用户名: 密码: 验证码:
纳米纤维素复合凝胶的制备和表征及其物化性能增强的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素作为地球上最丰富的可再生生物资源,具有价格低廉、产量丰富的特点,以天然纤维素为原料来获得纳米纤维素的各种制备手段已经非常成熟。纳米纤维素作为生物高聚物增强相,具有其他增强相无可比拟的特点。本论文并采用共聚法,以纳米纤维素为填料与聚合物基体复合构筑纳米纤维素复合凝胶,考察了纳米复合凝胶的合成机制,表征了纳米复合凝胶的表面形貌,并探讨了纳米复合凝胶在废水处理中的应用和吸附机制,为天然纤维素的高值化利用提供了一条新的途径。
     在85%的磷酸溶解的纤维素溶液中,通过自由基接枝聚合反应制备了超吸水性的丙烯酸接枝纤维素(C-g-AA)水凝胶。分析了C-g-AA水凝胶在水溶液中的溶胀行为,考察了对废水中阳离子染料和重金属离子的去除行为。研究了接枝过程单体含量对于水凝胶性能的影响,以及水凝胶吸附过程受溶液pH值,吸附时间,初始离子浓度和竞争离子等各因素的影响。结果表明凝胶在水溶液中的溶胀具有明显的pH敏感性和pH可逆性,凝胶的溶胀率随着接枝制备中丙烯酸单体的增加而增加,最高可达73倍;凝胶对亚甲基蓝的平衡吸附量可达2197mg/g,对重金属离子,Cd2+、Pb2+和Ni2+的吸附容量分别为562.7,825.7和380.1mg/g,竞争吸附的亲和力顺序为Pb2+>Ni2+>Cd2+;凝胶具有重复利用性,70%的MB可以在弱酸溶液体系中被脱除,且重复使用三次后对重金属离子的吸附能力仍能达到原来的85%;水凝胶对阳离子染料和重金属离子的吸附等温线和动力学均分别符合Langmuir模型和准二级动力学模型。
     利用酸水解、TEMPO氧化和超声机械水解三种不同的制备方法得到纳米纤维素。考察了纳米纤维素的形貌特征、表面电荷及尺寸分布。结果表明三种不同制备技术得到的纳米纤维素质量差异明显,TEMPO氧化得到的纳米纤维素具有较高的长宽比,高产率(37%)和高的表面电荷(-47mV);酸水解得到的纳米纤维素具有高的结晶度(88.1%)和较好的尺寸分散性。通过溶液浇铸法制备不同纳米纤维素含量的PVA复合凝胶膜,研究和探讨了复合膜的机械性能、热性能以及界面交互性能。膜断裂面SEM分析发现AH和TEMPO方法得到的纳米纤维素能均一的分散在PVA基体中;力学性能测试发现在加载6wt%的纳米纤维素时,AH薄膜具有高的断裂伸长率,断裂伸长率为51.6%,而TEMPO薄膜的拉伸模量和拉伸强度都有不同程度的提高,分别提高21.5%和10.2%;此外TMO/PVA显示了较优的热稳定性。
     以羧基化纳米纤维素纤维(CCNFs)为填料,与羧甲基纤维素基体共聚制备纳米纤维素复合凝胶微球。结果表明,CCNFs用量,溶液的pH值,体系温度以及盐溶液的种类和浓度均会对复合凝胶的溶胀行为造成影响;当CCNFs含量高至2.5wt%时,凝胶的溶胀量从245.8急剧增加至458.7g/g;CCNFs的加入提高了水凝胶的抗盐性能,使复合凝胶具有较慢的去溶胀率以及在平衡退溶胀时较高的保水能力;同时纳米复合水凝胶呈现更好的pH响应行为以及在不同温度下的高的保水能力;通过凝胶化法制备了CCNFs和胺基铁粒子两种纳米粒子混合填充的磁响应壳聚糖水凝胶微球。SEM分析发现磁性铁纳米粒子很好地分散在整个三维空间结构,CCNFs互相交织的特性使得水凝胶网络结构的空隙变窄,使得结构更加密集。水凝胶的磁响应性来源于添加的铁纳米粒子的磁响应性,可以在外部磁力的帮助下很容易与该溶液分离;复合凝胶对Pb2+离子有较高的吸附能力,吸附量高至171.0mg/g。
     通过定向冷冻模塑技术成功的制备了纳米纤维素微晶(CNWs)气凝胶,在常用载体水溶液中加入少量DMSO(0.5%~1.5%v/v)作为混合溶剂,能够显著的影响气凝胶的孔的形态。混合溶剂中DMSO浓度越高,SEM观察到的气凝胶的微观结构越粗糙。当混合溶液中DMSO含量增加时,气凝胶层状结构会相应的产生变化,层厚度,层间距,和顶部孔直径均会提高。跟未添加DMSO溶剂的体系相比,当DMSO的浓度继续增加到1.5%时,气凝胶的密度从22.2增加至45.3kg·m-3,压缩应力和压缩模量分别提高至94.6kPa和526.8kPa。冷却条件的不同会影响气凝胶的孔洞特性,也同样会直接反应在气凝胶材料的抗压缩强度上。定向冷冻条件下得到具有方向性的孔洞形貌的气凝胶材料相比非定向条件下得到的具有不规则孔洞形貌的气凝胶显示更优的机械性能。
Cellulose is a high-molecular weight linear homopolymer constituted of repeatingβ-D-glucopyranosyl units joined by l→4-glycosidic linkages, is the most abundant, renewableand biodegradable natural polymer. Many techniques have been developed to obtainnano-scaled cellulose from natural cellulose material. These nanocelluloses are able toprovide reinforcement in a wild variety of composites. In this work, nanocellulose was usedas nanofillers in the polymer matrix to build nanocomposite hydrogels, provides a new way totake advantage of high-value natural cellulose.
     Cellulose-graft-acrylic acid (C-g-AA) hydrogels were prepared via free radicalpolymerization in85%homogeneous phosphoric acid solution. The results showed that thehydrogels have obvious pH sensitivity and pH reversibility. The swelling ratio in distilledwater was increased with increasing of AA components in hydrogels, it can exceeded7327%with mole ratio of6:1(AA/Cellulose); The C-g-AA hydrogels have a porous network innerstructure with cellulose as the backbone, it has excellent dye and metal ions equilibriumadsorption capacity, for methylene blue (MB) was2197mg·g-1and for the heavy metal ionswere562.7(Cd2+),825.7(Pb2+), and380.1mg/g (Ni2+), respectively. The observed affinityorder of competitive ions adsorption is Pb2+>Ni2+>Cd2+in mmol/g. The effects of mole ratioof AA to cellulose, the pH of adsorption medium and the initial concentration on MB or metalions adsorption capacity of hydrogels were investigated. Both the adsorption isotherm andkinetics fit the Langmuir model and the Pseudo-second-order model well, respectively. SEMimages and FTIR spectra before and after adsorption on the hydrogels revealed that thecomplexation between dye (or metal ions) and carboxyl groups on hydrogels was the mainadsorption mechanism.
     Three techniques including acid hydrolysis (AH), TEMPO-mediated oxidation (TMO)and ultrasonication (US) were introduced to obtain nanocellulose. Important differences werenoticed in fiber quality of nanocellulose and film properties of poly(vinyl alcohol)(PVA)nanocomposite films. The TMO treatment was more efficient in nanocellulose isolation withhigher aspect ratio, surface charge (-47mV) and yields (37%). While AH treatment resultedin higher crystallinity index (88.1%) and better size dispersion. The fracture surface, thermalbehavior and mechanical properties of the PVA nanocomposite films were investigated bymeans of SEM, DSC, TGA and tensile testing. The results shown that both the TMO-derivedand AH-derived nanocellulose could homogeneous disperse in the PVA matrices. AH/PVAfilms had higher elongation at break (51.59%at6wt%nanocellulose loading) as compared with TMO/PVA, while TMO/PVA films shown superior tensile modulus and strength withincrements of21.5%and10.2%at6wt%nanocellulose loading. The thermal behavior of thePVA nanocomposite films was higher improved with TMO-derived nanofibrils addition.
     Nanocomposite hydrogels based on carboxylated cellulose nanofibrils (CCNFs) andcarboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) were synthesized. A series ofexperiments were performed to evaluate the influence of factors such as CCNFs amount,solution pH, temperature, salt solution type and concentration on the swelling behaviors of thehydrogels. The swelling capacity in distilled water increased dramatically from245.8to458.7g/g with the addition of CCNFs up to2.5wt%. The incorporation of CCNFs improved saltresistance properties of the hydrogels with slower deswelling rate and higher water retentioncapacity at deswelling equilibrium. Furthermore, the nanocomposite hydrogels presentedbetter responsive behavior in relation to pH presence and showed an increase in waterretention capacity at various temperatures.
     Novel magnetic hydrogel beads (m-CS/PVA/CCNFs), consisting of CCNFs,amine-functionalized magnetite nanoparticles and PVA blended chitosan, were prepared byan instantaneous gelation method. SEM, XRD, and TGA techniques were applied toinvestigate the structure of the hydrogel materials. SEM revealed that magnetite nanoparticlewas well dispersed in space throughout the3D structure. The average diameter of CCNFsblended magnetic hydrogels was quite smaller than that of the unblended samples for theCCNFs narrowed the voids network in hydrogels and rendered the structures denser. Themagnetic nature of m-CS/PVA/CCNFs hydrogels was validated as magnetite nanoparticle.Hydrogels can be separated easily from the solution with the help of an external magneticforce. The hydrogels exhibit higher Pb2+adsorption capacity with the value of171.0mg/g.
     Free-standing cellulose nanowhikers (CNWs) foams were successfully prepared inH2O-DMSO binary solvent through freeze-casting technique. The addition of0.5%~1.5%v/vDMSO in water had a significant influence on the pore morphology of the foams, with higherDMSO concentrations, the structure sizes, including the pore diameter on the top view, thelamellae thickness and interlamellae spaces on the side view can be increased to a certainextent. Compared with foams prepared from water, the foams in H2O-DMSO mixture showspotential for strongly improved mechanical properties. The cooling conditions also stronglyimpact the porosity features, and have a direct repercussion on the compressive strength.
引文
[1] French A. D., Bertoniere N. R., Brown R. M., et al. Kirk-Othmer Encyclopedia ofChemical Technology[M].5th ed. New York: John Wiley&Sons Inc.,2004.
    [2] Payen A. Mémoire sur la composition du tissu propre des plantes et du ligneux[J].Comptes rendus,1838,7:1052-1056.
    [3] Atalla R. H., Brady J. W., Matthews J. F., et al. Structures of Plant Cell Wall Celluloses inBiomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy[M]. Oxford:Blackwell Publishing Ltd.,2008.
    [4] Hon DN-S., Shiraishi N. Wood and Cellulosic Chemistry[M]. New York: Marcel DekkerInc.,1991.
    [5] Sarko A. Wood and Cellulosics: Industrial Utilisation, Biotechnology, Structure, andProperties[M]. Chichester: Ellis Horwood,1987.
    [6] Preston R. D. Cellulose: Structure, Modification and Hydrolysis[M]. New York: JohnWiley&Sons Inc.,1986.
    [7] Habibi Y., Lucia L. A., Rojas O. J. Cellulose nanocrystals: chemistry, self-Assembly, andapplications[J]. Chemical Reviews,2010,110:3479-3500.
    [8] Walton A. G., Blackwell J. Biopolymer[M]. New York: Academic Press,1973.
    [9] Whistler R. L., BeMiller J. M. Carbohydrate Chemistry for Food Scientists[M]. Minnesota:American Association of Cereal Chemists, Inc.,1997.
    [10]高洁,汤烈贵,纤维素科学[M].北京:科学出版社,1999:24-27.
    [11] Coffey D. G., Bell D. A., Henderson A. Food Polysaccharides and Their Applications[M].New York: Marcel Dekker, Inc.,1995.
    [12] Hebeish A., Guthrie J. T. The Chemistry and Technology of Cellulosic Copolymers[M].Berlin: Springer-Verlag,1981.
    [13] Klemm D., Heublein B., Fink H. P., et al. Cellulose: fascinating biopolymer andsustainable raw material[J]. Angewandte Chemie International Edition,2005,44(22):3358-3393.
    [14] Krassig H. A. Cellulose-Structure, Accessibility and Reactivity[M]. Yverdon: Gordon andBreach Science Publisher,1993.
    [15] Roy D., Semsarilar M., Guthrie J. T., et al. Cellulose modification by polymer grafting: areview[J]. Chemical Society Reviews,2009,38(7):1825-2148.
    [16] Bhattacharya A., Misra B. N. Grafting: a versatile means to modify polymers:Techniques, factors and applications[J]. Progress in Polymer Science,2004,29(8):767-814.
    [17] Chauhan G. S., Mahajan S., Guleria L. K. Polymers from renewable resources: sorptionof Cu2+ions by cellulose graft copolymers[J]. Desalination,2000,130(1):85-88.
    [18] Gupta K. C., Khandekar K. Temperature-responsive cellulose by Ceric(IV) ion-initiatedgraft copolymerization of N-Isopropylacrylamide[J]. Biomacromolecules,2003,4(3):758-765.
    [19] McDowall D. J., Gupta B. S., Stannett V. T. Grafting of vinyl monomers to cellulose byceric ion initiation[J]. Progress in Polymer Science,1984,10(1):1-50.
    [20] Waly A., Abdel-Mohdy F. A., Aly A. S., et al. Synthesis and characterization of celluloseion exchanger. II. Pilot scale and utilization in dye–heavy metal removal[J]. Journal ofApplied Polymer Science,1998,68(13):2151-2157.
    [21] El-Salmawi K. M., Abu Zaid M. M., Ibraheim S. M., et al. Sorption of dye wastes bypoly(vinyl alcohol)/poly(carboxymethyl cellulose) blend grafted through a radiationmethod[J]. Journal of Applied Polymer Science,2001,82(1):136-142.
    [22] Hebeish A., El-Hilw Z. H. Preparation of DEAE cotton-g-poly(methacrylic acid) for useas ion exchanger[J]. Journal of Applied Polymer Science,1998,67(4):739-745.
    [23]叶代勇.纳米纤维素的制备[J].化学进展,2007,19(10):1568-1575.
    [24]唐丽荣.纳米纤维素晶体的制备、表征及应用研究[D].福州,福建农林大学,2010.
    [25] Beck-Candanedo S., Roman M., Gray D. G. Effect of reaction conditions on theproperties and behavior of wood cellulose nanocrystal suspensions[J].Biomacromolecules,2005,6(2):1048-1054.
    [26] Terech, P., Chazeau, L., Cavaille J. Y. A small-angle scattering study of cellulose whiskersin aqueous suspensions[J]. Macromolecules,1999,32(6):1872-1875.
    [27] Grunert M., Winter W. T. Nanocomposites of cellulose acetate butyrate reinforced withcellulose nanocrystals[J]. Journal ofPolymers and the Environment,2002,10(1-2):27-30.
    [28] Revol J. F. On the cross-sectional shape of cellulose crystallites in Valonia ventricosa[J].Carbohydrate Polymers,1982,2(2):123-134.
    [29] Fengel D., Wegener G. Wood: Chemistry, Ultrastructure, Reactions[M]. New York: Walterde Gruyter,1984.
    [30] Araki J., Wada M., Kuga S., et al. Flow properties of microcrystalline cellulosesuspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A,1998,142(1):75-82.
    [31] Abe K., Iwamoto S., Yano H. Obtaining cellulose nanofibers with a uniform width of15nm from wood[J]. Biomacromolecules2007,8:3276-3278.
    [32] Azizi Samir MAS., Alloin F., Dufresne A. Review of recent research into cellulosicwhiskers, their properties and their application in nanocomposite field[J].Biomacromolecules,2005,6:612-626.
    [33] Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: areview[J]. Cellulose,2010,17(3):459-494.
    [34] Eichhorn S. J., Dufresne A., Arangure M., et al. Review: current international researchinto cellulose nanofibres and nanocomposites[J]. Journal of Materials Science,2010,45(1):1-33.
    [35] Nickerson R. F., Habrle J. A. Cellulose intercrystalline structure[J]. Industrial andEngineering Chemistry Research,1947,39(11):1507-1512.
    [36] R nby B. G., Ribi E. über den Feinbau der Zellulose[J]. Experientia,1950,6(1):12-14.
    [37] Favier V., Chanzy H., Cavaille J. Y. Polymer nanocomposites reinforced by cellulosewhiskers[J]. Macromolecules,1995,28(18):6365-6367.
    [38] Dong X. M., Gray D. G. Effect of counterions on ordered phase formation in suspensionsof charged rodlike cellulose crystallites[J]. Langmuir,1997,13(8):2404-2409.
    [39] Bondeson D., Mathew A., Oksman K. Optimization of the isolation of nanocrystals frommicrocrystalline cellulose by acid hydrolysis[J]. Cellulose,13(2):171-180.
    [40] Henriksson M., Henriksson G., Berglund L. A., et al. An environmentally friendly methodfor enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J].European Polymer Journal,2007,43(8):3434-3441.
    [41] Janardhnan S., Sain M. Isolation of cellulose microfibrils-an enzymatic approach[J].Bioresources,2006,1(2):176-188.
    [42] Herrick F. W., Casebier R. L., Hamilton J. K., et al. Microfibrillated cellulose: morphologyand accessibility[J]. Journal of Applied Polymer Science,1983,37:797-813.
    [43] Turbak A., Snyder F., Sandberg K. Microfibrillated cellulose, a new cellulose product:properties, uses, and commercial potential[J]. Journal of Applied Polymer Science,1983,37:815-827.
    [44] Ahola S., Salmi J., Johansson L. S., et al. Model films from native cellulose nanofibrils:preparation, swelling, and surface interactions[J]. Biomacromolecules,2008,9(4):1273-1282.
    [45] Cheng Q., Wang S., Rials T. G., et al. Physical and mechanical properties of polyvinylalcohol and polypropylene composite materials reinforced with fibril aggregates isolatedfrom regenerated cellulose fibers[J]. Cellulose,2007,14(6):593-602.
    [46] Saito T., Kimura S., Nishiyama Y., et al. Cellulose nanofibers prepared byTEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491.
    [47] Isogai T., Yanagisawa M., Isogai A. Degrees of polymerization (DP) and DP distributionof cellouronic acids prepared from alkali-treated celluloses and ball-milled nativecelluloses by TEMPO-mediated oxidation[J]. Cellulose,2009,16(1):117-127.
    [48] De Nooy A. E. J., Besemer A. C., Van Bekkum H. Highly selective nitroxylradical-mediated oxidation of primary alcohol groups in water-soluble glucans[J].Carbohydrate Research,1995,269(1):89-98.
    [49] Chang P. S, Robyt J. F. Oxidation of primary alcohol groups of naturally occurringpolysaccharides with2,2,6,6-Tetramethyl-1-Piperidine oxoammonium ion[J]. Journal ofCarbohydrate Chemistry,1996,15(7):819-830.
    [50] Saito T., Shibata I., Isogai A., et al. Distribution of carboxylate groups introduced intocotton linters by the TEMPO-mediated oxidation[J]. Carbohydrate Polymers,2005,61(4):414-419.
    [51] Saito T., Nishiyama Y., Putaux J. L., et al. Homogeneous suspensions of individualizedmicrofibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules,2006,7(6):1687-1691.
    [52] turcov A., Davies G. R., EichhornS. J. Elastic modulus and stress transfer properties oftunicate cellulose whiskers[J]. Biomacromolecules,2005,6(2):1055-1061.
    [53]甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工,2008,28(6):85-88.
    [54] Fukuzumi H., Saito T., Iwata T., et al. Transparent and high gas barrier films of cellulosenanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules,2009,10(1):162-165.
    [55] Li Z., Renneckar S., Barone J. R. Nanocomposites prepared by in situ enzymaticpolymerization of phenol with TEMPO-oxidized nanocellulose[J].2001, Cellulose,17(1):57-68.
    [56]杨韶平.环境敏感型纤维素基水凝胶的制备及其吸附性能研究[D].广州:华南理工大学,2010.
    [57] Chang C. Y., Zhang L. N. Cellulose-based hydrogels: Present status and applicationprospects[J]. Carbohydrate Polymers,2011,84(1):40-53.
    [58] Haraguchi K., Takada T. Characteristic sliding frictional behavior on the surface ofnanocomposite hydrogels consisting of organic-inorganic network structure[J].Macromolecular Chemistry and Physics,2005,206(15):1530-1540.
    [59] Capadona J. R., Shanmuganathan K., Trittschuh S., et al. Polymer nanocomposites withnanowhiskers isolated from microcrystalline cellulose[J]. Biomacromolecules,2009,10(4):712-716.
    [60] Nussbaumer R. J., Caseri W. R., Smith P., et al. Polymer-TiO2nanocomposites: a routetowards vsually transparent broadband UV filters and high refractive index materials[J].Macromolecular Materials and Engineering,2003,288(1):44-49.
    [61]彭自正,王殚业,许云延,等.逾渗与岩石破裂的计算机模拟研究[J].西北地震学报,1996,18(1):22-29.
    [62] Danescu R. I., Zumbrunnen D. A. Computational simulation of controllable structureformation among particle additives in a continuous-flow chaotic mixer[J]. PowderTechnology,2002,125(2-3):251-259.
    [63] Ou R., Gerhardt R. A., Marrett C., et al. Assessment of percolation and homogeneity inABS/carbon black composites by electrical measurements[J]. Composites Part B:Engineering,2003,34(7):607-614.
    [64] Jeon H. S., Rameshwaram J. K., Kim G. Characterization of polyisoprene–claynanocomposites prepared by solution blending[J]. Polymer,2003,44(19):5749-5758.
    [65] Yang J., Han C. R, Duan J. F., et al. Mechanical and viscoelastic properties of cellulosenanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels[J]. AppliedMaterials and Interfaces,2013,5(8):3199-3207.
    [66] Lin N., Dufresne A. Supramolecular hydrogels from In situ host–guest inclusion betweenchemically modified cellulose nanocrystals and cyclodextrin[J]. Biomacromolecules,2013,14(3):871-880.
    [67]彭静,乔金梁,魏根拴.橡胶增韧塑料机理[J].高分子通报,2001,5:13-24.
    [68] Goetz L., Mathew A., Oksman K., et al. A novel nanocomposite film prepared fromcrosslinked cellulosic whiskers[J]. Carbohydrate Polymers,2009,75(1):85-89.
    [69] Pan S., Raguskas A. J. Preparation of superabsorbent cellulosic hydrogels[J].Carbohydrate Polymers,2012,87(2):1410-1418.
    [70] Nair S. S., Zhu J. Y., Deng Y. Hydrogels prepared from cross-linked nanofibrillatedcellulose[J]. Sustainable Chemistry and Engineering[J]. In press.
    [71] Haraguchi K., Li H. J., Matsuda K., et al. Mechanism of forming organic/inorganicnetwork structures during In-situ free-radical polymerization in PNIPA claynanocomposite hydrogels[J]. Macromolecules,2005,38(8):3482-3490.
    [72] Haraguchi K., Taniguchi S., Takehisa T. Reversible force generation in atemperature-responsive nanocomposite hydrogel consisting ofPoly(N-isopropylacrylamide) and clay[J]. Chem Phys Chem,2005,6(2):238-241.
    [73]陈国华,李明春,姚康德.聚合物/粘土纳米复合体系[J].高分子材料科学与工程,1999,15(3):9-13.
    [74] Giannelis E. P., Krishnamoorti R., Manias E. Polymer-silicate nanocomposites: modelsystems for confined polymers and polymer brushes[J]. Polymers in ConfinedEnvironments, Advances in Polymer Science,1999,138:107-147.
    [75] Sanna R., Fortunati E., Alzari V., et al. Poly(N-vinylcaprolactam) nanocompositescontaining nanocrystalline cellulose: a green approach to thermoresponsive hydrogels[J].Cellulose,2013,20(5):2393-2402.
    [76] McKee J. R., Hietala S., Seitsonen J., et al. Thermoresponsive nanocellulose hydrogelswith tunable mechanical properties[J]. ACS Macro Letters,2014,3(3):266-270.
    [77] Tong X., Zheng J., Lu Y., et al. Swelling and mechanical behaviors of carbonnanotube/poly(vinyl alcohol) hybrid hydrogels[J]. Materials Letters,2007,61(8-9):1704-1706.
    [78] Akhlaghi S. P., Berry R. C., Tam K. C. Surface modification of cellulose nanocrystal withchitosan oligosaccharide for drug delivery applications[J]. Cellulose,2013,20(4):1747-1764.
    [79]姜宇,刘守信,房喻,等.纳米TiO2/聚N-异丙基丙烯酰胺复合水凝胶的合成及其表征[J].化学学报,2007,65(21):2437-2442.
    [80]容建华,陈敏,胡永红,等.纳米复合水凝胶的制备与表征[J].暨南大学学报(自然科学版),2005,26(5):657-661.
    [81] Zhang J. T., Huang S. W., Xue Y. N., et al. Poly(N-isopropylacrylamide)nanoparticle-incorporated PNIPAAm hydrogels with fast shrinking kinetics[J].Macromolecular Rapid Communications,2005,26(16):1346~1350.
    [82] Liu Y., Wang W. B., Wang A. Q. Adsorption of lead ions from aqueous solution by usingcarboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites[J].Desalination,2010,259:258-264.
    [83] Jeon Y. S., Lei J., Kim J-H. Dye adsorption characteristics of alginate/polyaspartatehydrogels[J]. Journal of Industrial and Engineering Chemistry,2008,14:726-731.
    [84] Zhou L. M., Wang Y. P., Liu Z. R., et al. Characteristics of equilibrium, kinetics studiesfor adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosanmicrospheres[J]. Journal of Hazardous Materials,2009,161:995-1002.
    [85] Ozay O., Ekici S., Baran Y., et al. Removal of toxic metal ions with magnetichydrogels[J]. Water Research,2009,43:4403-4411.
    [86] Paulino A. T., Guilherme M. R., Reis A. V., et al. Removal of methylene blue dye froman aqueous media using superabsorbent hydrogel supported on modifiedpolysaccharide[J]. Journal of Colloid and Interface Science,2006,301:55-62.
    [87]李伟,孙建中,周其云.适用于酶包埋的高分子载体材料研究进展[J].功能高分子学报,2001(3):365-369.
    [88]张传梅,付建伟,庄银凤,等.温敏性水凝胶作为固定化酶载体的研究[J].河南科学,2006(5):683-686.
    [89] Hasehke L, Sendijarevic V, Wong S, et al. Clear nonionic polyurethane hydrogels forbiomedical applications[J]. Joumal of Elastomers and Plastics,1994,26(1):41-57.
    [90]金淑萍,柳明珠,陈世兰,等.智能高分子及水凝胶的响应性及其应用[J].物理化学学报,2007,23(3):438-446.
    [91] Hu Z., Chen Y., Wang C., et al. Polymer gels with engineered environmentallyresponsive surface patterns[J]. Nature,1998,393:149-152.
    [92] Hu Z. B., Zhong X. M., Li Y. Synthesis and application of modulated polymer gels[J].Science,1995,269:525-527.
    [93] Schmedlen R. H., Masters K. S., West J. L., et al. Photocrosslinkable polyvinyl alcoholhydrogels that can be modified with cell adhesion peptides for use in tissueengineering[J]. Biomaterials,2002,23(22):4325-4332.
    [94] Halliday J. A., Robertsen S. Oral transmucosal delivery[P]. US6488953,2002.
    [95] Hutmacher D. W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials,2000,21(24):2529-2543.
    [96] Yamada N., Okano T., Sakai H., et al. Thermo-responsive polymeric surfaces: control ofattachment and detachment of cultured cells[J]. Macromolecular Rapid Communications,1990,11(11):571-576.
    [97] Yoo H. J., Kim H. D. Synthesis and properties of waterborne polyurethane hydrogels forwound healing dressings[J]. Journal of Biomedical Materials Research Part B,2008,85(2):326-333.
    [98] Gould F. E., Johnston C. W, Polyurethane Diacrylate Compositions Useful for ContactLenses and the Like[P]. US448023,1983.
    [99]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005:1-3.
    [100]李秀瑜,吴文辉,王建全,等. pH敏感瓜胶/聚丙烯酸半互穿网络水凝胶的溶胀动力学[J].高分子材料科学与工程,2006,22(2):177-180.
    [101] Patil P. S., Phugare S. S., Jadhav S. B., et al. Communal action of microbial cultures forRed HE3B degradation[J]. Journal of Hazardous Materials,2010,181(1-3):263-270.
    [102] Ezziane K., Belouatek A., Hmida E. S. B. H. Treatment of dye and cadmium solutionsusing asymmetric kaolin porous tubular support[J]. Desalination,2010,250(1):418-422.
    [103] Wang Y., Mu Y., Zhao Q. B., et al. Isotherms, kinetics and thermodynamics of dyebiosorption by anaerobic sludge[J]. Separation and Purification Technology,2006,50(1):1-7.
    [104] Panswad T., Wongchaisuwan S. Mechanisms of dye wastewater colour removal bymagnesium carbonate-hydrated basic[J]. Water Science and Technology,1986,18(3):139-144.
    [105] Ciardelli G., Corsi L., Marucci M. Membrane separation for wastewater reuse in thetextile industry[J]. Resources, Conservation and Recycling,2000,31(2):189-197.
    [106] Alinsafi A., Khemis M., Pons M. N., et al. Electro-coagulation of reactive textile dyesand textile wastewater[J]. Chemical Engineering and Processing: Process Intensification,2005,44(4):461-470.
    [107] Mall I. D., Srivastava V. C., Agarwal N. K., et al. Removal of congo red from aqueoussolution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isothermanalyses[J]. Chemosphere,2005,61(4):492-501.
    [108] Kumar K. V., Ramamurthi V., Sivanesan S. Modeling the mechanism involved duringthe sorption of methylene blue onto fly ash[J]. Journal of Colloid and Interface Science,2005,284(1):14-21.
    [109] Suo A. L., Qian J. M., Yao Y., et al. Synthesis and properties of carboxymethylcellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-basedsuperabsorbent[J]. Journal of Applied Polymer Science,2007,103(3):1382-1388.
    [110] Said H. M., Abd Alla S. G., El-Naggar A. W. M. Synthesis and characterization of novelgels based on carboxymethyl cellulose/acrylic acid prepared by electron beamirradiation[J]. Reactive and Functional Polymers,2004,61(3):397-404.
    [111] Wang J. L., Wang W. B., Wang A. Q. Synthesis, characterization and swelling behaviorsof hydroxyethyl cellulose-g-poly(acrylic acid)/attapulgite superabsorbent composite[J].Polymer Engineering&Science,2010,50(5):1019-1027.
    [112] aykara T., Do mus M. The effect of solvent composition on swelling and shrinkingproperties of poly(acrylamide-co-itaconic acid) hydrogels[J]. European Polymer Journal,2004,40(11),2605-2609.
    [113] Kwok A. Y., Qiao G. G., Solomon D. H. Synthetic hydrogels.1. Effects of solvent onpoly(acrylamide) networks[J]. Polymer,2003,44(20):6195-6203.
    [114] Cai J., Liu Y. T., Zhang L. N. Dilute solution properties of cellulose in LiOH/ureaaqueous system[J]. Journal of Polymer Science Part B: Polymer Physics,2006,44(21):3093-3101.
    [115] Cai J., Zhang L. N., Zhou J. P., et al. Novel fibers prepared from cellulose inNaOH/Urea aqueous solution[J]. Macromolecular Rapid Communications,2004,25(17):1558-1562.
    [116] Zhou J. P., Zhang L. N., Deng Q. H., et al. Synthesis and characterization of cellulosederivatives prepared in NaOH/urea aqueous solutions[J]. Journal of Polymer SciencePart A: Polymer Chemistry,2004,42(23):5911-5920.
    [117] Zhu S. D., Wu Y. X., Chen Q. M., et al. Dissolution of cellulose with ionic liquids andits application: a mini-review[J]. Green Chemistry,2006,8:325-327.
    [118] Boerstoel H., Maatman H., Westerink J. B., et al. Liquid crystalline solutions ofcellulose in phosphoric acid[J]. Polymer,2001,42(17):7371-7379.
    [119] Keshk S. M. A. S. Homogenous reactions of cellulose from different natural sources[J].Carbohydrate Polymers,2008,74(4):942-945.
    [120] Brown W., Wikstr m R. A viscosity-molecular weight relationship for cellulose incadoxen and a hydrodynamic interpretation[J]. European Polymer Journal,1965,1(1):1-10.
    [121] Seki H., Suzuki A. Adsorption of lead ions on composite biopolymer adsorbent[J].Industrial and Engineering Chemistry Research,1996,35(4):1378-1382.
    [122] Karada E., züm. B., Saraydin D. Swelling equilibria and dye adsorption studies ofchemically crosslinked superabsorbent acrylamide/maleic acid hydrogels[J]. EuropeanPolymer Journal,2002,38(11):2133-2141.
    [123] Periasamy K., Namasivayam C. Removal of nickel(II) from aqueous solution and nickelplating industry wastewater using an agricultural waste: Peanut hulls[J]. WasteManagement,1995,15(1):63-68.
    [124] Bayramoglu G., Denizli A., Bektas S., et al. Entrapment of Lentinus sajor-caju intoCa-alginate gel beads for removal of Cd(II) ions from aqueous solution: preparation andbiosorption kinetics analysis[J]. Microchemical Journal,2002,72(1):63-76.
    [125] Ho Y. S., McKay G. Pseudo-second order model for sorption processes[J]. ProcessBiochemistry,1999,34(5):451-465.
    [126] McKay G., Poots V. J. P. Kinetics and diffusion processes in colour removal fromeffluent using wood as an adsorbent[J]. Journal of Chemical Technology andBiotechnology,1980,30(1):279-292.
    [127] Moad G., Solomon D. H. The Chemistry of Radical Polymerization[M].2nd ed. Oxford:Elsevier Ltd.,2006.
    [128] Hirokawa Y., Tanaka T. Volume phase transition in a nonionic gel[J]. The Journal ofchemical physics,1984,18:6379-6380.
    [129] Okay O. Macroporous copolymer networks[J]. Progress in Polymer Science,2000,25(6):711-779.
    [130] Liu Y., Velada J. L., Huglin M. B. Thermoreversible swelling behaviour of hydrogelsbased on N-isopropylacrylamide with sodium acrylate and sodium methacrylate[J].Polymer,1999,40(15):4299-4306.
    [131] Majumdar S., Dey J., Adhikari B. Taste sensing with polyacrylic acid grafted cellulosemembrane[J]. Talanta,2006,69(1):131-139.
    [132] Ende M. T. A., Peppas N. A. Synthesis and characterization of acrylamide-acrylic acidhydrogels[J]. Journal of Applied Polymer Science,1996(59):673-685.
    [133] Franson N. M., Peppas N. A. Influence of copolymer composition on non-Fickian watertransport through glassy copolymers[J]. Journal of Applied Polymer Science,1983,28(4):1299-1310.
    [134] Holden B. A., Sweeney D. F., Seger R. G. Epithelial erosions caused by thin high watercontent lens[J]. Clinical and Experimental Optometry,1986,69(3):103-107.
    [135] Korsmeyer R. W., Meerwall E. V., Peppas N. A. Solute and penetrant diffusion inswellable polymers. II. Verification of theoretical models[J]. Journal of Polymer SciencePart B: Polymer Physics,1986,24(2):409-434.
    [136] Dengre R., Bajpai M., Bajpai S. K. Release of vitamin B12frompoly(N-vinyl-2-pyrrolidone)-crosslinked polyacrylamide hydrogels: A kinetic study[J].Journal of Applied Polymer Science,2000,76(11):1706-1714.
    [137] Oztop H. N., Saraydin D., Solpan D., et al. Adsorption of BSA ontoradiation-crosslinked poly (AAm/HPMA/MA) terpolymers[J]. Polymer bulletin,2003,50(3):183-190.
    [138] Yin Y. H., Yang Y. J., Xu H. B. Hydrophobically modified hydrogels containingazoaromatic cross-links: swelling properties, degradation in vivo and application in drugdelivery[J]. European Polymer Journal,2002,38(11):2305-2311.
    [139] Wang L., Zhang J. P., Wang A. Q. Removal of methylene blue from aqueous solutionusing chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,322(1-3):47-53.
    [140] Paulino A. T., Guiherme M. R., Reis A. V., et al. Removal of methylene blue dye froman aqueous media using superabsorbent hydrogel supported on modifiedpolysaccharide[J]. Journal of Colloid and Interface Science,2006,301(1):55-62.
    [141] Wibulswas R. Batch and fixed bed sorption of methylene blue on precursor and QACsmodified montmorillonite[J]. Separation and Purification Technology,2004,39(1-2):3-12.
    [142] Ng J. C. Y., Cheung W. H., McKay G. Equilibrium Studies of the Sorption of Cu(II)Ions onto Chitosan[J]. Journal of Colloid and Interface Science,2002,255(1):64-74.
    [143] Chatterjee S., Lee D. S., Lee M. W., et al. Enhanced adsorption of congo red fromaqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethylammonium bromide[J]. Bioresource Technology,2009,100(11):2803-2809.
    [144] Wu Y. J., Zhang L. J., Gao C. L., et al. Adsorption of Copper Ions and Methylene Bluein a Single and Binary System on Wheat Straw[J]. Journal of Chemical and EngineeringData,2009,54(12):3229-3234.
    [145] Mance G. Pollution Threat of Heavy Metals in Aquatic Environments[M]. New York:Elsevier Science,1987.
    [146] Nriagu J. O., Pacyna J. M. Quantitative assessment of worldwide contamination of air,water and soils by trace metals[J]. Nature,1988,333:134-139.
    [147] Liu C., Bai R., Ly Q. S. Selective removal of copper and lead ions bydiethylenetriamine-functionalized adsorbent: Behaviors and mechanisms[J]. WaterResearch,2008,42(6-7):1511-1522.
    [148] Bayramoglu G., Arica M. Y., Bektas S. Removal of Cd(II), Hg(II), and Pb(II) ionsfrom aqueous solution using p(HEMA/Chitosan) membranes[J]. Journal of AppliedPolymer Science,2007,106(1):169-177.
    [149] Denizli A., Garipcan B., Karabakan A., et al. Synthesis and characterization ofpoly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads forremoval of lead ions[J]. Materials Science and Engineering: C,2005,25(4):448-454.
    [150] Akkaya R., Ulusoy U. Adsorptive features of chitosan entrapped in polyacrylamidehydrogel for Pb2+,UO22+, and Th4+[J]. Journal of hazardous materials,2008,151(2-3):380-388.
    [151] Jang S. H., Jeonga G. Y., Mina B. G., et al. Preparation and lead ion removal property ofhydroxyapatite/polyacrylamide composite hydrogels[J]. Journal of hazardous materials,2008,159(2-3):294-299.
    [152] Zhao H., Mitomo H. Adsorption of heavy metal ions from aqueous solution ontochitosan entrapped CM-cellulose hydrogels synthesized by irradiation[J]. Journal ofApplied Polymer Science,2008,110(3):1388-1395.
    [153] Laus R., de Fávere, V. T. Competitive adsorption of Cu(II) and Cd(II) ions by chitosancrosslinked with epichlorohydrin-triphosphate[J]. Bioresource technology,2011,102(19):8769-8776.
    [154] Chen Y., Liu Y. F., Tan H. M. Preparation of macroporous cellulose-basedsuperabsorbent polymer through the precipitation method[J]. BioResources,2008,3(1):247-254.
    [155] Tripathy J., Mishra D. K., Behari K. Graft copolymerization of N-vinylformamide ontosodium carboxymethylcellulose and study of its swelling, metal ion sorption andfocculationbehaviour[J]. Carbohydrate polymers,2009,75(4):604-611.
    [156] Wang W. B., Wang J., Kang Y. R., et al. Synthesis, swelling and responsive properties ofa new composite hydrogel based on hydroxyethyl cellulose and medicinal stone[J].Composites Part B: Engineering,2011,42(4):809-818.
    [157] Gü lüG., Al E., Emik S., et al. Removal of Cu2+and Pb2+ions from aqueous solutionsby starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels[J].Polymer bulletin,2010,65(4):333-346.
    [158] Zheng Y., Hua S. B., Wang A. Q. Adsorption behavior of Cu2+from aqueous solutionsonto starch-g-poly(acrylic acid)/sodium humate hydrogels[J]. Desalination,2010,263(1-3):170-175.
    [159] Li F., Bao C. L., Zhang J. H., et al. Synthesis of chemically modifed chitosan with2,5-dimercapto-1,3,4-thiodiazole and its adsorption abilities for Au(III), Pd(II), andPt(IV)[J]. Journal of Applied Polymer Science,2009,113(3):1604-1610.
    [160] Xu F. Q., Zhang N. N., Long Y., et al. Porous CS monoliths and their adsorption abilityfor heavy metal ions[J]. Journal of hazardous materials,2011,188(1-3):148-155.
    [161] Irani M., Amjadi M., Mousavian M. A. Comparative study of lead sorption onto naturalperlite, dolomite and diatomite[J]. Chemical Engineering Journal,2011,178:317-323.
    [162] Miretzky P., Mu oz C. Enhanced metal removal from aqueous solution by Fentonactivated macrophyte biomass[J]. Desalination,2011,271(1-3):20-28.
    [163] Zhou Y. M., Fu S. Y., Liu H., et al. Removal of methylene blue dyes from wastewaterusing cellulose-based superadsorbent hydrogels[J]. Polymer Engineering and Science,2011,51(12):2417-2424.
    [164] Engin M. S., Uyanik A., Cay S., et al. Effect of the adsorptive character of filter paperson the determined concentrations in heavy metal involving studies[J]. AdsorptionScience and Technology,2010,28(10):837-846.
    [165] Ho Y. S., McKay G. The sorption of lead(II) on peat[J]. Water Research,1999,33(2):578-584.
    [166] Bunting J. W., Thong K. M. Stability constants for some1:1metal carboxylatecomplexes[J]. Canadian Journal of Chemistry,1970,48:1654-1656.
    [167] Spagnol C., Rodrigues F. H. A., Pereira A. G. B., et al. Superabsorbent hydrogelcomposite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid)[J].Carbohydrate Polymers,2012,87(3):2038-2045.
    [168] Cheng Q. Z., Wang S. Q., Rials T. G. Poly(vinyl alcohol) nanocomposites reinforcedwith cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A:Applied Science and Manufacturing,2009,40(2):218-224.
    [169] Dubief D., Samain E., Dufresne A. Polysaccharide microcrystals reinforced amorphouspoly(β-hydroxyoctanoate) nanocomposite materials[J]. Macromolecules,1999,32(18):5765-5771.
    [170] Lee S-Y., Mohan D. J., Kang I-A., et al. Nanocellulose reinforced PVA composite films:Effects of acid treatment and filler loading[J]. Fibers and Polymers,2009,10(1):77-82.
    [171] Abraham E., Deepa B., Pothan L. A., et al. Extraction of nanocellulose fibrils fromlignocellulosic fibres: A novel approach[J]. Carbohydrate Polymers,2011,86(4):1468-1475.
    [172] Mandal A., Chakrabarty D. Isolation of nanocellulose from waste sugarcane bagasse(SCB) and its characterization[J]. Carbohydrate Polymers,2011,86(3),1291-1299.
    [173] Morán J. I., Alvarez V. A., Cyras V. P., et al. Extraction of cellulose and preparation ofnanocellulose from sisal fibers[J]. Cellulose,2008,15(1):149-159.
    [174] Siqueira G., Tapin-Lingua S., Bras J., et al. Morphological investigation ofnanoparticles obtained from combined mechanical shearing, and enzymatic and acidhydrolysis of sisal fibers[J]. Cellulose,2010,17(6):1147-1158.
    [175] Cao X., Chen Y., Chang P. R., et al. Starch-based nanocomposites reinforced with flaxcellulose nanocrystals[J]. eXPRESS Polymer Letters,2008,2(7):502-510.
    [176] Wang S. Q., Cheng Q. Z. A novel process to isolate fibrils from cellulose fibers byhigh-intensity ultrasonication, Part1: Process optimization[J]. Journal of Applied PolymerScience,2009,113(2):1270-1275.
    [177] Chakraborty A., Sain M., Kortschot M. Cellulose microfibrils: a novel method ofpreparation using high shear refining and cryocrushing[J]. Holzforschung,2005,59(1):102-107.
    [178] Nakagaito A. N., Yano H. The effect of morphological changes from pulp fiber towardsnano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiberbased composites[J]. Applied Physics A: Materials Science and Processing,2004,78(4):547-552.
    [179] de Souza Lima M. M., Borsali R. Rodlike cellulose microcrystals: structure, properties,and applications[J]. macromolecular rapid communications,2004,25(7):771-787.
    [180] Saito T., Kimura S., Nishiyama Y., et al. Cellulose nanofibers prepared byTEMPO-Mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491.
    [181] Saito T., Nishiyama Y., Putaux J-L., et al. Homogeneous suspensions of individualizedmicrofibrils from TEMPO-Catalyzed oxidation of native cellulose[J].Biomacromolecules,2006,7(6):1687-1691.
    [182] ASTM. American society for testing and materials (1708-2002a).
    [183] Cheng Q. Z., Wang S. Q., Rials T. G., et al. Physical and mechanical properties ofpolyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregatesisolated from regenerated cellulose fibers[J]. Cellulose,2007,14(6):593-602.
    [184] Thygesen A., Oddershede J., Lilholt H., et al. On the determination of crystallinity andcellulose content in plant fibres[J]. Cellulose,2005,12(6):563-576.
    [185] Johnson R. K., Zink-Sharp A., Renneckar S. H., et al. A new bio-based nanocomposite:fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix[J]. Cellulose,2009,16(2):227-238.
    [186] Fengel D., Wegner G. Wood-Chemistry, Ultrastructure, Reactions[M]. Walter de Gruyter,Berlin, New York,1989.
    [187] Khouri S. Experimental Characterization and Theoretical Calculations of ResponsivePolymeric Systems[M]. Waterloo, Ontario, Canada,2010.
    [188] Cheng Q. Z., Wang S.Q., Harper D. P. Effects of process and source on elastic modulusof single cellulose fibrils evaluated by atomic force microscopy[J]. Composites Part A:Applied Science and Manufacturing,2009,40(5):583-588.
    [189] Bao Y., Ma J. Z., Li N. Synthesis and swelling behaviors of sodium carboxymethylcellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel[J].Carbohydrate Polymers,2011,84(1):76-82.
    [190] Kuang J., Yuk K. Y., Huh K. M. Polysaccharide-based superporous hydrogels with fastswelling and superabsorbent properties[J]. Carbohydrate Polymers,2011,83(1):284-290.
    [191] Umeda S., Nakade H., Kakuchi T. Preparation of superabsorbent hydrogels frompoly(aspartic acid) by chemical crosslinking[J]. Polymer Bulletin,2011,67(7):1285-1292.
    [192] Spagnol C., Rodrigues F. H. A., Neto A. G. V. C., et al. Nanocomposites based onpoly(acrylamide-co-acrylate) and cellulose nanowhiskers[J]. European Polymer Journal,2012a,48(3):454-463.
    [193] Jin S. P., Yue G. R., Feng L., et al. Preparation and properties of a coated slow-releaseand water-retention biuret phosphoramide fertilizer with superabsorbent[J]. Journal ofAgricultural and Food Chemistry,2011,59(1):322-327.
    [194] Liu Z. X., Miao Y. G., Wang Z. Y., et al. Synthesis and characterization of a novelsuperabsorbent based on chemically modified pulverized wheat straw and acrylic acid[J].Carbohydrate Polymers,2009,77(1):131-135.
    [195] Savich M. H., Olson G. S., Clark E. W. Superabsorbent polymer suspension for use inagriculture[P]. EP Patent Office, Pat. No.2,170,042.,2010.
    [196] Wu L., Liu M. Z., Liang R. Preparation and properties of a double-coated slow-releaseNPK compound fertilizer with superabsorbent and water-retention[J]. BioresourceTechnology,2008,99(3):547-554.
    [197] Besemer A. C., Verwilligen A. M. Y. W., Thornton J. Hygienicabsorbent with odourcontrol[P]. US Patent Office, Pat. No.8,129,581.,2012.
    [198] Chang C. Y., Duan B., Cai J., et al. Superabsorbent hydrogels based on cellulose forsmart swelling and controllable delivery[J]. European Polymer Journal,2010,46(1):92-100.
    [199] Flautt M. C., Priest J. R., Stotler D. V., et al. Superabsorbent water-resistant coatings[P].US Patent Office, Pat. No.7,491,778.,2009.
    [200] Pan S. B., Ragauskas A. J. Preparation of superabsorbent cellulosic hydrogels[J].Carbohydrate Polymers,2012,87(2):1410-1418.
    [201] Sannino A., Demitri C., Madaghiele M. Biodegradable cellulose-based hydrogels:design and applications[J]. Materials,2009,2(2):353-373.
    [202] Marc G., Mele G., Palmisano L., et al. Environmentally sustainable production ofcellulose-based superabsorbent hydrogels[J]. Green Chemistry,2006,8:439-444.
    [203] Reeves R., Ribeiro A., Lombardo L., et al. Synthesis and Characterization ofCarboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds[J]. Polymers,2010,2(3):252-264.
    [204] Hubbe M. A., Rojas O. J., Lucia L. A., et al. Cellulosic nanocomposites: a review[J].Bioresources,2008,3(3):929-980.
    [205] Wu F., Zhang Y., Liu L., et al. Synthesis and characterization of a novelcellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flaxyarn waste[J]. Carbohydrate Polymers,2012,87(4):2519-2525.
    [206] Li Q., Ma Z. H., Yue Q. Y., et al. Synthesis, characterization and swelling behavior ofsuperabsorbent wheat straw graft copolymers[J]. Bioresource Technology,2012,118:204-209.
    [207] Pourjavadi A., Jahromi P. E., Seidi F., et al. Synthesis and swelling behavior ofacrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide)hydrogels[J]. Carbohydrate Polymers,2010,79(4):933-940.
    [208] Saito T., Nishiyam Y., Putaux J. L., et al. Homogeneous suspensions of individualizedmicrofibrils from TEMPO-catalyzed oxidation of native cellulose[J].Biomacromolecules,2006,7(6):1687-1691.
    [209] Dai Q., Kadla J. F. Effect of nanofillers on carboxymethyl cellulose/hydroethylcellulose hydrogels[J]. Journal of Applied Polymer Science,2009,114(3):1664-1669.
    [210] Wang W., Wang A. Synthesis and swelling properties of pH-sensitive semi-IPNsuperabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) andpolyvinylpyrrolidone[J]. Carbohydrate Polymers,2010,80(4):1028-1036.
    [211] Lanthong P., Nuisin R., Kiatkamjornwong S. Graft copolymerization, characterization,and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents[J].Carbohydrate Polymers,2006,66(2):229-245.
    [212] Spagnol C., Rodrigues F. H. A., Pereira A. G. B., et al. Superabsorbent hydrogelnanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulosenanowhiskers[J]. Cellulose,2012c,19(4):1225-1237.
    [213] Zhang J. P., Chen H., Wang A. Q. Study on superabsorbent composite. IV. Effects oforganifcation degree of attapulgite on swelling behaviors ofpolyacrylamide/organo-attapulgite composite[J]. European Polymer Journal,2006,42(1):101-108.
    [214] Zhang J., Wang A. Study on superabsorbent composites. IX: Synthesis, characterizationand swelling behaviors of polyacrylamide/clay composites based on various clays[J].Reactive&Functional Polymers,2007,67(8):737-745.
    [215] Patra T., Pal A., Dey J. A Smart Supramolecular Hydrogel ofN-(4-n-Alkyloxybenzoyl)-l-histidine Exhibiting pH-Modulated Properties[J]. Langmuir,2010,26(11):7761-7767.
    [216] Liu X. W., Hu Q. Y., Fang Z., et al. Magnetic chitosan nanocomposites: a usefulrecyclable tool for heavy metal ion removal[J]. Langmuir,2009,25(1):3-8.
    [217] Feng Y., Gong J. L., Zeng G. M., et al. Adsorption of Cd (II) and Zn (II) from aqueoussolutions using magnetic hydroxyapatite nanoparticles as adsorbents[J]. ChemicalEngineering Journal,2010,162(2):487-494.
    [218] Muzzarelli R. A. A., Muzzarelli C. Chitosan chemistry: relevance to the biomedicalsciences[J]. Advances in Polymer Science,2005,186:151-209.
    [219]Varma A. J., Deshpande S. V., Kennedy J. F. Metal complexation by chitosan and itsderivatives: a review[J]. Carbohydrate Polymers,2004,55(1):77-93.
    [220] Merrifield J. D., Davids W. G., MacRae J. D., et al. Uptake of mercury by thiol-graftedchitosan gel beads[J]. Water Research,2004,38(13):3132-3138.
    [221] Qu R. J., Sun C. M., Wang M. H., et al. Adsorption of Au(III) from aqueous solutionusing cotton fiber/chitosan composite adsorbents[J]. Hydrometallurgy,2009,100(1-2):65-71.
    [222] Wan Ngah W. S., Teong L. C., Hanafiah M. A. K. M. Adsorption of dyes and heavymetal ions by chitosan composites: a review[J]. Carbohydrate Polymers,2011,83(4):1446-1456.
    [223] Osifo P. O., Webster A., van der Merwe H., et al. The infuence of the degree ofcross-linking on the adsorption properties of chitosan beads[J]. Bioresource Technology,2008,99(15):7377-7382.
    [224] Wang L., Wang A. Adsorption properties of congo red from aqueous solution ontoN,O-carboxymethyl-chitosan[J]. Bioresource Technology,2008,99(5):1403-1408.
    [225] Cha R. T., He Z. B., Ni Y. H. Preparation and characterization of thermal/pH-sensitivehydrogel from carboxylated nanocrystalline cellulose[J]. Carbohydrate Polymers,2012,88(2):713-718.
    [226] Wang L. Y., Bao J., Wang L., et al. One-Pot Synthesis and Bioapplication ofAmine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres[J].Chemistry-A European Journal,2006,12(24):6341-6347.
    [227] Epure V., Griffon M., Pollet E., et al. Structure and properties of glycerol-plasticizedchitosan obtained by mechanical kneading[J]. Carbohydrate Polymers,2011,83(2):947-952.
    [228] Zhu H. Y., Fu Y. Q., Jiang R., et al. Novel magnetic chitosan/poly(vinyl alcohol)hydrogel beads: Preparation, characterization and application for adsorption of dye fromaqueous solution[J]. Bioresource Technology,2012,105:24-30.
    [229] Hernández R., Mijangos C. In situ synthesis of magnetic iron oxide nanoparticles inthermally responsive alginate-Poly(N-isopropylacrylamide) semi-interpenetratingpolymer networks[J]. Macromolecular Rapid Communications,2009,30(3):176-181.
    [230] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J].Journal of the American Chemical Society,1918,40:1361-1403.
    [231] Freundlich H. Of the adsorption of gases. Section II. Kinetics and energetics of gasadsorption. Introductory paper to section II[J]. Transactions of The Faraday Society,1932,28:195-201.
    [232] Yan H., Yang L. Y., Yang Z., et al. Preparation of chitosan/poly(acrylic acid) magneticcomposite microspheres and applications in the removal of copper(II) ions from aqueoussolutions[J]. Journal of Hazardous Materials,2012,229-230:371-380.
    [233] Ho Y. S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum mosspeat[J]. Water Research,2000,34(3):735-742.
    [234] Wu F. C., Tseng R. L., Juang R. S. Kinetic modeling of liquid-phase adsorption ofreactive dyes and metal ions on chitosan[J]. Water Research,2001,35(3):613-618.
    [235] Zhu Y. H., Hu J., Wang J. L. Competitive adsorption of Pb(II), Cu(II) and Zn(II) ontoxanthate-modifed magnetic chitosan[J]. Journal of Hazardous Materials,2012,221-222:155-161.
    [236] Cao J., Tan Y. B., Che Y. J., et al. Novel complex gel beads composed of hydrolyzedpolyacrylamide and chitosan: An effective adsorbent for the removal of heavy metalfrom aqueous solution[J]. Bioresource Technology,2010,101(7):2558-2561.
    [237] Laus R., Costa T. G., Szpoganicz B., et al. Adsorption and desorption of Cu(II), Cd(II)and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as theadsorbent[J]. Journal of Hazardous Materials,2010,183(1-3):233-241.
    [238] Tran H. V., Tran L. D., Nguyen T. N. Preparation of chitosan/magnetite composite beadsand their application for removal of Pb(II) and Ni(II) from aqueous solution[J]. MaterialsScience and Engineering C,2010,30(2):304-310.
    [239] Chen A. H., Yang C. Y., Chen C. Y., et al. The chemically crosslinked metal-complexedchitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueousmedium[J]. Journal of Hazardous Materials,2009,163(2-3):1068-1075.
    [240] Wan Ngah W. S., Fatinathan S. Pb(II) biosorption using chitosan and chitosanderivatives beads: Equilibrium, ion exchange and mechanism studies[J]. Journal ofEnvironmental Sciences,2010,22(3):338-346.
    [241] Tao Y. G., Ye L. B., Pan J., et al. Removal of Pb(II) from aqueous solution onchitosan/TiO2hybrid film[J]. Journal of Hazardous Materials,2009,161(2-3):718-722.
    [242] Shlyakhtina A. V., Oh Y-J. Transparent SiO2aeogels prepared by ambient pressuredrying with ternary azeotropes as components of pore fluid[J]. Journal of Non-CrystallineSolids,2008,354(15-16):1633-1642.
    [243] Batens R., Gustavsen A., Jelle B. P, et al. Vacuum insulation panels for buildingapplications: A rebiew and beyond[J]. Energy and Buildings,2010,42(2):147-172.
    [244] Lee J. K., Gould G. L., Rhine W. Polyurea based aerogel for a high performance thermalinsulation material[J]. Journal of Sol-Gel Science and Technology,2009,49(2):209-220.
    [245] Gavillon R., Budtova T. Aerocellulose: new highly porous cellulose prepared fromcellulose-NaOH aqueous solutions[J]. Biomacromolecules,2008,9(1):269-277.
    [246] Liebner F., Haimer E., Wendland M., et al. Aerogels from unaltered bacterial cellulose:Applications of scCO2drying for the preparation of shaped, ultra-lightweitht cellulosicaerogels[J]. Macromolecular Bioscience,2010,10(4):349-352.
    [247] Innerlohinger J., Weber H. K., Kraft G. Aerocellulose: Aerogels and aerogel-likematerials made form cellulose[J]. Macromolecular Symposia,2006,244(1):126-135.
    [248] Hüsing N., Schubert U. Aerogel-airy materials: Chemistry, structure, and properties[J].Angewandte Chemie International Edition,1998,37(1-2):22-45.
    [249] Gutiérrez M. C., Ferrer M. L., del Monte F. Ice-templated materials: sophisticatedstructuresexhibiting enhanced functionalities obtained after unidirectional freezing andice-segregat on-induced self-assembly[J]. Chemistry of Materials,2008,20(3):634-648.
    [250] Zhang H. F., Hussain I., Brust M., et al. Aligned two-and three-dimensional structuresby directional freezing of polymers and nanoparticles[J]. Nature Materials,2005,4:787-793.
    [251] Deville S. Freeze-casting of porous ceramics: a review of current achievements andissues[J]. Advanced Engineering Materials,2008,10(3):155-169.
    [252] Qian L. Zhang H. F. Controlled freezing and freeze drying: a versatile route for porousand micro-/nano-structured materials[J]. Journal of Chemical Technology andBiotechnology,2011,86(2):172-184.
    [253] Araki K., Halloran, J. W. New Freeze-Casting Technique for Ceramics with SublimableVehicles[J]. Journal of the American Ceramic Society,2004,87(10):1859-1863.
    [254] Banerjee S., Roy S., Bagchi B. Enhanced Pair Hydrophobicity in theWater Dimethylsulfoxide (DMSO) Binary Mixture at Low DMSO Concentrations[J].The Journal of Physical Chemistry B,2010,114(40):12875-12882.
    [255] Fox M. F., Whittingham K. P. Component interactions in aqueous dimethylsulphoxide[J]. Journal of the Chemical Society, Faraday Transactions1,1975,71:1407-1412.
    [256] Safford G. J., Schaffer P. C., Leung P. S., et al. Neutron inelastic scattering and X-raystudies of aqueous solutions of dimethylsulphoxide and dimethylsulphone[J]. Journal ofChemical Physics,1969,50:2140-2159.
    [257] Bowen D. E., Priesand M. A., Eastman M. P. Ultrasound propagation in binary mixturesof dimethyl sulfoxide and water[J]. The Journal of Physical Chemistry,1974,78:2611-2615.
    [258] Dash R., Li Y., Ragauskas A. J. Cellulose nanowhisker foams by freeze casting[J].Carbohydrate Polymers,2012,88(2):789-792.
    [259] Zhang W., Zhang Y. A., Lu C. H., et al. Aerogels from crosslinked cellulosenano/micro-fibrils and their fast shape recovery property in water[J]. Journal of MaterialsChemistry,2012,22:11642-11650
    [260] Svagan A. J., Berglund L. A., Jensen P. Cellulose nanocomposite biopolymerfoam—hierarchical structure effects on energy absorption[J]. ACS Applied Materials&Interfaces,2011,3(5):1411-1417.
    [261] Deville S., Saiz E., Tomsia A. P. Ice-templated porous alumina structures[J]. ActaMaterialia,2007,55(6):1965-1974.
    [262] Vaisman I. I., Berkowitz M. L. Local Structural Order and Molecular Associations inWater-DMSO Mixtures. Molecular Dynamics Study[J]. Journal of the AmericanChemical Society,1992,114:7889-7896.
    [263] Luzar A., Chandler D. Structure and hydrogen bond dynamics of water–dimethylsulfoxide mixtures by computer simulations[J]. The Journal of Chemical Physics,1993,98:8160-8173.
    [264] Weng L. D., Li W. Z., Zuo J. G., et al. Osmolality and Unfrozen Water Content ofAqueous Solution of Dimethyl Sulfoxide[J]. Journal of Chemical and Engineering Data,2011,56(7):3175-3182.
    [265] Deville S., Saiz E., Nalla R. K., et al. Freezing as a Path to Build ComplexComposites[J]. Science,2006,311(5760):515-518.
    [266] Li W. L., Lu K., Walz J. Y. Freeze casting of porous materials: review of critical factorsin microstructure evolution[J]. International Materials Reviews,2012,57(1):37-60.
    [267] Habibi H., Lucia L. A., Rojas O. J. Cellulose nanocrystals: chemistry, self-assembly,and applications[J]. Chemical Review,2011,110:3479-3500.
    [268] Petrenko V. F., Whitworth R. W. Physics of Ice[M]. New York, Oxford UniversityPress,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700