用户名: 密码: 验证码:
大型地下水封储气库围岩变形破坏机制与锚喷支护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水封洞库的原理早在上世纪30年代就提出,并在世界上其它国家截止目前已成功建造了60多处地下水封式储能洞库,但我国仍未完全掌握地下水封储气库的核心技术,究其原因,主要在于国外对于技术的保密。我国已建的汕头、宁波、珠海和黄岛四处地下水封储气库都是由瑞典、法国等国外公司主导建设,对一些核心技术不透露。因此,我国的地下水封储气库建设技术尚处于摸索和试验阶段,对水封条件下洞室群围岩变形破坏特点、规律的认识还不够,对围岩变形破坏的控制理论与方法还不成熟,因此,在我国当前能源地下储备建设热潮时期,开展地下水封储气库围岩变形破坏机制与锚喷支护研究具有重要的理论意义与工程价值。
     地下水封储气库的工作原理为:利用油水不相混合的特性,合理控制地下洞库围岩中的水压力,使其在洞壁各处始终大于油压或饱和蒸汽压。由此可知,该类工程具有独特的工程特性,例如水幕系统持续地注入高压力水、洞壁高压力水持续地往洞内入渗、液化石油气频繁抽放所产生的动态内压等。这些独特的工程特性决定了水封洞库的建设不能照搬已有的其它地下工程经验和技术,而必须在深入认识建库地质环境条件基础上,开展针对性、创新性且满足工程需求的基础科学问题研究。从工程岩体稳定性角度看,由于存在水幕系统的长期作用,因而稳定性分析中需要考虑水岩耦合作用。考虑到水封洞库都选择在岩性坚硬、结构面不太发育的较高等级质量岩体内,其结构面一般无充填、风化程度低,岩块与裂隙水之间的化学作用轻微,岩块和裂隙之间基本没有水量交换,即水岩耦合主要表现为裂隙渗流-岩石应力之间的力学耦合。再考虑到建库岩体结构面粗糙度一般较低,岩体的剪胀特性不明显,即对裂隙渗流特性影响明显的是其法向应力。地下水封洞库一般都处于浅埋状况,因为从水封原理和经济角度进行埋深设计时,只要地下水位面与洞库的高差大于储存介质饱和蒸汽压外加一定的安全超高即可,因而洞库围岩的应力强度比一般是较低的,即洞库围岩变形破坏模式主要受岩体结构所控制。由于上述地下水封洞库工程的地质特性,其锚喷支护方案也有别于其它地下工程,需要得到更具针对性和合理性的研究,从而为该类工程安全、经济地建设提供理论支撑和依据。
     本文以烟台万华地下水封储气库工程为基础,采用试验、监测和理论分析相结合,定性分析和定量分析互动并行的手段,进行地下水封储气库围岩变形破坏机制与锚喷支护研究。研究的核心是该类工程中地下水-岩体-支护结构之间的相互作用及由此产生的岩体变形、破坏规律。主要内容有:块状结构裂隙岩体的网络模型,并采用计算机技术对其进行表征:在现场水文试验、地应力测试及钻孔影像的基础上,通过理论分析,建立了洞库区结构面等效水力隙宽与法向应力之间的关系;基于现场监测与数值模拟,探讨水封条件下大型地下储气库围岩变形破坏模式、发生条件,揭示大型地下水封储气库围岩变形破坏机制;基于Q系统与数值模拟,优化围岩锚喷支护方案,并基于现场监测数据进行支护效果评价。论文完成的主要工作包括以下几个方面:
     (1)基于钻孔摄像原理与空间信息架构关系,对钻孔摄像技术应用于倾斜孔中进行结构面产状测量的解译方法进行了推导,得出了精确的解析计算公式,并编写了相应的计算软件。理论测试表明,推导得出的倾斜孔内结构面产状计算的解析公式及其程序是正确的,可以为相关工程应用提供支撑和参考。采用PVC管模拟钻孔进行了钻孔摄像技术的可靠性试验,结果表明:当PVC管的倾伏向270°、倾伏角25°时,结构面产状的可靠度为0.10;倾伏向176°、倾伏角60°时,结构面产状的可靠度为0.67;不同PVC管方位下的结构面产状可靠度差异主要为PVC管倾伏角的不同所导致;对一般岩体工程须在倾伏角不小于71°的钻孔内进行测量。
     (2)对迭代自组织数据分析技术算法进行改进,再将模糊隶属度和模糊加权指数引入其中,并在欧氏距离和标准偏差两个关键算式中增加指标权重,构建起可考虑多项分组指标及其重要程度的结构面自组织模糊聚类分组模型,推导了该分组模型下的结构面间距计算式,并编写了相应的计算软件。理论和实践表明该分组模型具有较好的普适性、自适应性和自组织性。
     (3)采用Excel生成伪随机数,AutoCAD进行三维结构面圆盘建模,成功地实现了结构面三维网络模拟,指出岩体结构均质区、基于工程地质条件与实测数据的网络模型校核的重要性,指出了采用实测数据对结构面三维网络模拟进行校核时,不能校核各个结构面的具体位置,而只能对比一些统计参数,因为结构面三维网络模拟只是统计意义上的仿真,并非真实场景的再现,后者错误认识是目前滥用结构面三维网络模拟的根源。
     (4)由于计算机硬件的限制,目前对于数量庞大的结构面模型一般无法运算或即使能运算但由于数值截短误差而难以得到可靠的结果,因此通过设置直径阈值、产状差异阈值与中心点距离阈值的方式剔除短小、密集的结构面,在离散元模型建立之后,通过设置体积阈值删除易影响计算速率、易畸形的小型块体,最后通过给同一结构面赋予不同参数的方式来表征虚拟与真实结构面,由此成功地实现了基于随机模拟的岩体结构模型离散元表征,此表征算法全部利用3DEC软件中的FISH语言编程实现。
     (5)提出了一种结构面等效水力隙宽反演方法。该方法以钻孔影像、钻孔压水试验和渗透张量理论计算为基础,首先基于试算法确定折减系数,初步确定压水试段各结构面的等效水力隙宽;再对不确定性较大的等效水力隙宽采用遗传算法进一步优化,以最终获取更为准确的数值。其中裂隙网络计算法以单个的结构面为单位进行计算,而无需对结构面进行分组,提高了计算结果的可靠性。该方法能同时反演大量的结构面等效水力隙宽。
     (6)统计分析表明,平均隙宽是初始等效水力隙宽70~100倍的压水试段数占总试段数的77.5%,表明结构面几何隙宽与等效水力隙宽差异悬殊,在岩体水力学及裂隙渗流研究中需要特别注意这种差别:场区结构面等效水力隙宽分布在10-100um之间的数量约占总数的99%,且分布最密集的区域是10~45um,约占总数的65%;当法向应力大于7MPa时,等效水力隙宽与法向应力的联系不明显,而小于7MPa时,等效水力隙宽随法向应力增大而变小的现象明显。
     (7)基于E. Hoek提出的GSI和Q值之间的关系式以及Hoek-Brown强度准则,结合室内岩石力学试验资料,提出不同Q值岩体的力学参数估算公式,并以Q值为4岩体为例,估算出其力学参数,再与施工巷道实际监测资料进行对比,验证了取值方法的合理与可靠性。基于室内结构面直剪试验,得出了相应的结构面力学参数。以含竖井、水幕巷道、支洞及主洞室的洞室群单元作为研究对象,考虑Q值为4的围岩状况,不考虑水岩耦合作用,按照实际开挖次序进行离散元数值模拟研究,结果表明,各地下结构之间的距离是合理的,相互之间基本无影响,围岩整体变形破坏机制主要受二次应力的影响,围岩位移与塑性区较小
     (8)以主洞室模型为研究对象,考虑裂隙流-应力耦合作用,进行离散元数值模拟研究,结果表明,主洞室左洞肩出现失稳块体的主要原因在于结构面与临空面之间的有利组合,失稳块体处的流场与其余地方明显不同,地下水流量与流速在该处急剧增大,这主要是隙宽在拉张应力作用下增大所导致的渗透系数增大的缘故,同时由于开挖面处水压力为0,组成失稳块体的结构面水力梯度较大,因而导致流速与流量变大。总体分析认为,出现失稳块体这种局部破坏的主要原因在于结构面的有利组合,地下水在其中起促进与加速失稳产生的辅助性作用。并着重指出,在处理失稳块体的同时及时采取合理的注浆堵水措施是十分必要的。
     (9)基于地下水封储气库工程条件,基于Q系统得出围岩锚喷支护参数,并分别从连续围岩与非连续围岩角度进行参数的校核,结果表明,连续围岩下Q系统确定的参数是安全的,非连续围岩下由于出现失稳块体,Q系统确定的参数是不安全的。综合认为,基于Q系统所得的锚喷支护参数不针对局部块体失稳问题,因而需结合离散元数值模拟等进行综合设计,并且在施工期要特别重视对可能发生的局部失稳问题进行提前甄别。
     (10)基于Q系统确定的锚喷支护参数,选定锚杆纵向间距、长度及喷层厚度作为优化指标,采用喷层位移、喷层受力、锚杆受力与节点破坏情况作为支护效果评价指标,基于正交设计得出试验方案,对每种方案进行数值模拟,基于进化神经网络建立起支护安全性评价指标与锚喷优化指标间的非线性关系,在确定支护安全性评价指标合理数值的基础上对锚喷优化指标进行优化,结合该工程实际进展情况,表明优化后的参数对于特定Q值区段是安全、可靠的,可为类似工程提供依据与参考。
     本文主要创新成果有:
     (1)目前钻孔摄像技术探测结构面产状时仅限于竖直孔,基于空间架构关系与钻孔摄像原理,提出了倾斜孔中结构面产状的解译算法,并试验研究了该技术的可靠性。在结构面组数划分中,解决了能考虑多项分组指标及其重要程度的分组模型问题。这极大地扩充了结构面调查与分析方法。
     (2)针对目前结构面三维网络模拟的应用仅停留在几何层面的问题,基于3DEC软件与FISH语言,提出了基于随机模拟的结构面三维网络模型的离散元表征算法,从而使三维网络模拟能与力学计算衔接,且算法无需多建虚拟结构面,提高了计算效率。
     (3)目前工程中对岩体结构面等效水力隙宽难以确定,提出了基于钻孔摄像技术与钻孔压水试验,采用试算法与遗传算法反演等效水力隙宽的方法,该方法可同时反演整个压水试段的结构面等效水力隙宽,可靠性较高。再通过场区地应力回归分析,总结出了结构面等效水力隙宽-法向应力之间的关系式,为裂隙流-应力耦合研究奠定了基础。
     (4)目前地下水封储气库围岩变形破坏机制问题在国内研究较少,结论不系统,主要原因在于此类工程很少,从洞室群单元模型、考虑裂隙流-应力耦合的主洞室模型两种角度出发,通过大量的离散元数值计算,结合现场监测资料,进行了围岩变形破坏机制分析,重点区分了二次应力、岩体结构与地下水在围岩变形破坏过程中的作用。
     (5)针对以往锚喷支护参数优化时易于陷入局部最优值的弊端,提出了基于Q系统初选锚喷支护参数,再通过正交设计、进化神经网络与数值计算进行优化的锚喷设计新方法。该种方法易于工程应用,在整个工程区内具有较好的普适性。
Principle of underground water sealed storage cavern is put forward in the early1930s. So far, many countries have successfully built more than60underground water sealed storage caverns, but China still has not grasped the core technology of it mainly because foreign countries keep their technique secret. Sweden, France and other foreign companies dominated and build underground water sealed liquefied petroleum gas storage caverns in Shantou, Ningbo, Zhuhai and Huangdao, but they don't disclose the core technology. Therefore, we are still in the stage of groping and testing the construction technology of underground water sealed storage caverns. The knowledge of deformation-failure characteristics of surrounding rock is not enough and the theories and methods of controlling the deformation and failure is no mature. As we are in the boom of underground construction for energy storage, it has important theoretical and engineering significance to have research on the deformation-failure mechanism and bolt-shotcrete support of surrounding rock.
     The underground water sealed rock caverns make use of the feature that oil or gas will not mix with water. Then we can control the water pressure of surrounding rock in the caverns reasonably, and make it always greater than the pressure of the oil or saturated vapor in the caverns. Therefore, the type of this engineering include several of special properties, such as the water curtain system must keep injecting high-pressure water continuously, the high pressure water infiltrates into the rock of the cave, the pressure of liquefied petroleum gas changed frequently by the normal exhaust and storage activities, and so on. And all of these engineering properties determined that, the construction of the cavern cannot copy other existing underground engineering experience and technology, but must research the properties separately on the basis of its geological environmental conditions. Because of the long-term effects of water curtain system, the coupling water-rock interaction needs to be considered in the stability analysis. Caverns always be constructed in the place where the rock is hard, and the discontinuity is less-developed. The discontinuity surface generally has no fillings and degree of weathering is low. So, chemical action between the rock and groundwater is minor, and the water exchanges between the rock and fracture is very little, which determine that water-rock interactions mainly for mechanical coupling between seepage in the fracture and rock stress. The discontinuities always have low surface roughness; the dilatancy of rock mass is unobvious, so the main factors that affecting the characteristics of seepage is its normal stress. The underground water-sealed rock caverns are generally constructed in shallow state. This is because, when the engineers designed the depth of caverns, in the considering of the seal principle and economy, it is reasonable that height difference between the water table and the bottom surface of caverns is greater than the saturated vapor pressure of storage medium plus a safety height. Therefore, surrounding rock in the caverns generally has a low strength, and its deformation and failure mode is mainly controlled by the rock structure. And these engineering properties had mentioned above also determined that the support programs are different from other underground engineering. It needs to be studied more directed and reasonable, which can provide more theories and basis to support its safety and economy.
     The paper analyzes the underground water sealed liquefied petroleum gas storage caverns in Wanhua, Yantai qualitatively and quantificationally by combining testing, monitoring and theoretical analysis and have research on the deformation-failure mechanism and bolt shotcrete support of the surrounding rock. The paper focuses on the interaction between groundwater, rock mass and supporting structure and the resultant deformation and destruction law of rock mass. The researches mainly include:the network model of fractured rock mass is built and characterized by computer technology; the relationship between equivalent hydraulic aperture and normal stress of discontinuities in the caverns area is established based on the hydrology test, in-situ stress tests and borehole image. The deformation-failure modes of surrounding rock is discussed and the deformation-failure mechanism is revealed based on the field monitoring and numerical simulation. The scheme of bolt-shotcrete support is optimized through the Q system and the supporting effect is evaluated with the field monitoring data. The main works accomplished are as follows:
     (1) Based on the principle of borehole camera technology, the determination processes for discontinuity orientations in inclined boreholes were described and derived in detail in this paper. With the drilled orifice circle centre as the origin, the left-handed Cartesian coordinate system was constructed and the precise analytic formulas for discontinuities orientation in inclined borehole were achieved. Based on the principle of borehole camera technology, the validity of analytic formulas and program were verified. In addition, the PVC pipe experiments were conducted to examine the reliability of borehole camera technology for measurement of discontinuity orientation. Results show that:(1) for inclined PVC pipe with trend of270°and plunge of25°, the degree of reliability of discontinuity orientation is0.10; while inclined PVC pipe with trend of176°and plunge of60°, the degree of reliability of discontinuity orientation is 0.67. The difference of pipe plunge results in the reliability differences of discontinuities orientation.(2) The reliability grade of discontinuity orientation should be high for general rock engineering, so that the plunge of inclined boreholes is not less than71°should be needed.
     (2) Based on iterative self-organizing data analysis technique algorithm, a discontinuity grouping model named self-organizing fuzzy clustering is established. This model can consider multiple indexes of discontinuity quantitative description and their weighting. For details of this model, firstly iterative self-organizing data analysis technique algorithm was improved according to basic requirements of discontinuities data treatment, secondly fuzzy membership and fuzzy weighted index were added to the improved algorithm, thirdly index weighting was included in Euclidean distance equation and standard deviation equation. Based on space architecture relation, calculation formula of discontinuities spacing is given under the grouping model.
     (3) Based on pseudo-random number generated by Excel and three-dimensional discontinuity disc modeled with AutoCAD, three-dimensional network simulation of discon-tinueities is successfully realized. The paper point out that structural homogeneity of rock mass and network model checking based on engineering geological conditions and the measured data are significant. When three-dimensional network simulation of discontinuities is checked through the measured data, the specific location of discontinuity could not be confirmed but some statistical parameters might contrast. This is because that three-dimensional network simulation of discontinuities is not a real scene but only the simulation of statistical sense. The latter error recognition is the root of the abuse of three-dimensional network simulation of discontinuities.
     (4) Because of the limitation of computer hardware, the large number of discontinuities model cannot be operated generally or the result is unreliable owing to the numerical truncation error. So the short and intensive discontinuities are eliminated by setting the diameter threshold value, occurrence difference threshold and center distance threshold. After the discrete element model was established, small blocks that are easy to affect the calculation rate and deformity are cut off by setting the volume threshold. Finally, the same discontinuity is given with different parameters regards to characterize the virtual and real parts. Thus, the discrete element representation of rock mass structure model based on stochastic simulation comes true successfully. This exchange algorithm is programmed through FISH language in3DEC software.
     (5) A discontinuity equivalent hydraulic aperture inversion method is put forward. The method is based on the borehole image, water pressure test in borehole and permeability tensor theory calculation. Firstly, based on the trial method, the reduction coefficient is confirmed and the equivalent hydraulic of the structure in aperture water pressure test section is preliminarily determined. Then genetic algorithm is used to optimize equivalent hydraulic aperture with greater uncertainty, to obtain more accurate numerical. The fracture network calculation method has calculated taking the single structure as a unit but without discontinuity set, it can improve the reliability of the results. The method can simultaneously inverse a large number of discontinuity equivalent hydraulic aperture.
     (6) Analyses of statistics show that:borehole pressure water experimental section that average aperture is70to100times as the initial equivalent hydraulics aperture counts77.5%in the overall experimental sections. It means that geometrical average aperture is greatly different from equivalent hydraulics aperture. While studying rock hydraulics and fractured rock masses, it is essential to notice this difference. The court construct surface that equivalent hydraulics aperture distributed from10um to100um counts99%in all, and they gathered between lOum to45um, which almost counts65%in all. When normal stress of discontinuity is larger than7MPa, the relationship between equivalent hydraulics aperture and normal stress is not that obvious, while it is smaller than7MPa, equivalent hydraulics aperture will be obviously decreased as normal stress increased.
     (7) The estimating formula of mechanics parameters for rock mass with different Q value is given, which is based on the relation of GSI and Q value, Hock-Brown failure criterion and rock mechanics test. Taking Q value is4as an example; test is carried out with monitoring data. The result shows that the method is rational and reliable. The discontinuity mechanics parameters are obtained from direct shear test and empirical formula. Taking cavern group consists of shaft, water curtain tunnel, branch tunnels and main cavern as study object, considering rock mass Q value is4and ignoring water-rock coupling, the numerical simulation is carried out using3DEC software. Result shows that the distance between each underground structure is reasonable, there is no influence with each other, and the global deformation-failure mechanism is controlled by the secondary stress and the displacement and plastic zone is small.
     (8) Taking the main rock cavern as study object, considering fracture groundwater mechanics coupling, the deformation-failure mechanism of surrounding rock is studied by3DEC numerical simulation. Results show that the reason of the unstable block on the left shoulder of main rock cavern is the combination of discontinuity and the excavation surface. The flow field in the unstable block is different with others obviously, the flux and flow rate increased rapidly. This is because the increase of permeability coefficient increase caused by the tensile stress which expands the equivalent hydraulics aperture. Meanwhile, the zero water pressure on the excavation surface induces the increase the hydraulic gradient. Through the overall study, the appearance of the unstable block is a local failure, the main reason is the advantageous combination of discontinuities, and the subsidiarity reason is the groundwater which promote and acceleration the failure. It is very necessary to grout appropriately for cutting off groundwater while controlling the unstable block.
     (9) Based on the construction condition of underground water sealed liquefied petroleum gas storage cavern, the bolt-shotcrete parameters are get through Q system initially. Then these parameters are checked by3DEC software from the aspects of continuous and discontinuous surrounding rock. Results show that:(1) when surrounding rock is continuous, the bolt-shotcrete support has an obvious effect to the displacement of surrounding rock, and the bolt-shotcrete parameters is safe and reasonable;(2) when surrounding rock is discontinuous, the bolt-shotcrete support fails due to the local instability blocks;(3) the support object of Q system does not include local instability block, so it is necessary to support design combined with discrete element numerical simulation, and it is important to discriminate local instability problems during construction stage.
     (10) Based on bolt-shotcrete parameters calculated from Q system, the optimization study is carried out. Bolt longitudinal spacing, length and shotcrete thickness is chosen as optimization indices. Then surrounding rock displacement, shotcrete stress, cable force and node failure situation is chosen as evaluation indices. The numerical simulation program can be get based on orthogonal design. The nonlinear relationship between evaluation indices and optimization indices is constructed through evolution neural network. In determining the reasonable value of supporting safety evaluation on the basis of shotcrete optimization indices, combined with the actual progress of the project, show that the optimized parameters for a particular section of the Q value is safty, reliable, and can provide for similar projects based on the reference.
     The following innovation points can be reported for the conducted study:
     (1) According to the current study situation that borehole camera technology only applied to the vertical boreholes, the determination processes for discontinuity orientations in inclined bore-holes were described and derived in detail in this paper based on the principle of borehole camera technology. In addition, the PVC pipe experiments were conducted to examine the reliability of borehole camera technology for measurement of discontinuity orientation. Based on iterative self-organizing data analysis technique algorithm, a discontinuity grouping model named self-organizing fuzzy clustering is established. This model can consider multiple indexes of discontinuity quantitative description and their weighting. These methods greatly expanded the investigation and analysis of the structural planes.
     (2) In sight of the applications of three-dimensional network simulation of discontinuity only stay in the geometric hierarchy, so the distinct element algorithm is introduced based on3EDC and FISH language, which can make the three-dimensional network simulation combine with mechanical calculation. The algorithm is needless to build fictitious discontinuity and improves the computational efficiency.
     (3) The equivalent hydraulic aperture of discontinuity is difficult to determine in engineering. Based on borehole image technology and water pressure test in borehole, the inversion method of equivalent hydraulic aperture is proposed combined with the test algorithm and genetic algorithm, which can invert hydraulic aperture of discontinuity in the whole water pressure test period. The relation between equivalent hydraulic aperture and normal stress is summarized through regression analysis of in-situ stress, which lay a strong foundation for the further study on coupling of flow-stress.
     (4) The study on rock deformation and failure mechanism of underground water sealed caverns is less and the conclusion is unsystematic result from rare engineering project. The rock deformation and failure mechanism is raised according to cavities unit model and the main cavity in consideration of coupling of flow-stress, through a large number of discrete element numerical calculation, in combination with field monitoring data, in which the secondary stress, rock mass structure, and groundwater are distinguished in the rock deformation and failure process.
     (5) The parameter optimization of bolt-shotcrete support is easily to fall into local optimal value in past. The new parameter design method of bolt-shotcrete support is proposed, which is based on Q system for choice of primary parameters, orthogonal design and combination of evolutionary neural network and numerical calculation. This kind of method is tend to apply in engineering and has good universality in the project.
引文
[1]International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests. Suggested methods for the quantitative description of discontinuities in rock mass[J]. International Journal of Rock Mechanics and Mining Science& Geomechanics Abstracts,1978,15(6):319-368.
    [2]石永泉,代常友.钻探方法确定岩体结构面产状[J].中国地质灾害与防治学报,2007,18(1):120-123.
    [3]葛修润,王川婴.数字式全景钻孔摄像技术与数字钻孔[J].地下空间,2001,21(4):254-261.
    [4]娄国川,赵其华.基于三维激光扫描技术的高边坡岩体结构调查[J].长江科学院院报,2009,26(9):58-61.
    [5]李元海,靖洪文,刘刚,等.数字照相量测在岩石隧道模型试验中的应用研究[J].岩石力学与工程学报,2007,26(8):1684-1690.
    [6]Robertson A M, Piteau D R. The determination of joint populations and their significance for tunnel stability[C]//Technology and Potential of Tunnelling, South African Tunnelling Conference,1970:81-84.
    [7]Kulatilake P H S W, Wu T H. Estimation of mean trace length of discontinuities[J]. Rock Mechanics and Rock Engineering,1984,17:215-232.
    [8]Terzaghi R. Sources of error in joint surveys[J]. Geotechnique,1965,15:287-304.
    [9]Kulatilake P H S W, Wu T H, Wathugala D N. Probabilistic modeling of joint orientation [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,14: 325-350.
    [10]Wathugala D N, Kulatilake P H S W, Wathugala G W. A general procedure to correct sampling bias on joint orientation using a vector approach[J]. Computers and Geotechnics, 1990,10:1-31.
    [11]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [12]贾洪彪,唐辉明,刘佑荣,等.岩体结构面三维网络模拟理论及工程应用[M].北京:科学出版社,2008.
    [13]汪小刚,贾志欣,张发明,等.岩体结构面网络模拟原理及其工程应用[M].北京:中国水利水电出版社,2010.
    [14]Zanbak C. Statistical interpretation of discontinuity contour diagams[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts[J].1977,14(3): 111-120.
    [15]Gaziev E G, Tiden E N. Probabilistic approach to the study of jointing in rock masses[J]. Bulletin of International Association of Engineering Geology,1979,20(1):178-181.
    [16]Miller S M, Borgman L E. Spectral-tyepe simulation of spatially correlated fracture set properties[J]. Journal of the International Association for Mathematical Geology,1985, 17(1):41-52
    [17]Watson G S, Irving E. Statistical methods in rock magnetism[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society,1957,7(6):289-300.
    [18]Kulatilake P H S W. Fitting Fisher distributions to discontinuity orientation data[J]. Journal of Geological Education,1985,33(5):266-269.
    [19]Shanley R J, Mahtab M A. Delineation and analysis of clusters in orientation data[J]. Journal of the International Association for Mathematical Geology,1976,8(1):9-23.
    [20]Cruden D M. Describing the size of discontinuities[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1977,14(3):133-137.
    [21]Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(3):183-197.
    [22]Zhang X, Liao G H. Estimation of confidence bounds for mean trace length of discontinuities using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990,27(3):207-212.
    [23]Kulatilake P H S W, Wathugala D N, Stephansson O. Joint network modelling with a validation exercise in Stripa Mine, Sweden[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(5):503-526.
    [24]黄国明,黄润秋.基于交切条件的不连续面平均迹长估算法[J].地质科技情报,1999,18(1):105-107.
    [25]王贵宾,杨春和,包宏涛,等.岩体节理平均迹长估计[J].岩石力学与工程学报,2006,25(12):2589-2592.
    [26]吴琼,唐辉明,王亮清,等.基于平均迹长修正新方法的岩体三维连通率及抗剪强度参数计算[J].岩石力学与工程学报,2008,27(增):3941-3949.
    [27]Pahl P J. Estimating the mean length of discontinuity traces[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(3):221-228.
    [28]陈剑平,吴源,尚晓春.取样窗口迹长均值估计方法的讨论[J].工程地质学报,2001,9(3):301-307.
    [29]Zhang L, Einstein H H. Estimating the mean trace length of rock discontinuities[J]. Rock Mechanics and Rock Engineering,1998,31(4):217-235.
    [30]Mauldon M. Estimating mean fracture trace length and density from observations in convex windows[J]. Rock Mechanics and Rock Engineering,1998,31(4):201-216.
    [31]Bankwitz P, Uber Klufte Ⅱ. Die Bildung der Kluftflache und eine Systematik ihrer Strukturen[J]. Geologie,1966,15(8):896-941.
    [32]Robertson A M. The interpretation of geological factors for use in slope theory[C]//Planning Open Pit Mines, Proceedings, Johannesburg,1970:55-71.
    [33]Glynn E F, Veneziano D F, Einstein H H. The probabilistic model for shearing resistance of jointed rock[C]//Proceedings of the 19th US Symposium on Rock Mechanics. Reno:Press of University of Nevada,1978:66-76.
    [34]Warburton P M. A stereological interpretation of joint trace data[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(4):181-190.
    [35]钱海涛,马平,秦四清.岩体不连续面迹长与直径间的概率关系模型分析[J].岩土力学,2007,28(9):1828-1832.
    [36]Kulatilake P H S W, Wu T H. Relation between discontinuity size and trace length[C]//The 27th US Symposium on Rock Mechanics Tuscaloosa, Alabama,1986:130-133.
    [37]黄磊,唐辉明,张龙,等.适用于半迹长测线法的岩体结构面迹长与直径关系新模型及新算法[J].岩石力学与工程学报,2011,30(4):733-745.
    [38]黄磊,唐辉明,张龙,等.适用于半迹长测线法的岩体结构面直径Priest-Zhang算法和修正算法适用性[J].中南大学学报(自然科学版),2012,43(4):1405-1410.
    [39]黄磊,唐辉明,葛云峰,等.适用于半迹长测线法的岩体结构面直径新试算法[J].岩石力学与工程学报,2012,31(1):140-153.
    [40]Shanley R J, Mahtab M A. Delineation and analysis of clusters in orientation data[J]. Mathematical Geology,1976,8(3):9-23.
    [41]Hammah R E, Curran J H. On distance measures for the fuzzy K-means algorithm for joint data[J]. Rock Mechanics and Rock Engineering,1999,32(1):1-27.
    [42]范雷,王亮清,唐辉明.节理岩体结构面产状的动态聚类分析[J].岩土力学,2007,28(11):2405-2408.
    [43]王渭明,李先炜.裂隙岩体优势结构面产状反演[J].岩石力学与工程学报,2004,23(11):1832-1835.
    [44]陈剑平,石丙飞,王清.工程岩体随机结构面优势方向的表示法初探[J].岩石力学与工程学报,2005,24(2):241-245.
    [45]蔡美峰,王鹏,赵奎,等.基于遗传算法的岩体结构面的模糊C均值聚类方法[J].岩石力学与工程学报,2005,24(3):371-376.
    [46]周玉新,周志芳,孙其国.岩体结构面产状的综合模糊聚类分析[J].岩石力学与工程学报,2005,24(13):2283-2287.
    [47]Jimenez-Rodriguez R, Sitar N. A spectral method for cluster-ing rock discontinuity sets[J]. International Journal of Rock Mechanics and Mining Science,2006,43(7):1052-1061.
    [48]卢波,丁秀丽,邬爱清.岩体随机不连续面产状数据划分方法研究[J].岩石力学与工程学报,2007,26(9):1809-1816.
    [49]Dershowitz W S, Einstein H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering,1988,21(1):21-51.
    [50]Hammah R E, Curran J H. Fuzzy cluster algorithm for the automatic identification of joint sets[J]. International Journal of Rock Mechanics and Mining Science,1998,35(7):889-905.
    [51]Zhou W, Maerz N H. Implementation of multivariate clustering methods for characterizing discontinuities data from scanlines and oriented boreholes[J]. Computers and Geosciences, 2002,28(7):827-839.
    [52]Tokhmechi B, Memarian H, Moshiri B, et al. New logic in joint set classification using MLP neural network and discussing their uncertainties[J]. Journal of the earth,2009,4(1):11-27.
    [53]Tokhmechi B, Memarian H, Moshiri B, et al. Investigating the validity of conventional joint set clustering methods[J]. Engineering Geology,2011,118(3):75-81.
    [54]徐黎明,陈剑平,王清.多参数岩体结构面优势分组方法研究[J].岩土力学,2013,34(1):189-195.
    [55]Sen Z, Kazi A. Discontinuity spacing and RQD estimates from finite length scanlines[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984,21(4):203-212.
    [56]Kulatilake P H S W. State-of-the-art in stochastic joint geometry modeling[C]//The 29th US Symposium on Rock Mechanics, Minneapolis,1988.215-229.
    [57]张宜虎,唐辉明,周火明,等.结构面量测最佳测线长度的确定[J].长江科学院院报,2008,25(4):63-66.
    [58]Karzulovic A, Goodman R E. Determination of principal joint frequencies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1985,22(6):471-473.
    [59]Wu Q, Kulatilake P H S W, Tang H M. Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China[J]. Computers and Geotechnics,2011,38(2):258-268.
    [60]Kulatilake P H S W, Park J, Um J. Estimation of rock mass strength and deformability in 3-D for a 30 m cube at a depth of 485 m at Aspo Hard Rock Laboratory [J]. International Journal Geotechnical and Geological Engineering,2004,22(3):313-330.
    [61]Miller S M. A statistical method to evaluate homogeneity of structural populations[J]. Journal of the Interna-tional Association for Mathematical Geology,1983,15(2):317-328.
    [62]Mahtab M A, Yegulalp T M. Similarity Test For Grouping Orientation Data In Rock Mechanics[C]//The 25th US Symposium on Rock Mechanics. Plenum, New York,1984: 495-502.
    [63]Kulatilake P H S W, Wathugala D N, Poulton M, et al. Analysis of structural homogeneity of rock masses[J]. Engineering Geology,1990,29(3):195-211.
    [64]范留明,黄润秋,丁秀美.一种基于结构面密度的岩体结构均质区划分方法[J].岩石力学与工程学报,2003,22(7):1132-1136.
    [65]高敬,杨春和,王贵宾.甘肃北山岩体结构均质区划分方法的探讨[J].岩土力学,2010,31(2):588-598.
    [66]李明,李广杰,张文,等.基于卡方检验法对长白山龙门峰裂隙岩体统计均质区划分[J].吉林大学学报(地球科学版),2012,42(2):449-453.
    [67]张国强,张茹,赵小平,等.岩体结构均质区划分的体视学方法研究初探[J].岩石力学与工程学报,2011,30(6):1239-1249.
    [68]Louis C. Rock hydraulics in rock mechanics[M]. New York:Vorlay Wien,1974.
    [69]Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, ASME,1978,100:12-17.
    [70]Witherspoon P A, Wang J S Y, Iwai K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research,1980,16(6):1016-1024.
    [71]Tsang Y W, Tsang C F. Channel model of flow through fractured media[J]. Water Resources Research,1987,23(3):467-479.
    [72]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(4):73-77.
    [73]谢妮,徐礼华,邵建富,等.法向应力和水压力作用下岩石单裂隙水力耦合模型[J].岩石力学与工程学报,2011,30(增2):3796-3803.
    [74]Bandis S C, Lumsden A C, Barton N. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983,20(6):249-268.
    [75]Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985,22(3):121-140.
    [76]Oda M, Yamabe T, Ishizuka Y, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Rock Engineering,1993,26(2): 89-112.
    [77]周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质,1996,23(3):14-17.
    [78]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学,1996,17(4):1-7.
    [79]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [80]Olsson R, Barton N. An improved model for hydro-mechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3): 317-329.
    [81]Lee H S, Cho T F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering,2002,35(4):299-318.
    [82]Makurat A, Barton N, Rad N S, et al. Joint conductivity variation due to normal and shear deformation[J]. Publikasjon-Norges Geotekniske Institutt,1991,182:1-6.
    [83]Esaki T, Du S, Mitani Y, et al. Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(5):641-650.
    [84]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报,2003,22(10):1651-1655.
    [85]周创兵,陈益峰,姜清辉,等.岩体结构面HM耦合分析的界面层模型[J].岩石力学与工程学报,2008,27(6):1081-1093.
    [86]King M S, Chaudhry N A, Shakeel A. Experimental ultrasonic velocities and permeability for sandstones with aligned cracks[J]. International journal of rock mechanics and mining sciences & geomechanics abstracts,1995,32(2):155-163.
    [87]Bai M, Meng F, Elsworth D, et al. Analysis of stress-dependent permeability in nonorthogonal flow and deformation fields[J]. Rock Mechanics and Rock Engineering, 1999,32(3):195-219.
    [88]Liu J, Elsworth D, Brady B H, et al. Strain-dependent fluid flow defined through rock mass classification schemes[J]. Rock mechanics and rock engineering,2000,33(2):75-92.
    [89]赵阳升,杨栋.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学(E辑),1999,29(1):82-86.
    [90]郑少河,赵阳升,段康廉.三维应力作用下犬然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [91]Chen Y F, Zhou C B, Sheng Y Q. Formulation of strain-dependent hydraulic conductivity for a fractured rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2007,44(7):981-996.
    [92]徐礼华,谢妮.岩石剪切裂隙渗流特性试验与理论研究[J].岩石力学与工程学报,2009,28(11):2249-2257.
    [93]Long J C S, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982,18(3):645-658.
    [94]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water resources research,1986,22(13):1845-1856.
    [95]Zhou C B, Sharma R S, Chen Y F, et al. Flow-stress coupled permeability tensor for fractured rock masses[J]. International Journal for numerical and analytical methods in geomechanics,2008,32(11):1289-1309.
    [96]Margolin G, Berkowitz B, Scher H. Structure, flow, and generalized conductivity scaling in fracture networks[J]. Water Resources Research,1998,34(9):2103-2121.
    [97]Baghbanan A, Jing L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences,2007, 44(5):704-719.
    [98]Hudson J A. La Pointe P R. Printed circuits for studying rock mass permeability[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon,1980,17(5):297-301.
    [99]Long J C S, Remer J S, Wilson C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982,18(3):645-658.
    [100]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400-406.
    [101]黎水泉,徐秉业.非线性双重孔隙介质渗流[J].岩石力学与工程学报,2000,19(4):417-420.
    [102]李术才,平洋,下者超,等.基于离散介质流固耦合理论的地下石油洞库水封性和稳定性评价[J].岩石力学与工程学报,2012,31(11):2161-2170.
    [103]Tang C A. Numerical simulation of progressive rock failure and associated seismicity[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(2):249-261.
    [104]Feng X T, Pan P Z, Zhou H. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automation[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1091-1108.
    [105]Wang J A, Park H D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering geology,2002,63(3):291-300.
    [106]Pan P Z, Feng X T, Huang X H, et al. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automation[J]. Environmental geology,2009,57(6): 1299-1311.
    [107]潘鹏志,冯夏庭,吴红晓,等.水压致裂过程的弹塑性细胞自动机模拟[J].上海交通大学学报.2011,45(5):722-727.
    [108]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [109]Tang C A, Tham L G, Lee P K K, et al. Coupled analysis of flow, stress and damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences,2002. 39(4):477-489.
    [110]Yang T H, Tham L G, Tang C A, et al. Numerical approach to hydraulic fracturing in heterogeneous and permeable rocks[J]. Key Engineering Materials,2003,243:351-356.
    [111]Deere D U. Technical description of rock cores for engineering purposes[M]. Illinois: University of Illinois,1962.
    [112]Deere D U, Peck R B, Parker H W, et al. Design of tunnel support systems[J]. Highway Research Record,1970 (307):15-24.
    [113]Bieniawski Z T. Engineering rock mass classifications[M]. New York:John Wiley and Sons,1989.
    [114]Barton N. Lien R, Lunde J. Engineering classification of rock mass for the design of tunnel support[J]. Rock Mechanics,1974,6(4):189-236.
    [115]郑颖人,邱陈瑜,宋雅坤,等.土质隧洞围岩稳定性分析与设计计算方法探讨[J].后勤工程学院学报,2009,25(10):1-9.
    [116]张传庆,周辉,冯夏庭,等.基于屈服接近度的围岩安全性随机分析[J].岩石力学与工程学报,2007,26(2):292-299.
    [117]张传庆,周辉,冯夏庭.基于破坏接近度的岩土工程稳定性评价[J].岩士力学,2007,28(5):888-894.
    [118]顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,27(3):433-438.
    [119]陈安敏,顾金才,沈俊,等.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):3785-3789.
    [120]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847.
    [121]李术才,周毅,李利平,等.地下工程流-固耦合模型试验新型相似材料的研制及应用[J].岩石力学与工程学报,2012,31(6):1128-1137.
    [122]李术才,宋曙光,李利平,等.海底隧道流固耦合模型试验系统的研制及应用[J].岩石力学与工程学报,2013,32(5):883-890.
    [123]李术才,王德超,王琦,等.深部厚顶煤巷道大型地质力学模型试验系统研制与应用[J].煤炭学报,2013,38(9):1522-1530.
    [124]Hoek E, Brown E T. Underground excavations in rock. London:Instn Min. Metall,1980.
    [125]Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal,1999,36(1):136-151.
    [126]Hudson J A, Harrison J P. Engineering rock mechanics:An introduction to the principles[M]. London:Pergamon,1997.
    [127]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.
    [128]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [129]王思敬,杨志法,刘竹华.地下工程岩体稳定性分析[M].北京:科学出版社,1984.
    [130]孙广忠,孙毅.地质工程学原理[M].北京:地质出版社,2004.
    [131]曹林,胡居义,黎冬林.小净距公路(双洞)隧道围岩破坏模式研究[J].中国地质灾害与防治学报,2007,18(3):65-69.
    [132]向天兵,冯夏庭,江权,等.大型洞室群围岩破坏模式的动态识别与调控[J].岩石力学与工程学报,2011,30(5):871-883.
    [133]吴文平.冯夏庭.张传庆,等.深埋硬岩隧洞围岩的破坏模式分类与调控策略[J].岩石力学与工程学报,2011,30(9):1782-1802.
    [134]石根华.岩体稳定分析的赤平投影方法[J].中国科学:A辑,1977,3:260-271.
    [135]石根华.岩体稳定分析的几何方法[J].中国科学:A辑,1981,4:487-495.
    [136]Shi G. Discontinuous deformation analysis:a new numerical model for the statics and dynamics of block systems[D]. University of California, Berkeley,1988.
    [137]Cundall P A. Formulation of a three-dimensional distinct element model-Part I:A scheme to detect and represent contacts in a system composed of many polyhedral blocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988,25(3):107-116.
    [138]刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报.2000,19(6):726-730.
    [139]陈陆望,殷晓曦,赵瑜.圆形地下洞室坚硬脆性围岩岩爆的模拟[J].应用基础与工程科学学报,2009,17(6):935-942.
    [140]胡夏嵩,赵法锁.低地应力区地下洞室围岩变形破坏有限元数值模拟研究[J].岩石力学与工程学报,2005,24(10):1708-1714.
    [141]马元,何国军,周振,等.深埋高应力围岩变形破坏三维物理模拟试验[J].交通与经济,2009,51(11):1-3.
    [142]周传波,郭廖武,姚颖康,等.采矿巷道围岩变形机制数值模拟研究[J].岩土力学,2009,30(3):654-658.
    [143]房倩,张顶立,王毅远,等.圆形洞室围岩破坏模式模型试验研究[J].岩石力学与工程学报,2011,30(3):570-571.
    [144]汪成兵,朱合华.埋深对软弱隧道围岩破坏影响机制试验研究[J].岩石力学与工程学报,2010,29(12):2442-2448.
    [145]任伟中,白世伟,孙桂凤,等.厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特性模型试验研究[J].岩石力学与工程学报,2005,24(21):3936-3941.
    [146]陈卫忠,朱维中,王宝林,等.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [147]赵瑜,李晓红,顾义磊,等.高应力区隧道围岩变形破坏的数值模拟及物理模拟研究[J].岩土力学,2007,28(增):393-397.
    [148]祝云华,刘欣荣,黄明,等.深埋隧道开挖围岩失稳突变模型研究[J].岩土力学,2009,30(3):805-809.
    [149]张鹏,李宁,何敏.软岩圆形隧洞衬砌支护时机现场变形监测判据研究[J].西安理工大学学报,2007,24(2):140-143.
    [150]王者超,李术才,薛翊国,等.大型地下水封石油洞库围岩完整性、变形和稳定性分析[J].山东大学学报(工程版),2011,3:112-117.
    [151]王芝银,李云鹏,郭书太,等.大型地下储汕洞粘弹性稳定性分析[J].岩土力学,2005,26(11):1705-1710
    [152]黄润秋,黄达,段绍辉,等.锦屏Ⅰ级水电站地下厂房施工期围岩变形开裂特征及地质力学机制研究[J].岩石力学与工程学报,2011,30(1):23-35.
    [153]郑颖人,刘怀恒,顾金才.均质地层中锚喷支护理论与设计[J].岩土工程学报,1981,3(1):57-69.
    [154]郑颖人,刘怀恒.隧洞粘弹塑分析及其在锚喷支护中的应用[J].土木工程学报,1982,15(4):73-78.
    [155]郑强,林从谋,孟凡兵.采用统一强度理论的锚喷支护围岩弹塑性统一解[J].华侨大学学报(自然科学版),2011,32(3):326-331.
    [156]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [157]宋宏伟.基于松动圈理论的锚喷支护设计专家系统[J].中国矿业大学学报,1999,28(6):565-568.
    [158]吴祥云,李欢秋,李永池,等.岩体中喷锚支护与衬砌结构计算研究[J].岩石力学与工程学报,2005,24(19):3561-3565.
    [159]朱万成,唐春安,黄明利.基于正交试验原理的锚喷参数设计系统及其应用[J].岩土力学,1999,20(2):87-91.
    [160]朱万成,赵文,唐春安,等.锚喷参数的回归正交有限元试验分析及其应用实例[J].岩石力学与工程学报,1999,18(3):283-286.
    [161]高谦,宋建国,余伟健,等.金川深部高应力巷道锚喷支护设计与数值模拟技术[J].岩土工程学报,2007,29(2):279-284.
    [162]郑颖人.岩土数值极限分析方法的发展与应用[J].岩石力学与工程学报,2012,31(7):1297-1316.
    [163]肖明,叶超,傅志浩.地下隧洞开挖和支护的三维数值分析计算[J].岩土力学,2007,28(12):2501-2505.
    [164]曹学兴,何蕴龙,袁帅.喷锚支护措施对地下厂房洞室群整体稳定性影响[J].四川大学学报(工程科学版),2012,44(增1):71-76.
    [165]崔芳,高永涛,吴顺川.断层影响下隧道喷锚支护效果的数值模拟[J].金属矿山,2011,6:25-28.
    [166]Hoek E, Carranza-Torres C, Diederichs M S, et al. Integration of geotechnical and structural design in tunnelling[C]//Proceedings University of Minnesota 56th Annual Geotechnical Engineering Conference,2008,29:1-53.
    [167]徐军,郑颖人,刘东升.锚喷支护喷层结构的目标可靠指标和分项系数研究[J].岩石力学与工程学报,2002,21(5):671-674.
    [168]朱珍德,王春娟.地下洞室围岩支护结构的可靠性研究[J].岩土力学,2002,23(增):5-8.
    [169]朱琢华,黄宏伟.锚喷支护设计的工程类比模糊经验法[J].煤炭学报,1998,23(6):571-574.
    [170]汤劲松,乔春生.隧道锚喷支护设计的神经元网络方法[J].中国公路学报,2002,15(3):68-72.
    [171]乔春生,魏莉萍.岩石地下工程锚喷支护设计的人工智能方法及其集成[J].岩石力学与工程学报,2004,23(5):781-785.
    [172]Feng X T, Hudson J A. The ways ahead for rock engineering design methodologies[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):255-273.
    [173]Hudson J A, Feng X T. Updated flowcharts for rock mechanics modelling and rock engineering design[J]. International Journal of Rock Mechanics and Mining Sciences,2007, 44(2):174-195.
    [174]Feng X T, Hudson J A. Specifying the information required for rock mechanics modelling and rock engineering design[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(2):179-194.
    [175]冯夏庭,江权,向天兵,等.大型洞室群智能动态设计方法及其实践[J].岩石力学与工程学报,2011,30(3):433-448.
    [176]Grimstad E, Barton N. Updating of the Q-system for NMT[C]//Kompen, Opshal, Berg ed. Proceeding of the International Symposium on Sprayed Concrete-Modern Use of Wet Mix Sprayed Concrete for Underground Support. Norway:Fagernes,1993.
    [177]Palmstron A. Characterizing rock masses by the RMi for use in practical rock engineering, part 1:the development of the rock mass index(RMi)[J]. Tunneling and Underground Space Technology,1996,11(2):175-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700