal of Physics,2006,8(5):65
    [224] Rohrer G. S. Grain boundary energy anisotropy: a review [J]. Journal of materialsscience,2011,46(18):5881-5895
    [225] Sutton A. P., Balluffi R. W. On geometric criteria for low interfacial energy [J]. ACTAMETALLURGICA,1987,35(9):2177-2201
    [226] Erwin S. C., Gao C., Roder C., et al. Epitaxial Interfaces between CrystallographicallyMismatched Materials [J]. Physical Review Letters,2011,107(2):026102
    [227] Kutana A., Erwin S. C. Nonpolar GaN films on high-index silicon: Lattice matchingby design [J]. Physical Review B,2013,87(4):045314
    [228] Zunger A. in Handbook of Crystal Growth [M], edited by Hurle D. T. J. ElsevierScience, Amsterdam,1994:997
    [229] Kittle C. Introduction to Solid State Physics [M].8th Edition. New York: Wiley,2005:20
    [230] Ellinger F. H., Holley C. E., McInteer B. B., et al. The Preparation and SomeProperties of Magnesium Hydride1[J]. Journal of the American Chemical Society,1955,77(9):2647-2648
    [231] Liang J.-J. LiAl-substitution into the MgH2structure may improve the hydrogenstorage processes [J]. Journal of Alloys and Compounds,2007,446(MH2006):72-79
    [232] Grau-Crespo R., Smith K. C., Fisher T. S., et al. Thermodynamics of hydrogenvacancies in MgH2from first-principles calculations and grand-canonical statisticalmechanics [J]. Physical Review B,2009,80(17):174117
    [233] Park M. S., Janotti A., Van de Walle C. G. Formation and migration of charged nativepoint defects in MgH_{2}: First-principles calculations [J]. Physical Review B,2009,80(6):064102
    [234] Yu R., Lam P. K. Electronic and structural properties of MgH_{2}[J]. PhysicalReview B,1988,37(15):8730-8737
    [235] Methfessel M., Hennig D., Scheffler M. Trends of the surface relaxations, surfaceenergies, and work functions of the4d transition metals [J]. Physical Review B,1992,46(8):4816-4829
    [236] Borisevich A. Y., Lupini A. R., He J., et al. Interface dipole between two metallicoxides caused by localized oxygen vacancies [J]. Physical Review B,2012,86(14):140102
    [237] Kolpak A. M., Ismail-Beigi S. Interface structure and film polarization in epitaxialSrTiO3/Si(001)[J]. Physical Review B,2012,85(19):195318
    [238] Kolpak A. M., Walker F. J., Reiner J. W., et al. Interface-Induced Polarization andInhibition of Ferroelectricity in Epitaxial SrTiO3/Si [J]. Physical Review Letters,2010,105(21):217601
    [239] Saito S., Ono T. Structural model for the GeO/Ge interface: A first-principles study[J]. Physical Review B,2011,84(8):085319
    [240] PaciléD., Leicht P., Papagno M., et al. Artificially lattice-mismatched graphene/metalinterface: Graphene/Ni/Ir(111)[J]. Physical Review B,2013,87(3):035420
    [241] Rault J. E., Agnus G., Maroutian T., et al. Interface electronic structure in ametal/ferroelectric heterostructure under applied bias [J]. Physical Review B,2013,87(15):155146
    [242] Ogata S., Ohno S., Tanaka M., et al. SiO2/Si interfaces on high-index surfaces: Re-evaluation of trap densities and characterization of bonding structures [J]. Applied PhysicsLetters,2011,98(9):092906
    [243] Beck F., Verhagen E., Mokkapati S., et al. Resonant SPP modes supported by discretemetal nanoparticles on high-index substrates [J]. Opt Express,2011,19(S2): A146-A156
    [244] Cui N., He P., Luo J. L. Magnesium-based hydrogen storage materials modified bymechanical alloying [J]. Acta Materialia,1999,47(14):3737-3743
    [245] Higuchi K., Yamamoto K., Kajioka H., et al. Remarkable hydrogen storage propertiesin three-layered Pd/Mg/Pd thin films [J]. Journal of Alloys and Compounds,2002,330526-530
    [246] Ouyang L. Z., Ye S. Y., Dong H. W., et al. Effect of interfacial free energy onhydriding reaction of Mg-Ni thin films [J]. Applied Physics Letters,2007,90(2):021917
    [247] Chen J., Yang H.-B., Xia Y.-Y., et al. Hydriding and Dehydriding Properties ofAmorphous Magnesium Nickel Films Prepared by a Sputtering Method [J]. Chemistry ofMaterials,2002,14(7):2834-2836
    [248] Wang H., Ouyang L. Z., Peng C. H., et al. MmM(5)/Mg multi-layer hydrogen storagethin films prepared by dc magnetron sputtering [J]. Journal of Alloys and Compounds,2004,370(1-2): L4-L6
    [249] Kobayashi H., Yamauchi M., Kitagawa H., et al. Hydrogen absorption in thecore/shell interface of Pd/Pt nanoparticles [J]. Journal of the American Chemical Society,2008,130(6):1818-+
    [250] Leardini F., Ares J. R., Bodega J., et al. Reaction pathways for hydrogen desorptionfrom magnesium hydride/hydroxide composites: bulk and interface effects [J]. PhysicalChemistry Chemical Physics,2010,12(3):572-577
    [251] Smadici S., Nelson-Cheeseman B. B., Bhattacharya A., et al. Interfaceferromagnetism in a SrMnO_{3}/LaMnO_{3} superlattice [J]. Physical Review B,2012,86(17):174427
    [252] Conrad H., Ertl G., Latta E. E. Adsorption of hydrogen on palladium single crystalsurfaces [J]. Surface Science,1974,41(2):435-446
    [253] Christmann K., Schober O., Ertl G., et al. Adsorption of hydrogen on nickel singlecrystal surfaces [J]. The Journal of Chemical Physics,1974,60(11):4528-4540
    [254] Du A. J., Smith S. C., Lu G. Q. First-Principle Studies of the Formation and Diffusionof Hydrogen Vacancies in Magnesium Hydride [J]. The Journal of Physical Chemistry C,2007,111(23):8360-8365
    [255] Tang J.-J., Yang X.-B., OuYang L., et al. A systematic first-principles study of surfaceenergies, surface relaxation and Friedel oscillation of magnesium surfaces [J]. Journal ofPhysics D-Applied Physics,2014,47(11):
    [256] Hook J. R., Hall H. E. Solid State Physics [M].2nd Edition. John Wiley&Sons,2010:8-15
    [257] Barret C. S., Massalski T. Structure of Metals [M].3rd Edition. New York: McGraw-Hill,1963:540
    [258] Myeong-Hoon L., Jong-Do K., Jin-Seok O., et al. Morphology and crystal orientationon corrosion resistance of Mg thin films formed by PVD method onto Zn electroplatedsubstrate [J]. Surface&Coatings Technology,2008,202(22-23):5590-5594
    [259] Musil J., Vlcek J. Magnetron sputtering of films with controlled texture and grain size[J]. Materials Chemistry and Physics,1998,54(1-3):116-122
    [260] Tal-Gutelmacher E., Gemma R., Pundt A., et al. Hydrogen behavior in nanocrystallinetitanium thin films [J]. Acta Materialia,2010,58(8):3042-3049

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700