用户名: 密码: 验证码:
阻燃型生物质聚氨酯硬质泡沫的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯硬质泡沫是目前世界上性能最佳的隔热保温材料,随着化石资源的大量使用和人类环保意识的增强,以生物质资源替代化石资源制备聚氨酯泡沫的研究受到了广泛的关注。利用价格便宜的腰果酚、蓖麻油等生物质资源替代苯酚等石化资源制备阻燃型聚氨酯硬泡对发挥生物质资源优势、改善生态环境,促进聚氨酯行业的发展均有明显的促进作用。
     本论文以生物质资源腰果酚、蓖麻油为原料,通过Mannich反应、烷氧化反应、醇解、酯化等反应合成新型聚醚、聚酯多元醇,进一步制备性能良好的阻燃型聚氨酯硬质泡沫,研究生物质多元醇的结构对聚氨酯硬质泡沫性能的影响。主要研究内容和结论如下:
     1.以腰果酚、苯酚、多聚甲醛、二乙醇胺、三聚氰胺等为原料,通过Mannich反应制备了不同结构和性能的腰果酚Mannich碱。对反应过程进行了分析和探索,采用FTIR、1H NMR、GPC、GC-MS、TG等对反应中间体和产物进行了结构表征和性能测试,证实了醛先与胺反应生成中间体的Mannich反应机理,讨论了影响腰果酚Mannich碱的产物组成、粘度、羟值、分子量等结构与性能指标的主要因素:反应温度、腰果酚用量、腰果酚对苯酚的替代量和三聚氰胺添加量等。
     2.以不同结构的腰果酚Mannich碱为起始剂,和环氧丙烷发生烷氧基化反应合成腰果酚Mannich聚醚多元醇,产物具有粘度小、官能度可调﹑含有阻燃基团等优点。通过研究起始物结构、催化剂种类、环氧丙烷质量等因素对聚醚多元醇结构及性能的影响,确定了较优工艺条件,对聚醚多元醇进行羟值、粘度等性能测试和FT IR、TGA、GPC和1H NMR等结构表征。腰果酚用量越小,腰果酚对苯酚的替代量越低,三聚氰胺添加量越多,多元醇的粘度和羟值越大,热稳定性越高;筛选出适合制备阻燃型聚氨酯硬质泡沫的腰果酚Mannich聚醚多元醇。
     3.以蓖麻油、小分子多元醇(乙二醇、甘油、季戊四醇)和苯酐为原料,发生醇解和酯化反应,制备与其它聚酯、聚醚多元醇相容性良好的蓖麻油聚酯多元醇,有利于组合多元醇体系的储存。考察了小分子醇种类和反应时间对蓖麻油基醇解产物羟值、粘度及分子量的影响;发现随着小分子醇官能度的增加,体系中单甘酯和二甘酯含量和转化率减少,羟值增加;蓖麻油聚酯多元醇中蓖麻油单酯和二酯的含量较醇解蓖麻油大幅减少,且伯羟基相对含量高于相应的醇解产物,蓖麻油聚酯多元醇的热稳定性高于工业苯酐聚酯多元醇PS-3152,主要由于蓖麻油脂肪酸链热稳定性高的原因。
     4.将腰果酚Mannich聚醚多元醇、异氰酸酯、发泡剂、表面活性剂、阻燃剂等一起发泡制备了一系列复合阻燃型聚氨酯硬质泡沫;研究结果表明:不同腰果酚替代量的Mannich聚醚多元醇发泡活性较高且相差不大,腰果酚对苯酚替代量越高,多元醇和发泡剂环戊烷相容性越好,泡沫相对压缩强度和导热系数越小,热稳定性稍差、成炭率和临界氧指数越低,热释放量和烟释放量稍高,且燃烧后的炭层开孔和破裂较多。对不同三聚氰胺添加量的聚醚多元醇和无卤阻燃剂EG、聚磷酸铵(APP)和乙基膦酸二乙酯(DEEP)复配制备的聚氨酯泡沫样品性能进行了分析,结果发现无阻燃剂时三聚氰胺替代量越高,泡沫相对压缩强度、导热系数和临界氧指数越大,热稳定性和成炭率高;和EG复配制备的阻燃泡沫具有较好的力学性能、热稳定性和氧指数,锥形量热显示燃烧的热释放峰值、热释放总量烟释放参数明显降低,残炭率和炭层致密连续性明显增强;在提高氧指数、烟产生和释放方面EG优于APP和DEEP;和DEEP、APP和EG复配制备的阻燃型聚氨酯泡沫的固化时间和导热系数有所升高;添加相同阻燃剂的样品其阻燃性能随着添加量的增加而增加,固体阻燃剂APP和EG在增加力学性能、热稳定性及降低CO/CO2比值方面较液体阻燃剂DEEP效果好,含磷阻燃剂APP和DEEP在降低热释放速率方面优于EG,不同阻燃剂复配在炭层的致密性和连续性方面的效果优于单一阻燃剂。
     5.蓖麻油基多元醇和异氰酸酯、发泡剂、表面活性剂和阻燃剂APP等发泡制备一系列阻燃型蓖麻油聚氨酯泡沫,并与PS-3152进行对比。研究结果发现:蓖麻油聚酯多元醇的发泡活性较醇解产物高,泡沫压缩强度、热稳定性高于醇解产物;但其发泡活性、氧指数和燃烧性能与PS-3152制备的泡沫性能相当,且热稳定性更高,导热系数更低;主要由于苯环刚性结构的引入提高了整个体系的硬段含量和成炭率;添加APP后的泡沫样品阻燃性能明显得到了提高,其中氧指数达到了25.9-26.8。
Rigid polyurethane foam (RPUF) is the best thermal insulation material with its optimalinsulating performance. However, with the increasing depletion of fossil resources and theimprovement in awareness of the environmental protection, researches on natural renewableresources replacing petrochemicals has attracted more and more attention. Cardanol and castoroil are important feedstock for the renewable production of flame-retardant polyurethane foamin biomass resources. Less expensive cardanol and castor oil can replace phenol fossilresources to formulate polyurethane foam thermal insulation material, which has significantpromotion to make biomass resource advantage, improve ecological environment and developpolyurethane material industry.
     In the present work, a series of novel polyether, polyester polyols were explored from thebiomass resources cardanol and castor oil by Mannich reaction, alkyl oxidation reaction,alcoholysis, esterification reaction and so on. Further, flame-retardant RPUFs with goodphysical and thermal performance were obtained. The main purpose of the thesis was to revealeffect of structure of biomass-based polyols on properties of rigid RPUF. The main researchcontents and conclusions were summarized as follows.
     1. Cardanol-based Mannich bases with different structures and properties weresynthesized from cardanol, paraformaldehyde, diethanolamine and melamine by Mannichreaction. The intermediate and products were characterized and tested using FT IR,1H NMR,GPC, GC-MS and TG. The mechanism of first step aldehyde and amine adduct was confirmedin Mannich reaction. The main factors affecting the structure and properties of productcomposition, viscosity, hydroxyl value and molecular weight of cardanol-based Mannichpolyether polyols were discussed, such as reaction temperature, amount of cardanol, cardanolalternative of phenol, melamine and so on.
     2. Cardanol-based Mannich polyether polyols were synthesized by initiator cardanol-based Mannich bases and propylene oxide through alkoxylation reaction, which havesome advantages such as low viscosity, adjustable functionality and containing flame retardantgroups.The structure and properties of Mannich polyether polyol were determined by studyingthe initiator structure, catalyst type, quality of propylene oxide and other factors. The optimumprocess conditions for cardanol-based Mannich polyether polyols were obtained throughtesting hydroxyl value, viscosity and characterizing FT IR, TG, GPC and1H NMR The smallerthe amount of cardanol, the lower the amount of phenol substitution, the more the amount ofmelamine added, the viscosity and hydroxyl value of the polyol larger and the thermal stabilityhigher. The cardanol-based Mannich polyether polyols suitable for preparing flame-retardantRPUF were chosen.
     3Castor oil-based polyether polyols were synthesized using small molecule polyols(ethylene glycol, glycerol and pentaerythritol), castor oil and phthalic anhydride as rawmaterial by alcoholysis and esterification reaction, which have good compatibility with otherpolyester and polyether polyols and in favor of combination polyols system of long-termstorage. The effects of small molecule polyol species and reaction time on hydroxyl value,viscosity and molecular weight of castor oil-based alcoholysis products were investigated. Themonoglyceride and diglyceride content and conversion rate significantly reduced, the hydroxylvalue increased with increasing functionality of small molecule polyols. Compared to thealcoholysis of castor oil, the monoester and diester content of castor oil-based polyester polyolssubstantially reduced, and the primary hydroxyl groups relatively content of was higher. Thethermal stability of castor oil-based polyester polyols were higher than the commercialpolyester polyol PS-3152because of the high thermal stability of castor oil fatty acid chain.
     4A series of composite flame-retardant RPUFs were prepared with cardanol-basedMannich polyether polyols, blowing agent, surfactant, flame retardants and isocyanate. Theresults showed that the higher foaming behavior of cardanol-based Mannich polyether polyolwith different amount of cardanol were almost same. The higher cardanol amount of phenolsubstitution, the better miscible with blowing agent cyclopentane, the smaller compressive strength and thermal conductivity, the lower thermal stability, residue char yield and limitiedoxygen index, the higher heat release and smoke emission of the RPUFs, and the moreopenings and cracking carbon layer after combustion. The properties of flame retardant RPUFsamples from different amounts of melamine-based Mannich polyether polyols addinghalogen-free flame retardants expanded graphite (EG), ammonium polyphosphate (APP) andDiethyl ethylphosphonate (DEEP) were analyzed. It was found that the higher the amount ofmelamine replacement foam, the greater the relative compressive strength, thermalconductivity, and the limitied oxygen index, the higher thermal stability and residue char yield.For EG filled RPUFs, the heat release peak, the total heat release and amount of smoke releaseparameters were significantly decreased, the mechanical properties, thermal stability, limitiedoxygen index, the yield and dense continuity of the char layer after combustion significantlyenhanced. EG was better in improving limited oxygen index, smoke production and releaseareas than DEEP and APP. Compared to non-flame retardant PUF, the curing times and thermalconductivities of RPUFs adding flame retardants DEEP, APP and EG were slightly increased.The flame retardant properties of the RPUF samples increased with the amount of the sameflame retardant. The solid flame retardants APP and EG were better in increasing themechanical properties, thermal stability and lowering ratio of CO/CO2than the liquid flameretardant DEEP. And, the phosphorus flame retardants APP and DEEP were better in reducingheat release rate than EG, the different flame retardants compound in the density and continuityof the carbon layer better than single flame.
     5A series of castor oil-based flame retardant RPUFs were prepared from castor oil-basedpolyols, isocyanate, blowing agent, surfactant and flame retardant APP, and commercialpolyester polyol PS-3152were compared. The results showed that the foaming activities ofcastor oil-based polyester polyols were higher than alcoholysis products, the correspondingfoam compressive strength and thermal stability better. Compared to PS-3152based PUF, thefoaming activity of the oxygen index and the combustion performance of PUFs prepared fromcastor oil-based polyester polyol were quite, and higher thermal stability and lower thermal conductivity. This is mainly due to the introduction of benzene ring, improving the hardsegment content and residue char yield. The flame retardant properties of APP-filled PUFssignificantly improved with the limited oxygen index25.9-26.8.
引文
[1]刘益军.聚氨酯原料及助剂手册.北京:化学工业出版社,2013,71~181
    [2]朱吕民,刘益军.聚氨酯泡沫塑料.北京:化学工业出版社,2005,1~58
    [3] P. T. Izzo, C. R. Dawson. The higher olefinic components of cardanol. Journal of Organic Chemistry,1950,15:707~714
    [4] J. V. Paul, L. M. YeddanoPalli. On the olefinic nature of anacardic acid from Indian cashew nut shellliquid. Nature,1956,5:5675~5678
    [5] B. B. Love, C. R. Dawson. An investigation of the geometrical configurations of the olefinic componentsof cardanol and some observations concerning ginkgo. Cashew nut shell liquid X,1958,80:643~645
    [6] M. A. Facanha, S. E. Mazzctto, J. O. Carioca. Evaluation of antioxidant properties of a phospihoratedcardanol compound on mineral oils. Fuel,2007,86(15):2416~2421
    [7]刘小英.腰果酚基聚合物的研究.福建师范大学硕士学位论文,2004
    [8] K. S. Nagabhushana, B. Ravindranath. Efficient Medium-Scale chromatographic group separation ofanacarclic acids from solvent-extracted cashew nut shell liquid. Agric Food Chem,1995,43:2381~2383
    [9] R. Pararnashivappa, P. P. Kumar, P. J. Vithayathil. Novel method for isolation of major phenoliclonsfituents from cashew nut shell liquid. Agric Food Chem,2001,49:2548~2551
    [10] P. P. Kumar. Process for isolation of cardanol from technical cashew nut shell liquid. Agric Food Chem,2002,50:4705~4708
    [11]胡家朋,熊联明,沈震.腰果壳油的蒸馏及馏分成分研究.应用化工,2007,4:345~351
    [12] P. P. Kumar, P. J. Vithayathil. Method for preparing high purity cardanol from cashew nut shell liquid ina molecular distiller. Journal of Agricultural and Food Chemistry,2002,50(16):4705~4708
    [13] R. Paramashivappa, P. P. Kumar. Novel method for isolation of major phenolic constituents fromcashew nut shell liquid. Journal of Agricultural and Food Chemistry,2001,49(5):2548~2551
    [14] M. C. Menom. Coating composition from cashew nutshell liquid. Paintindia,1957,6:23~27
    [15]林金火,胡炳环,陈文定.腰果壳液的蒸馏及其馏分的色-质谱联用分析.林产化学与工业,1991,11(1):33~39
    [16] L. S. Kiong, H. P. Tyman. Conversion of anacardic acid into urushiol. Journal of Chemical Society,1981,1:1942~1952
    [17]贾金荣.蓖麻油聚氨酯及其环氧互穿网络胶黏剂的制备及性能研究.武汉理工大学硕士论文,2012
    [18] V. Sharma, P. P. Kundu. Addition polymers from natural oils, A review. Prog Polym Sci,2006,31(11):983~1008
    [19]欧育湘,李建军.阻燃剂-性能、制造及应用.北京:化学工业出版社,2006,1~38
    [20] X. l. Wang, K. K. Yang, Y. Z. Wang. Physical and chemical effects of diethyl N, N’-diethanolaminomethylphosphate on flame retardancy of rigid polyurethane foam. Journal of AppliedPolymer Science,2001,82:276~282
    [21] H. l. Singh, A. K. Jain, T. P. Sharma. Effect of Phosphorus-Nitrogen Additives on Fire Retardancy ofRigid Polyurethane Foams. Journal of Applied Polymer Science,2008,109:2718~2728
    [23] N. Sarier, E. Onder. Organic modification of montmorillonite with low molecular weight polyethyleneglycols and its use in polyurethane nanocomposite foams. Thermochimica Acta,2010,510:113~121
    [24] S. Semenzato, A. Lorenzetti, M. Modesti, et al. A novel phosphorus polyurethane foam/montmorillonitenanocomposite: Preparation, characterization and thermal behavior. Applied Clay Science,2009,44:35~42
    [25] A. Gharehbaghi, R. Bashirzadeh, Z. Ahmadi. Polyurethane flexible foam fire resisting by melamine andexpandable graphite: Industrial approach. Journal of Cellular Plastics,2011,47(6):549~565
    [26]许冬梅,郝建薇,刘国胜.膨胀阻燃硬质聚氨酯泡沫塑料热降解及燃烧产烟研究.高分子学报,2013,(7):832~840
    [27] K. Cyzio, J. Lubczak. Application of products of reaction between melamine and glycidol as substratesfor oligoetherols and polyurethane foams containing1,3,5-triazine rings. Polym Int,2013;62:1735~1743
    [28]赵修文,张利国,李博等.聚脲多元醇对聚氨酯泡沫阻燃性的影响.化学推进剂与高分子材料,2010,8(1):43~45
    [29]胡源,胡进良,范维澄等.含羟基环三磷腈衍生物的合成及其对聚氨酯的阻燃改性.火灾科学,1996,5(2):12~16
    [31]封伟,郑建邦.结构型含磷氮元素阻燃聚氨酯软质泡沫塑料的研制.塑料工业,1999,27(5):43~44
    [32]杨玉才,罗钟瑜,修玉英.酚醛-三聚氰胺聚合物改性聚醚多元醇用于聚氨酯硬泡的性能研究.聚氨酯工业,2009,24(6):13~16
    [33] M. M. Hirschler.Polyurethane foam and fire safety. Polym. Adv. Technol,2008,19(6):521~529
    [34] M. Zammarano, R. H. Kramer, H. J. Richard, et al. Flammability reduction of flexible polyurethanefoams via carbon nanofiber network formation. Polym. Adv. Technol,2008,19:588~595
    [35] A. Lorenzetti, M. Modesti, E. Gallo, et al. Synthesis of phosphinated polyurethane foams with improvedfire behavior. Polymer Degradation and Stability,2012,97(11):2364~2369
    [36] A. Anna, M. Anders, T. Suzanne. Intumescent Foams-A Nove Flame Retardant System for FlexiblePolyurethane Foams. Journal of Applied Polymer Science,2008,109:2269~2274
    [37] S. Harpal, A. K. Jain, T. P. Sharma. Effect of Phosphorus-Nitrogen Additives on Fire Retardancy ofRigid Polyurethane Foams. Journal of Applied Polymer Science,2008,109:2718~2728
    [38] X. Chen, L. Huo, C. Jiao, et al. TG–FTIR characterization of volatile compounds from flame retardantpolyurethane foams materials. Journal of Analytical and Applied Pyrolysis,2013,100:186~191
    [39] S. Duquesne, R. Delobel, M. L. Bras, et al. A comparative study of the mechanism of action ofammonium polyphosphate and expandable graphite in polyurethane. Polymer Degradation and Stability,2002,2(7):333~344
    [40] M. Modestio, A. Lorenzattio, F. Simionio, et al. Influence of different flame retardants on fire behaviourof modified PIR/PUR polymers. Polymer Dagredation and Stability,2001,74(3):475~479
    [41] S. W. Zhu, W. F. Shi. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UVcurable flame retardant coatings. Polymer Degradation and Stability,2002,75(3):543~547
    [42] D. Sophie, L. B. Michel, B. Serge, et al. Mechanism of fire retardancy of polyurethanes usingammonium polyphosphate. Journal Applied Polymer Science,2001,82(13):3262~3274
    [43]李德徽.芳胺聚醚的合成及应用.化工技术与开发,2002,31(4):30~33
    [44]张强.Mannich反应.安庆师院学报,1996,2(2):86~89
    [45]路军,白银娟,米春喜等.浅谈曼尼希反应及其在有机合成中的应用.大学化学,2000,15(1):29~33
    [46]万道正.曼尼希反应和曼尼希碱化学.北京:科学出版社,1986
    [47]刘祖广,王迪真.木质素的曼尼希反应改性.纸和造纸,2005,(4):53~56
    [48] D. Janaois, M. Tessier. Preparation of amphiphilic polyisobutylenes-b-polyethylenamines by Marmichreaction.Ⅲ. Synthesis of polyisobutylenos-b-polyethylenamines. Journal of Polymer Science,1993,31:1959~1966
    [49]戴维索普.含溴多元醇.中国专利,CN87101828A,1987
    [50] M. E. Brennan, G. P. Speranza. Alkoxylated Mannich Condensates Having Fire Retardancy Propertiesand Manufacture of Rigid Polyurethane Foam Therewith. US Patent,4485195,1984
    [51] M. E. Brennan, G. P. Speranza. Mannich Condensates Having Fire Retardaney Properties andManufacture of Rigid Polyurethane Foam Therewith. US Patent,4489178,1984
    [52] M. Cuscurida, G. P. Speranza. Preparation of Polyaddtion Products of Mannich Condensates andPolyisoeyanatos in Polyols and their Use in Polyurethanes. US Patent,4525488, l985
    [53] N. F. Molina, S. E. Moore. Polyols Useful for Preparing Water Blown Rigid Polyurethane Foam. USPatent,6281393,2001
    [54] S. M. Mirasol, S. J. Williams. Water Blown Rigid Polyurethane Foam with Improved Fire Retardancy.US Patent,20020040122,2002
    [55] M. Lonoscu, S. Mihai, C. Roibu, et al. New aromatic mannich polyols. Polyurethanes, Expo,2003,10:641~642
    [56] I. Rotaru, M. Ionescu, D. Donoscu, et a1. Synthesis of a new mannich polyether polyol with isocyanuricstructure. Material Plastice,2008,45(1):23~28
    [57]姚旭.苯酚基曼尼希多元醇的合成与应用.北京化工大学硕士学位论文,2009
    [58] T. H. Austin. Preparation of a Semiflexible Energy Management Polyether Polyurethane Foam Using asa Crosslinker-Surfactant Anethylene Oxide Adduct of a Mannich Condensate Prepared Foam the Reaction ofNonylphenol, Diethanolamine and Formaldehyde. US Patent,4371629,1983
    [59] M. Cuscurida, G. P. Speranza. Polyurethane Polymer Polyols Made with Aromatic Nitrogen-ContainingPolyols and Polyurethanes. EP Patent,0116758, l984
    [60]王钰.间十五烷基酚的合成及热力学研究.郑州大学硕士学位论文,2010
    [61]胡应模,郭明高.腰果壳液的组成、化学性质及其应用.中国生漆,1990,l:33~42
    [62]李国清,许森清,林金火.顺酐和乙二醇改性腰果酚醛树脂的研究.中国生漆,2002,2:5~8
    [63] P. D. Campaner, D. Amico, L. Longo, et al. Cardanol-based novolac resins as curing agents of epoxyresins. J Appl Polym Sci2009;114:3585~3591
    [64] T. S. Gandhi, M. R. Patel, B. Z. Dholakiya. Synthesis and characterization of different types ofepoxide-based Mannich polyols from low-cost cashew nut shell liquid. Research on Chemical Intermediates,2013, DOI10.1007/s11164-013-1034-2
    [65]潘国全,林金火.腰果酚、苯甲醛缩聚物的合成与特性.中国生漆,2001,l:8~10
    [66]虞兆年.防腐蚀涂料和涂装.北京:化学工业出版社,2002
    [67] K. I. Suresh, V. S. Kishanprasad. Synthesis, Structure, and Properties of Novel Polyols from Cardanoland Developed Polyurethanes. Ind. Eng. Chem. Res.,2005,44(13):4504~4512
    [68] H. P. Bhunia, G. B. Nandoa, T. K. Chakia, et a1. Synthesis and characterization of polymers fromcashewnut shell liquid (CNSL) a renewable resource II. Synthesis of polyurethanes. Eur Polym J,1999,35:1381~1391
    [69]张中云,王家棵,王帆等.新型的单官能团氰酸酯改性氰酸酯树脂的研究.玻璃钢/复合材料,2010(2):34~37
    [70] T. T. M. Tan. Cardanol-glycols and cardanol-glycol-based polyurethane Films. Appl Polym. Sci,1997,(65):507~510
    [71] T. T. M. Tan. Cardanol-lignin-based polyurethanes. Polymer International,1996,(41):13~16
    [72]李绍雄,朱吕民.聚氨酯胶粘剂.北京:化学工业出版社,1998,206~210
    [73] D. K. Mohapatra, D. Das, P. C. Nayak, et al. Polymers from renewable resources. XX. Synthesis,structure and thermal properties of semi-interpenetrating polymer networks based on cardanol-formaldehyde-substituted aromatic compounds copolymerized resins and castor oil polyurethanes. Appl.Polym Sci,1998,(70):837~842
    [74] D. K. Mohapatra, Das, P. C. Nayak, et al. Polymers from renewable resources. XXI. Semiinter-penetrating polymer networks based on cardanol-formaldehyde-substituted aromatic compoundscopolymerized resins and castor oil polyurethanes: Synthesis, structure, scanning electron microscopy and.Polym Chem,1997,(35):3117~3124
    [75]林金火.由腰果壳液制成聚氨酯漆用树脂的研究.天然产物研究与开发,2002,14(6):24~26
    [76] M. Ionescu, X. Wan, N. Bilic, et al. Polyols and rigid polyurethane foams from cashew nut shell liquid.J polym Environ2012;20:647-58.
    [77] K. I. Suresh. Rigid Polyurethane Foams from Cardanol: Synthesis, Structural Characterization, andEvaluation of Polyol and Foam Properties. ACS Sustainable Chem. Eng.,2013,1(2):232~242
    [78] O. Stefan. Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers onthe hard-segment structure. Polymer Degradation and Stability,2010,95:2396~2404
    [79] A. Deewan, S. Eram, A. Sharif. Synthesis, characterization and corrosion protective properties ofboron-modified polyurethane from natural polyol. Progress in Organic Coatings,2008,63:25~32
    [80] T. Suman, K. Niranjan. Castor oil-based hyperbranched polyurethanes as advanced surface coatingmaterials. Progress in Organic Coatings,2013,76:157~164
    [81] H. Mutlu, R. Meier. Castor oil as renewable resource for the chemical industry. European Journal ofLipid Science and Technology,2010,112:10~30
    [82] M. A. Corcuera, L. Rueda, B. Fernandez, et al. Microstructure and properties of polyurethanes derivedfrom castor oil. Polymer Degradation and Stability,2010,95:2175~2184
    [83] S. Lin, J. Huang, P. R. Chang, et al. Structure and mechanical properties of new biomass-basednanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal.Carbohydrate Polymers,2013,95:91~99
    [84] M. Spontón, N. Casis, P. B. Mazo, et al. Biodegradation study by Pseudomonas sp. of flexiblepolyurethane foams derived from castor oil. International Biodeterioration&Biodegradation,2013,85:85~94
    [85] Y. Hamid, H. T. Pejman. Preparation and properties of novel biodegradable polyurethane networksbased on castor oil and poly (ethylene glycol). Polymer Degradation and Stability,2007,92:480~489
    [86] H. J. Wang, M. Z. Rong, M. Q. Zhang, et al. Biodegradable foam plastics based on castor oil.Biomacromolecules,2008,9:615~623
    [87] D. S. Ogunniyi. Castor oil: A vital industrial raw material. Bioresource Technology,2006,97:1086~1091
    [88]甘厚磊,易长海,曹菊胜等.蓖麻油聚氨酯的制备及其性能研究.化工新型材料,2008,36(1):35~36
    [89]潘梅娟,王晓辉,姚成.植物油基多元醇的合成及其应用.现代化工,2007,27(11):521~524
    [90]卢彬,罗钟瑜,修玉英.植物油多元醇的研究进展.聚氨酯工业,2007,22(6):10~13
    [91] H. D. Kluth, M. M. Alfred. Polyurethane prepolymers based on oleochemical polyols. US Patent,4508853,1985
    [92] S. A. Baser, D. V. Khakhar. Castor Oil-Glycerol Blends as Polyols for Rigid Polyurethane Foams.Cellular Polymers,1993,12(5):390~401
    [93] H. D. Kluth, G. B. Bert, M. M. Alfred, et al. Polyurethane prepolymers based on oleochemical polyolstheir production and use. US Patent,4742087.1988
    [94] H. L. Rutzen, S. W. Gerhard. Process for the production of alkane polyols. US Patent,4825004,1989
    [95] L. Q. Zhang, M. Zhang, Y. H. Zhou. Synthesis of rigid polyurethane foams with castor oil based flameretardant polyols. Industrial Crops and Products,2014,(52):380~388
    [96] L. Q. Zhang, M. Zhang, Y. H. Zhou. The Study of Mechanical Behavior and Flame Retardancy ofCastor Oil Phosphatebased Rigid Polyurethane Foam Composites Containing Expanded Graphite andTriethyl Phosphate. Polymer Degradation and Stability,2013,(98):2784~2794
    [97] K. Nozawa, K. Sano, M. Saski, et al. Polyurethane foams compositions and polyester polyols for themand seat pads comprising them for vehicles. JP,2006002145.2006
    [98] Z. Bernd, P. Falke, I. Rotermund, et al. Procedure for the production of polyurethane soft foam materialswith silencing characteristics. DE,19936481,2001
    [99]蒋洪权,宋湛谦,商士斌等.蓖麻油酸基聚酯多元醇的合成研究.聚氨酯工业,2010,25(2):25~28
    [100]何明,张银萍,罗振扬等.蓖麻油多元醇在聚氨酯硬泡中的应用研究.化工新型材料,2010,38(5):112~114
    [101]杜辉,殷宁,赵雨花等.蓖麻油基聚醚多元醇的制备及其表征.聚氨酯工业,12008,23(5):39~41
    [102] S. A. Baserand, D. V. Khakhar, Castor oil Glycerol Blends as Polyols for Rigid Polyurethane Foams.Cellular Polymer,1993,12(5):390~401
    [103]方禹声,朱吕民.聚氨酯泡沫塑料.北京:化学工业出版社,1994
    [104]孔新平.高密度阻燃硬质聚氨酯泡沫塑料的研制.聚氨酯工业,2001,16(3):27~30
    [105]秦桑路,杨振国.添加型阻燃剂对聚氨酯硬泡阻燃性能的影响.高分子材料科学与工程,2007,23(4):167~169
    [106]史以俊,罗振扬,何明等.含磷阻燃剂对聚氨酯硬泡燃烧特性影响的研究.聚氨酯工业,2009,24(5):23~25
    [107]马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状.材料导报,2006,20(5):392~395
    [108]吴美玉,雍忠根,金一.19F-NMR法测定聚醚多元醇中伯羟基的相对含量.高分子学报,1988,(2):149~151
    [109] L. H. Fan, C. P. Hu, Q. P. Zhao. et al. polymerization of polyurethane and vinyl ester resininterpenetrating polymer networks during reaction injection moulding process. Polymer,1997,38(14):3609~3616
    [110] L. H. Fan, C. P. Hu, Z. P. Zhang, et al. Polymerization kinetics of polyurethane and vinyl ester resininterpenetrating polymer networks by using fourier transform infrared spectroscopy. Journal of AplliedPolymer Science,1996,59:1417~1426
    [111] B. Fang, C. P. Hu, S. K. Ying. Structure and ionic conductivity of graft polyester net works containinglithium perchlo-rate. European Polymer Journal,1993,29(6):799~803
    [112] A. Cunningham, D. J. Sparrow. Rigid polyurethane foam: what makes it the most effective insulant.Cellular Polymer,1986,5:327~342
    [113]李斌,王建祺.聚合物材料燃烧性和阻燃性的评价-锥型量热仪(CONE)法.高分子材料科学与工程,1998,14(5):15~19
    [114]徐晓楠.新一代评估方法-锥型量热仪(CONE)法在材料阻燃研究中的应用.中国安全科学学报,2003,13(1):19~23
    [115]李斌.聚氯乙烯(PVC)的抑烟与阻燃.哈尔滨:东北林业大学出版社,2000,85~204
    [116]马德柱,何平笙,徐种德等.高聚物的结构与性能.北京:科学出版社,1999,447~265
    [117] J. H. Saunders, K. C. Frisch. Polyurethane: Chemistry and Technology. Wiley-Interscience, New York,1962:106~121
    [118] S. Semenzato, A. Lorenzetti, M. Modesti, et al. A novelphosphorus polyurethane FOAM/montmorillonite nanocomposite: preparation, characterization and thermal behavior. Appl. Clay. Sci,2009,44:35~42
    [119] Z. Shen, G. P. Simon, Y. B. Cheng. Nanocomposites of poly(methyl methacry-late) and organicallymodified layered silicates by melt intercalation. J. Appl.Polym. Sci.2004,92:2101~211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700