用户名: 密码: 验证码:
La_(0.7)Sr_(0.3)MnO_3及改性La_(0.7)Sr_(0.3)MnO_3的电磁特性及微波吸收特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波隐身材料是能够有效吸收入射电磁波,并将电磁能转化为热能或使电磁波发生散射,从而使目标的回波强度显著减弱的一类电磁功能材料。随着雷达、无线通讯系统、局域网络、个人数字辅助设施及其它的通讯工具的飞速发展,电磁辐射污染及电磁兼容问题日益突出。微波隐身材料成为国防工业与民用技术领域的关键材料。镧系水锰矿由于其优异的电学和磁学特性受到越来越多的关注,本文主要研究La0.7Sr0.3MnO3及改性La0.7Sr0.3MnO3的电磁特性及微波吸收特性。
     采用理论计算指导实验的研究方式能够节省大量的人力、物力及财力。首先分别采用熔融盐法及化学镀方法制备Fe3N及镀镍空心微球粉体,并购买一定量的羰基铁粉,而后制成电磁参数及反射率测试用吸波剂/环氧树脂复合涂层。以电磁参数为基础,根据均匀传输线理论在Matlab中编程,或依据NRW反射/传输测试方法在HFSS中建立相应的三维结构模型,计算仿真材料的微波反射损耗特性。结果表明,理论计算结果与实验结果基本一致,能够达到性能预测的目的。
     采用固相反应法在不同合成温度下制备La0.7Sr0.3MnO3吸波粉体,结果表明,当合成温度等于或高于1100℃时可以生成纯净的钙钛矿结构。采用矢量网络分析仪测试La0.7Sr0.3MnO3/环氧树脂复合涂层在8.2~18GHz频段范围内的电磁参数。结果表明,介电常数实部随合成温度的变化由空间电荷极化及界面极化共同决定,而虚部由电导损耗、介电弛豫损耗及界面极化损耗共同决定。磁损耗源于涡流损耗、自然共振及交换共振。根据均匀传输线理论及厚度匹配公式,利用Matlab计算材料在厚度为2mm时的微波吸收特性,结果表明,合成温度为1200℃的样品具有最优的微波吸收特性,位于15.872GHz处的最强吸收峰为-17.650dB,且低于-8dB的带宽为1.770GHz。实测反射率与理论结果基本一致,位于15.120GHz的最强吸收峰为-14.730dB,且低于-8dB的带宽为2.240GHz。
     采用固相反应法,将原料球磨不同时间,在相同合成温度(1200℃)下制备La0.7Sr0.3MnO3样品。随原料球磨时间的增加,前驱粉体的粒径逐渐减小,且在相同合成温度的情况下,随着前驱样品球磨时间的增加由2h增至12h,所制La0.7Sr0.3MnO3样品的晶粒尺寸逐渐增大。La0.7Sr0.3MnO3样品的介电损耗产生于电导损耗、介电弛豫损耗及界面极化损耗,且多重共振现象归功于过渡金属离子、异质结构、空间电荷极化及界面极化。原料球磨1h所得样品的磁损耗可归功于涡流损耗及自然共振,剩余样品的磁损耗主要归功于涡流损耗、自然共振及交换共振。以电磁参数为基础,分析阻抗匹配特性及损耗系数,利用Matlab计算La0.7Sr0.3MnO3样品的微波反射损耗特性。结果表明,当厚度为2.5mm时,原料球磨时间为3h的La0.7Sr0.3MnO3样品具有最优的微波反射损耗特性,其共振峰位于17.320GHz,最大反射损耗为-29.170dB,且低于-8dB的频宽为4.930GHz,此外,实测反射率与理论计算结果基本一致:16.400GHz处的最大微波反射损耗为-26.043dB,且低于-8dB的吸收带宽为5.560GHz。
     采用固相反应法,将原料球磨3h并在1200℃烧结,最终合成了纯净钙钛矿结构La0.7Sr0.3Mn1-χTMχO3(TM=Fe、Co或Ni,χ=0,0.05,0.1,0.15,0.2及0.25)粉体。晶粒尺寸随着掺杂浓度的升高逐渐减小,La0.7Sr0.3Mn0.8TM0.2O3(TM=Fe、Co或Ni)具有最小的晶粒尺寸。相对介电常数实部随掺杂浓度的变化主要归功于电子位移极化、离子位移极化、偶极子转向极化、空间电荷极化及界面极化;介电损耗主要包含电导损耗、介电弛豫损耗、界面极化损耗及共振损耗。磁损耗主要归功于涡流损耗、自然共振与交换共振。根据均匀传输线理论计算La0.7Sr0.3Mn1-χTMχO3(TM=Fe、Co或Ni,χ=0,0.05,0.1,0.15,0.2及0.25)样品厚度为2mm时的微波吸收特性。结果表明,过渡金属的引入改善了La0.7Sr0.3MnO3样品的微波吸收特性,当掺杂浓度为15at.%时,Ni-LSM呈现最宽的吸收带宽,低于-8dB的带宽为2.822GHz,且位于11.896GHz处的最强吸收峰为-16.811dB;5at.%Co-LSM、20at.%Co-LSM及25at.%Co-LSM具有宽的低于-8dB的吸收带宽,且当掺杂浓度为25at.%时,12.736GHz处的最强吸收峰为-17.779dB,吸收带宽最大为5.516GHz;20at.%Fe-LSM呈现最优的微波吸收特性,位于10.972GHz处的最大反射损耗为-27.665dB,且低于-8dB的带宽达5.012GHz。通过对比发现20at.%Fe-LSM呈现最优的微波吸收特性,包括最强的微波反射损耗及宽的吸收带宽,采用矢量网络分析仪测试实际样品的微波吸收特性,结果表明,实测反射率与理论计算结果基本一致,位于11.120GHz处的最强吸收峰为-25.986dB,且低于-8dB的带宽为5.760GHz。
Microwave absorption materials are kinds of functional materials, which canabsorb or dissipate electromagnetic waves by converting electromagnetic energy intoheat or destructive interference, in this way, the intensity of target echo will beweakened. With the burgeoning development of radar, wireless communication system,local network, personal digital assistant and other communication devices,electromagnetic pollution and electromagnetic interference are becoming more andmore serious. Microwave absorption materials have been the key point in the militaryand civilian technology. Lanthanum manganese oxides have sparked a surge of interestfor their superior electronic and magnetic performance. This thesis mainly focuses onthe electromagnetic and microwave absorption performance of La0.7Sr0.3MnO3andmodified La0.7Sr0.3MnO3.
     With the combination of computational science and experiment, a lot of humanresources, materials and financial resources can be saved. Fe3N and Ni coated hollowspheres were synthesized by the molten-salt method and chemical plating method,respectively. Appropriate carbonyl iron powders were purchased. The absorber/epoxycomposites were prepared for the measurement of electromagnetic parameters andreflectivity. It is found that eddy current loss, domain wall resonance and naturalresonance contributed to magnetic loss. Based on the database of electromagneticparameters, microwave absorption performance has been calculated according touniform transmission line theory and NRW reflection/transmission method by Matlaband HFSS, respectively. It is obtained that the experiment data were in good agreementwith the theoretical results, which can predict microwave absorption properties ofmaterials.
     La0.7Sr0.3MnO3powders have been synthesized by solid state reaction method. It isfound that the pure perovskite structure could be formed when the calcinationstemperature was equal to or higher than1100℃. Electromagnetic parameters in therange of8.2~18GHz were measured. It is found that the variation of with sinteringtemperature was determined by space charge polarization and interfacial polarization, was induced by conductance loss, delectric relaxation loss and interfacial polarizationloss. Magnetic loss of La0.7Sr0.3MnO3was attributed to eddy current loss, naturalresonance and exchange resonance loss. Microwave absorption performance ofLa0.7Sr0.3MnO3with a thickness of2mm was calculated using Matlab. It is found thatLa0.7Sr0.3MnO3calcined at1200℃exhibited the optimal microwave absorption properties, the maximum reflection loss was-17.650dB at15.872GHz, and thebandwidth below-8dB was1.770GHz. Then the corresponding composite used for themeasurement of reflection loss was fabricated. It is found that the experiment data werein good consistent with the theoretical results. The maximum reflection loss was-14.730dB located at15.120GHz, and the bandwidth below-8dB was2.240GHz.
     La0.7Sr0.3MnO3powders were prepared by solid state reaction method aftercalcinated at1200℃for4h. The precursor samples were obtained by milling rawmaterials for different time (0h,1h,2h,3h,6h,9h, and12h). La0.7Sr0.3MnO3sampleshave been labeled as S0, S1, S2, S3, S6, S9and S12. It is found that the particle size ofraw materials became small with the increase of grinding time, and the crystalline sizeof the samples were enlarged with the grinding time increase from2h to12h. Dielectricloss originated from conductance loss, dielectric relaxation loss and interfacialpolarization loss, the multiple resonance phenomena could be attributed to transitionmetal ions, heterostructure, space charge polarization and interfacial polarization. It isobtained that magnetic loss of S2, S3, S6, S9and S12originated from eddy current loss,natural resonance and exchange resonance, magnetic loss of S1was attributed to eddycurrent loss and natural resonance. After analysis of impedance matching performanceand attenuation constant, microwave absorption performance of La0.7Sr0.3MnO3wascalculated using Matlab. It is found that S3exhibited the optimal microwave absorptionproperties with a thickness of2.5mm. The maximum reflection loss was-29.170dB at17.320GHz, and the-8dB absorbing bandwidth was4.930GHz. Meanwhile, thecorresponding composite used for the measurement of reflection loss was fabricated. Itis found that the experiment data were in good coincident to the theoretical results. Themaximum reflection loss was-26.043dB at16.400GHz, and the-8dB absorbingbandwidth was5.560GHz.
     The pure perovskite structure La0.7Sr0.3Mn1-χTMχO3(TM=Fe, Co or Ni, χ=0,0.05,0.1,0.15,0.2,0.25) powders were successfully synthesized after calcinated at1200℃by solid stated reaction method, with raw materials grinding for3h. With the increase ofdoping concentration, crystalline size decreased, and La0.7Sr0.3Mn0.8TM0.2O3(TM=Fe,Co or Ni) had the smallest crystalline size. The changes of with doping concentrationcan be attributed to ionic polarization, electronic displacement polarization, electricdipole polarization, space charge polarization and interfacial polarization. Conductanceloss, dielectric relaxation loss, interfacial polarization loss and resonance losscontributed to dielectric loss. Magnetic loss was attributed to eddy current loss, naturalresonance and exchange resonance. The dielectric loss, magnetic loss, impedance matching and attenuation performance of La0.7Sr0.3Mn1-χTMχO3(TM=Fe, Co or Ni, χ=0,0.05,0.1,0.15,0.2,0.25) were analyzed. Microwave absorption properties ofLa0.7Sr0.3Mn1-χTMχO3(TM=Fe, Co or Ni, χ=0,0.05,0.1,0.15,0.2,0.25) werecalculated using Matlab. It is found that the incorporation of transition metal greatlyimprove the microwave absorption performance of La0.7Sr0.3MnO3. The maximumreflection loss of15at.%Ni doped LSM was-16.8113dB at11.896GHz, and the-8dBabsorbing bandwidth was2.822GHz.5at.%,20at.%and25at.%Co-doped LSMexhibited good microwave absorption properties. The maximum reflection loss of25at.%Co-doped LSM was-17.779dB at12.736GHz, and the-8dB absorbingbandwidth was5.516GHz.20at.%Fe-LSM exhibited the optimal microwave absorptionperformance, the maximum reflection loss was-27.665dB at10.972GHz, and the-8dBabsorbing bandwidth was5.012GHz. Meanwhile, the20at.%Fe-LSM/epoxy composite,used for the measurement of reflection loss, was fabricated. The experiment data werein good agreement with the theoretical results. The maximum reflection loss was-25.986dB at11.120GHz, and the-8dB absorbing bandwidth was5.760GHz.
引文
[1] Mun Kyu Kim, Hoom Taek Chung, Uong Joon Park, et al. Fabrication ofLiCoO2thin films by sol-gel method and characterization as positive electrodesfor Li/LiCoO2cells. Journal of Power Sources.2001,99(1-2):34-40.
    [2] R. B. Yang, C. Y. Tsay, W. F. Liang, and C. K. Lin. Microwave absorbingproperties of La0.7Sr0.3MnO3composites with negative susceptibility. Journal ofApplied Physics.107(2010)09A523:1-3.
    [3] C. Y. Tsay, R. B. Yang, D. S. Hung, Y. H. Hung, Y. D. Yao, and C. K. Lin.Investigation on electromagnetic and microwave absorbing properties ofLa0.7Sr0.3MnO3-/carbon nanotube composites. Journal of applied physics.107(2010)09A502:1-3.
    [4] G. Joker, V. Sannten. Ferromagnetic compounds of manganese with perovskitestructure. J. Physica.1950,16(3):337-349.
    [5] John B. Goodenough. Theory of the role of covalence in the Perovskite-typeManganites. Phys. Rev.1955,100(2):564-573.
    [6] John B. Goodenough. In Landolt-Bornstein Tabellen New series.1970,III/4a(ed. Hellwege, K.H.)126-314.
    [7] N. Ramadass, T. Palanisamy, J. Gopalakrishnan, G. Aravamudan, and M.V.C.Sastri. Some ABO3oxides with defect pyrochlore structure. Solid StateCommunications.1975,17(4):545-547.
    [8] K. Chahara, T. Ohno, and M. Kasai. Magnetoresistance in magnetic manganeseoxide with intrinsic antiferromagnetic spin structure. Appl. Phys. Lett.1993,63(14):1990-1992
    [9] R. von Helmolt, J. Wecker, L. Haupt, K. B rner and K. Samwer. Intrinsic giantmagnetoresistance of mixed valence La-A-Mn oxide (A=Ca,Sr,Ba)(invited). J.Appl.Phys.1994,76(10):6925-6928.
    [10] A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bianconi, P.G.Radaelli, and S.W. Cheong. Crossover from large to small polarons across the metal-insulatortransition in manganites. Physical Review Letters.1998,81(4):878-881.
    [11] N. Gavathri, A. Ravchaudhuri, S. Tiwary. Electrical transport, magnetism, andmagnetoresistance in ferromagnetic oxides with mixed exchange interactions: Astudy of the La0.7Ca0.3Mn1-χCoχO3system. Phys Rev B.1997,56(3):1345-1353.
    [12] J. F.Hu, L. M. Mei, Z. Q. Ding, G. Fu, W. J. Zhao, Q. Q. Zhang, Y. H. Liu.Magnetoresistance effects in La0.65(Ca, Ba)0.35Mn1-χFeχOy.Chinese Rare Earths.2000,21(1):19-22.
    [13] F.X.Hu, J. Gao, X.S.Wu. Controllable colossal electroresistance inLa0.8Ca0.2MnO3epitaxial thin films. Physical Review B.72(2005)064428.
    [14] Y.S. Nam, H. L. Ju, C. W. Park. Low field magnetoresistance in intrinsicgranular system La1-χBaχMnO3, Solid State Communications.2001,119(10-11):613-618.
    [15] N. Tomohiko, U. Yutaka. Structures and electromagneticproperties of the A-sitedisordered Ba-based manganites:R0.5Ba0.5MnO3(R=Y and rare earth elements).Journal of Alloys and Compounds.2004,383(1-2):135-139.
    [16] X. B. Yuan, Y. H. Liu, B. X. Huang, C. J. Wang, R. Z. Zhang, L. M.Mei.Enhancement of low field magnetoresistance in Bi-doped La0.67Ba0.33MnO3.Journal of the Chinese Rare Earth Society.2004,22(3):336-340.
    [17] P. Dun, G. T. Tan, S. Y. Dai, Z. H. Chen, Y. L. Zhou, H. B. Lv. Colossalmagnetoresistance effect in the perovskite-type La0.9Sb0.1MnO3material. ActaPhysica Sinica.2003,52(08):2061-2064.
    [18] O.Takashi, S. adarsh, C. Masafumi, T. Hiromasa, K. Yoshiharu. Electrical andmagnetic properties of La1-χBiχMnO3. Journal of Magnetism and MagneticMaterials.290-291(2005)933-936.
    [19] C. Mitra, R. Raychaudhuri, J. John, et al. Growth of epitaxial andpolycrystalline thin films of the electron doped system La1-χCeχMnO3throughpulsed laser dposition. J. Appl.Phys.89(2001)524-530.
    [20] H. Chou, C.B.Wu, S.G.Hsu, et al. Electron-doped colossal magnetoresistance inthe sintered La1-χTχMnO3lanthanum-deficient phase. Phys. Rev. B.74(2006)174405.
    [21] J. Philip, T.R.Kutty. Effect of valance fluctuations in A sites on the transportproperties of La1-χRχMnO3(R=Ce, Pr). Journal of Physics: Condensed Matter.1999,11(43):8537-8546.
    [22] R. Sujoy, A. Naushad. Charge transport and colossal magnetoresistancephenomenon in La1-χZrχMnO3. J. Appl. Phys.2001,89(11):7425-7427.
    [23]祝向荣,沈鸿烈,李铁,李冠雄,沈勤我及邹世昌. La0.67Ca0.33MnO3-体材料的巨磁电阻特性.功能材料与器件学报.1999,5(3):229-233.
    [24]夏正才,唐超群及周东祥. Sr掺杂量对La1-χSrχMnO3-离子导电性能的影响.功能材料.2000,31(2):155-156.
    [25] Tejuca L G, Fierro L G, Tascon J M D. Structure and reactivity ofperovskite-type oxides. Adv. Catal.1989,36(2):237-328.
    [26] S. Banerjee, V. R. Choudhary. A method for increasing the surface area ofperovskite-type oxides. Proc. Indian Acad. Sci.(Chem. Sci).2000,112(5):535-542.
    [27] De Haart L G, Kuipers R A, De Vries K J, et al. Deposition and electricalproperties of thin porous ceramic layers for SOFC application. Journal ofelectrochemistry Society.1991,138(7):1970-1975
    [28] Taimatsu H, Wada K, Kaneko H, et al. Mechanism of reaction betweenlanthanum manganite and yttria-stabilized zirconia. Journal of AmericanCeramic Society.1992,75(2):401-405.
    [29] Otoshi S, Sasaki h, Ohnishi H, et al. Changes in the phase and electricalconduction properties of (La1-χSrχ)1-y·MnO3-. Journal of ElectrochemistrySociety.1991,138(7):1519-1523.
    [30]李国军,任瑞铭,刘小光,仝建峰,陈大明. La0.8Sr0.2MnO3多空阴极材料制备及其性能研究.硅酸盐学报.2004,32(2):209-212.
    [31]李国军,刘小光,陈大明. La0.8Sr0.2MnO3水基料浆稳定性的研究.中国稀土学报.2002,20(01):126-128.
    [32] Chunwen Suna, Ulrich Stimming. Recent anode advances in solid oxide fuelcells. Journal of Power Sources.2007,171(2):247-260.
    [33] Barbara Kucharczyk, W odzimierz Tylus. Partial substitution of lanthanum withsilver in the LaMnO3perovskite: Effect of the modification on the activity ofmonolithic catalysts in the reactions of methane and carbon oxide oxidation.Applied Catalysis A: General.2008,335(1):28-36.
    [34] Jeffrey W. Fergus. Oxide anode materials for solid oxide fuel cells. Solid StateIonics.2006,177(17-18):1529-1541.
    [35]王磊,曾少华,张丽娟,陈耀强,龚茂初. La0.75Sr0.25Mn1-χNiχO3+材料的制备及其催化甲烷部分氧化性能.催化学报.2009,30(3):247-253
    [36] S.N. Kale, Rajashree Rajagopal, Sumit Arora, K.R. Bhayani, J.M. Rajwade,K.M. Paknikar, Darshan C. Kundaliya, S.B. Ogale. Microwave Response ofLa0.7Sr0.3MnO3Nanoparticles for Heating Applications. Journal of BiomedicalNanotechnology.2007,3(2):178-183.
    [37]刑希.复合掺杂锰酸镧陶瓷及其性能研究.北京交通大学硕士学位论文2011年6月
    [38] S. E. Lofland, V. Ray, P. H. Kim, and S. M. Bhagat, M. A. Manheimer, S. D.Tyagi. Magnetic phase transition in La0.7Sr0.3MnO3: Microwave absorptionstudies. Phys. Rev. B.55(1997)2749–2751.
    [39] F.J.Owens. DC magnetic field dependent microwave absorption in CMRmaterial La0.7Sr0.3MnO3. Journal of the Physics and Chemistry of Solids.1997,58(9):1311-1314
    [40] M. Golosovsky and P. Monod, P. K. Muduli and R. C. Budhani, L. Mechin andP. Perna. Nonresonant microwave absorption in epitaxial La0.7Sr0.3MnO3filmsand its relation to colossal magnetoresistance. Phys. Rev. B.2007,76(18):184414:1-9.
    [41] D. L. Lyfar, S. M. Ryabchenko, V. N. Krivoruchko, S. I. Khartsev, and A. M.Grishin. Microwave absorption in a thin La0.7Sr0.3MnO3film: Manifestation ofcolossal magnetoresistance. Phys. Rev. B.69(2004)100409(R)[4pages]
    [42] V.N. Krivoruchko, A.I. Marchenko, A.S. Mazur, A.A. Prokhorov, Magneticstructure and microwave properties of La0.7Sr0.3MnO3ultrafine particles.2007Sixth International Kharkov Symposium on Physics and Engineering ofMicrowaves, Millimeter and Sub-Millimeter Waves and Workshop on TerahertzTechnologies (MSMW'07),174-179,2007.
    [43] A. Urushibara, Y.Moritomo, T. Aima, et al. Insulator-metal transition and giantmagneto-resistance in La1-χSrχMnO3. Phys.Rev.B.1995,51(20):14103-14109.
    [44]胡国光,尹萍,吕庆荣. LaχSr1-χMnO3氧化物的导电和吸收特性.中国稀土学报.2002,20(2):179-181.
    [45] G. Li, G.-G. Hu, H.-D. Zhou, X.-J.Fan, X.-G.Li. Attractive microwave-absorbingproperties of La1-χSrχMnO3manganite powders. Materials Chemistry andPhysics.2002,75(1-3):101-104.
    [46]周克省,王达,尹荔松,孔德明,黄可龙. La0.8Sr0.2Mn1-yFeyO3微波电磁特性与损耗机制.中国有色金属学报.2006,16(5):753-757.
    [47]周克省,刘宝刚,黄可龙,尹荔松及刘利强. La0.6Ce0.4Mn1-yFeyO3微波吸收特性.中国稀土学报.2009,27(1):81-85.
    [48]王达,胡湘岳,贝承训及周克省. La0.8Sr0.2Mn1-χCoχO3微波电磁特性与损耗机制.功能材料(增刊).38(2007)3037-3040.
    [49]王达,胡湘岳,贝承训及周克省. La0.8Sr0.2Mn1-χNiχO3微波吸收特性.中国稀土学报. S1(2007)8-11.
    [50]周一平,周克省,王达,尹荔松,黄可龙及高松华. Sr/Fe掺杂LaMnO3纳米微波吸收材料的制备与表征.中南大学学报(自然科学版).2007,38(2):276-280.
    [51]韩国光.钙钛矿结构La1-χSrχMnO3的制备及特性研究.兰州大学硕士学位论文,2011年5月.
    [52]戴道生,熊光成,吴思诚. Re1-xTxMnO3氧化物的结构、电磁特性和巨磁电阻.物理学进展.1997,17(2):201-222.
    [53]刘俊明,王克锋.稀土掺杂锰氧化物庞磁电阻效应.物理学进展.2005,25(1):82-130.
    [54]周克省.镧锰氧化物与铁氧体改性体系的微波吸收特性研究.中南大学博士学位论文,2008.
    [55] A.P. Ramirez. Colossal magnetoresistance. Journal of Physics: CondensedMatters.9(1997)8171–8199.
    [56]陈慧兰.高等无机化学.北京:高等教育出版社,2005,pp112-119,336-337.
    [57] Mina Talati, Prafulla K. Jha. Phonons and Jahn-Teller distortion in manganites.Journal of Molecular Structure.2007,838(1-3):(227-231).
    [58] A. J. Millis, Boris I. Shraiman, and R. Mueller. Dynamic Jahn-Teller Effect andColossal Magnetoresistance in La1-χSrχMnO3. Phys. Rev. Lett.1996,77(1):175–178
    [59] M. Soltani, M.Chaker, X.X.Jiang, D. Nikanpour. Thermochromic La1-χSrχMnO3(χ=0.1,0.175and0.3) smart coatings grown by reactive pulsed laser deposition.Journal of Vaccum Science and Technology A: Vacuum, Surface, and Films.2006,24(4):1518-1523.
    [60] Zener C. Interaction between the d-shells in the transition metals (II):Ferromagnetic compounds of manganese with perovskite structure. Phys Rev.1951,82(3):403-405.
    [61] E.O. Waollan, W. C. Koehler. Neutron diffraction study of the magneticproperties of the series of perovskite-type compounds La1-χCaχMnO3. Phys. Rev.1995,100(2):545-563.
    [62] G.H.Jonker. Magnetic compounds with perovskite structure IV Conducting andnon-conducting compounds. Physica.1956,22(6-12):707-722.
    [63] P. Gennes. Effects of double exchange in magnetic crystals. Phys. Rev.1960,118(1):141-154.
    [64] G. Matsumoto. Study of (La1-χCaχ)MnO3. I. Magnetic structure of LaMnO3.J.Phys.Soc.Jpn.1970,29(3):606-615.
    [65] Shuyuan Zhang, Quanxi Cao, Maolin Zhang, and Xuefang Shi. Effects of Sr2+or Sm3+doping on electromagnetic and microwave absorption performance ofLaMnO3. Journal of Applied Physics.113(2013)074903.
    [66] Ke-sheng Zhou, Da Wang, Ke-long Huang, Li-song Yin, Yi-ping Zhou,Song-hua Gao. Characteristics of permittivity and permeability spectra in rangeof2-18GHz microwave frequency for La1-χSrχMn1-yByO3(B=Fe, Co, Ni). TransNonferrous Met. Soc.China.17(2007)1294-1299.
    [67] S. Imamori, M. Tokunaga, S. Hakuta, et al. Room temperature low-filedcolossal magnetoresistance in La0.7Sr0.3MnO3. Appl.Phys.Lett.89(2006)172508:1-3.
    [68] V.V. Srinivasu, S.E.Lofland, S.M.Bhagat. Room temperature colossalmicrowave magnetoimpedance in micron-sizepowders of La0.7Ba0.3MnO3andLa0.7Sr0.3MnO3-A novel magnetic tape. J.Appl.Phys.1998,83(5):2866-2868.
    [69] S.L.Ye, W.H.Song, J.M.Dai,et al. Large room temperature magnetresistance andphase separation in La1-χNaχMnO3with0.1χ0.3. J. Appl. Phys.2001,90(6):2943-2948.
    [70] M.H.Phan, N.D.Tho, N.Chau, et al. Large magnetic entropy change above300Kin a colossal magnetoresistive materials La0.7Sr0.3Mn0.98Ni0.02O3. J. Appl. Phys.97(2005)103901:1-5.
    [71] J.Y.Fan, L.Pi, W.Tong, et al. Percolative conductivity in theLa0.67Sr0.33Mn1-χMgχO3system. Phys.Rev.B.2003,68(9):092407:1-4.
    [72]邓建杰. Ba/Cu掺杂LaMnO3与La0.8Ba0.2MnO3/Ni复合体系的微波吸收性能研究.中南大学硕士学位论文,2007.
    [73] N.V.Khiema, L.V.Baua, N.M.Anb, et al. Effects of Fe-doping on the magneticand transport properties of La0.5Sr0.5(Co1-χFeχ)O3(0χ0.6). Physica B.2003,327(2-4):187-189.
    [74] Shuyuan Zhang, Quanxi Cao. Electromagnetic and microwave absorptionperformance of some transition metal doped La0.7Sr0.3MnO1-χTMoχO3(TM=Fe,Co or Ni). Materials Science and Engineering B.2012,177(9):678-684.
    [75] A. Tkachuk, K. Rogacki, D.E.Brown, et al. Dynamics of phase stability andmagnetic order in magnetoresistive La0.83Sr0.17Mn0.98Fe0.02O3. Phys. Rev. B.1998,57(14):8509-8517.
    [76] E. Banks, N. Tashima. Magnetically ordered perovskites in the systemLa1-χCaχFe1-χMnχO3. J.Appl. Phys.1970,41(3):1186-1190.
    [77] S.B.Ogale, R. Shreekala. R. Bathe, et al. Transport properties, magneticordering and hyperfine interactions in Fe-doped La0.75Ca0.25MnO3: Localization-delocalization transition. Phys. Rev. B.1998,57(13):7481-7485.
    [78] W. Norimatsu, Y. Koyama, Domain-structure relaxation in the tetragonal–to-orthorhombic phase transition of the layered perovskite Sr1.8La0.2Mn1-yFeyO4.Phys. Rev. B.2007,75(10):104416:1-5.
    [79] Y. Sun, W. Tong, X.J.Xu, et al. Tuning colossal magnetoresistance response byCr substitution in La0.67Sr0.33MnO3. Appl. Phys. Lett.2001,78(5):643-645.
    [80]王晓东,徐祖雄,马如璋.巨磁阻材料La2/3Ca1/3Mn1-χFe1-χO3的研究.中国科学A辑.1999,29(2):150-156.
    [81]李宝河,鲜于文旭,万欣等.钙钛矿锰氧化物La0.7Sr0.3MχMn1-χO3(M=Cr, Fe)巨磁阻效应与磁性.物理学报.2000,49(7):1366-1370.
    [82]耿树江,邵忠宝,牛盾等.溶胶凝胶法合成La0.72Sr0.3MnO3.东北大学学报.1999,20(2):220-221
    [83] M. Gunes, H. Gencer, V. S. Kolat, et al. Microstructure and magnetoresistanceof a La0.67Ca0.33MnO3film produced using the dip-coating method. MaterialsScience and Engineering B.2007,136(1):41-45.
    [84] K. S. Zhou, H. Xia, K. L. Huang, L.W. Deng, D. Wang, Y.P. Zhou, S.H. Gao.The microwave absorption properties of La0.8Sr0.2MnFeO3nanocrystallinepowders in the frequency range2-18GHz. Physica B: Condensed Matter.2009,404(2):175-179.
    [85] J. Hu, G.J. Shao, H. Huang, et al. Preparation of nanometer perovskite-typeoxide La0.8Sr0.2MnO3by organic solvent sol-gel method and capability testing.Rare metals.2008,27(2):131-133.
    [86]冯静,开淑艳,侯湘钰等. La0.7Sr0.3Mn1-χRχO3(R=Co, Ni)的共沉淀合成及磁性研究.稀土.2008,29(3):52-54
    [87] R. K. Zheng, C. F. Zhu, J. Q Xie, et al. Structural change and charge orderingcorrelated ultrasonic anomalies in La1-χCaχMnO3(χ=0.5,0.83) perovskite.Physical Review.2001,63(1):024427-024430
    [88] S. P. Jiang. Issues on development of (La, Sr)MnO3cathode for solid oxide fuelcells. Journal of Power Sources.2003,124(2):390-392
    [89]李大光,章弘毅,张鹤丰等.钙钛矿型复合氧化物的研究与应用进展.材料导报.2006,20(5):296-299
    [90]颜学敏,钟润牙. La1-χSrχMnO3钙钛矿复合氧化物研究进展.陶瓷科学与艺术.3(2004)37-39.
    [91]纪媛,刘江.甘氨酸-硝酸盐法制备中温SOFC电解质及电极材料.高等学校化学学报.2002,23(7):1227-1230.
    [92]祝宝军,贡涛等.固体氧化物燃料电池阴极材料La1-χSrχMnO3的制备方法.粉末冶金材料科学与工程.2005,10(5):264-267.
    [93]陈敏,王幼文,郑晓明.超细钙钛矿复合氧化物的制备和性能研究.无机化学学报.2003,10(10):1145-1148.
    [94] Y. L. Cheng, J. M. Dai, X. B. Zhu, D. J. Wu, Y. P. Sun. Preparation, magneticand microwave absorption properties of La0.5Sr0.5MnO3/La(OH)3composites.Materials Research Bulletin.2010,45(6):663-667
    [95] Hammouche A, Siebert E, Hamou A, et al. Electroatactic properties andnonstoichiometry of the high temperature air electrode La1-χSrχMnO3.Electrochem Soc.1991,138(5):1212-1218.
    [96]赵静,颜其洁.钙钛矿型复合氧化LaMnO3.00的快速制备与表征,中国稀土学报.21(S1)(2003)48-51
    [97] V Szaboa, M Bassira, A Van Nesteb, S Kaliaguinea. Perovskite-type oxidessynthesized by reactive grinding: Part II: Catalytic properties of LaCo(1χ)FeχO3in VOC oxidation. Appl Catal B: Environm.2002,37(2):175-180.
    [98] S. Kaliaguinea, A. Van Nesteb, V. Szaboa, J.E. Gallota, M. Bassira, R.Muzychuka. Perovskite-type oxides synthesized by reactive grinding: Part I.Preparation and characterization. Appl Catal A: General.2001,209(1–2):345–358.
    [99]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京:化学工业出版社,2002, p295
    [100]韩敏芳,李伯涛,彭苏萍等.固相反应合成的La1-χSrχMnO3机理.北京科技大学学报.2002,24(6):619-623.
    [101]杨朝聪,朱心昆.自蔓延高温合成法(SHS)的研究与发展.昆明理工大学学报.1998,23(5):125-128.
    [102]仁世理,任瑶.自蔓延高温合成法在陶瓷领域应用的发展.陶瓷.11(2005)29-32.
    [103] Leandro Concei o, Camila R. Silva, Nielson F. Ribeiro, and Mariana M. Souza.Solid synthesis of La0.7Sr0.3MnO3powders using different grinding times. ESCTransactions.2009,25(2):2301-2308
    [104] Xingmei Shen, Liaosha Li, Xingrong Wu, Zhifang Gao, Guoyue Xu. Infraredemissivity of Sr doped lanthanum manganites in coating form. Journal of Alloysand Compounds.2011,509(31):8116-8119
    [105] Xingmei Shen, Guoyue Xu, Chunming Shao. The effect of B site doping oninfrared emissivity of lanthanum manganites La0.8Sr0.2Mn1-χBχO3(B=Ti or Cu).Journal of Alloys and Compounds.2010,499(2):212-214
    [106] Shuyuan Zhang, Quanxi Cao, Xiaohua Ma, Zhimin Li. Effects of sinteringtemperatures on the infrared emissivity of La0.7Sr0.3MnO3. Applied SurfaceScience.2012,258(18):7036-7038.
    [107]邢丽英.隐身材料.北京:化学工业出版社,2004,41-46.
    [108]廖绍彬.铁磁学(下册).北京:科学出版社,2000,1-60.
    [109] B.S. Zhang, Y. Feng, J. Xiong, Y. Yang, H.X. Lu. Microwave-absorbingproperties of de-aggregated flake-shaped carbonyl-iron particle composites at2-18GHz. IEEE Trans. Magn.2006,42(7):1778-1781.
    [110] Y.B. Feng, T. Qiu, C.Y. Shen. Absorbing properties and structural design ofmicrowave absorbers based on carbonyl iron and barium ferrite. Journal ofMagnetism and Magnetic Materials.2007,318(1-2):8–13.
    [111] Zhi Ma, Jianbo Wang, Qingfang Liu, Jing Yuan. Microwave absorption ofelectroless Ni–Co–P-coated SiO2powder. Appl. Surf. Sci.2009,255(13-14):6629-6633.
    [112] Zhi Ma, Yi Zhang, ChenTao Cao, Jing Yuan, QingFang Liu, JianBo Wang.Attractive microwave absorption and the impedance match effect in zinc oxideand carbonyl iron composite. Physica B: Condensed Matter.2011,406(24):4620–4624.
    [113]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2007,pp317-319.
    [114] S.S. Kim, S. B. Jo, K.I.Gueon, K.K. Choi, J.M. Kim, K.S. Churn. Complexpermeability and permittivity and microwave absorption of ferrite-rubbercomposite at X-band frequencies. IEEE Transactions on Magnetics.1991,27(6):5462-5464.
    [115] Shams M H, Salehi S M A, Ghasemi A. Electromagnetic wave absorptioncharacteristics of Mg-Ti substituted Ba-hexaferrite. Materials Letters.2008,62(10-11):1731-1733.
    [116] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L.Liang. Microwave AbsorptionEnhancement and Complex Permittivity and Permeability of Fe Encapsulatedwithin Carbon Nanotubes. Advanced Materials.2004,16(5):401–405.
    [117] W.F.Liang, R.B.Yang, W.S.Lin, Z.J.Jian, C.Y.Tsay, S.H.Wu, H.M.Lin, S.T.Choi,and C.K.Lin. Electromagnetic characteristics of surface modified iron nanowiresat x-band frequencies. J. Appl. Phys.2012,111(7):07B545.
    [118] Singh P, Babbar V K, Razdan A, et al. Complex permittivity, permeability, andx-band microwave absorption of CaCoTi ferrite composites. J. Appl. Phys.2000,87(9):4362~4365.
    [119]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2007,p208
    [120] K. J. Vinoy and R. M. Jha. Radar Absorbing Materials—From Theory to Designand Characterization (Kluwer Academic Publishers, Boston, MA,1996).
    [121] S. J. Yan, L. Zhen, C. Y. Xu, J. T. Jiang, and W. Z. Shao. Microwave absorptionproperties of FeNi3submicrometre spheres and SiO2@FeNi3core–shellstructures. J. Phys. D: Appl.Phys.2010,43(24):245003.
    [122] F. Qin and C. Brosseau. A review and analysis of microwave absorption inpolymer composites filled with carbonaceous particles. J. Appl. Phys.2012,111(6):061301.
    [123]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003,378-417.
    [124]胡传炘.隐身涂层技术.北京:化学工业出版社,2004,194-200.
    [125]戴道生.铁磁学下册,北京:科学出版社,1976,11-18.
    [126] J. R. Liu, M. Itoh, and K. Machida. Magnetic and electromagnetic waveabsorption properties of alpha-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys.Lett.88(2006)062503.
    [127] Waseem Roshen. Ferrite core loss for power magnetic components design. IEEETrans Magn.1991,27(6):4407-4415.
    [128] Samuel P. Morgan. Effect of Surface Roughness on Eddy Current Losses atMicrowave Frequencies. J Appl Phys.1949,20(4):352-362.
    [129] K. Foster, M.F. Littmann. Factors affecting core losses in oriented electricalsteels at moderate inductions. J Appl Phys.57(1985)4203-4208.
    [130] Aharoni A. Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys.69(II)(1991)7762~7764.
    [131] Viau G. Fiévet F, Toneguzzo P, et al. Size dependence of microwavepermeability of spherical ferromagnetic particles. J. Appl. Phys.1997,81(6):2749~2754.
    [132]李翰如.电介质物理导论.成都:成都科技大学出版社,1990,134-140。
    [133] J. O. Gentner, P. Gerthsen, N. A. Schmidt, and R. E. Send, Dielectric losses inferroelectric ceramics produced by domain-wall motion, J Appl. Phys.1978,49(8):4485-4489.
    [134]方俊鑫,陆栋.固体物理学下册.上海:上海科学技术出版社,1981,66-238.
    [135]康清.新型微波吸收材料.北京:科学出版社,2006,2-15.
    [136] A. Oikonomou, T. Giannakopoulou, G. Litsardakis. Design, Fabrication andcharacterization of hexagonal ferrite multi-layer microwave absorber. Journal ofMagnetism and Magnetic Materials.2007,316(2):e827–e830
    [137] Rui Liu, Ning Lun, Yong-Xin Qi, Yu-Jun Bai, Hui-Ling Zhu, Fu-Dong Han,Xiang-Lin Meng, Jian-Qiang Bi, Run-Hua Fan. Microwave absorptionproperties of TiN nanoparticles. Journal of Alloys and Compounds.2011,509(41):10032–10035.
    [138] Qing Yuchang, Zhou Wancheng, Luo Fa, and Zhu Dongmei. Optimization ofelectromagneticmatching of carbonyl iron/BaTiO3composites for microwaveabsorption. Journal of Magnetism and Magnetic Materials.2011,323(5):600–606.
    [139] Nicolson A.M, Ross G. Measurement of the intrinsic properties of materials bytime-domain techniques. IEEE Trans. on Instrumentation and Measurement.1970,19(4):377-382.
    [140] Weir W.B. Automatic measurement of complex dielectric constant andpermeability atmicrowave frequencies. Proc. IEEE.1974,62(1):33-36.
    [141] J.Baker-Jarvis, M.D. Janezic, J.H. Grosvenor, R.G. Geyer. Transmission/reflection and short-circuit linemethods formeasuring permittivity andpermeability. NIST Technical Note,93(1993)12084.
    [142]赵才军,蒋全兴,景莘慧,何鹏.同轴线测量材料电磁参数的改进NRW传输/反射法.测控技术.2009,28(11):80-83.
    [143] L. W. Deng, L. Ding, K. S. Zhou, S. X. Huang, Z. W. Hu, B. C. Yang.Electromagnetic properties and microwave absorption of W-type hexagonalferrites doped with La3+. Journal of Magnetism and Magnetic Materials.2011,323(14):1895-1898.
    [144] X.S. Fang, C.H. Ye, T. Xie, Z.Y. Wang, J.W. Zhao, L.D. Zhang. Regular MgOnanoflowers and their enhanced dielectric responses. Applied Physics Letters.2006,88(1):013101:1-3.
    [145] X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie. Twinning Mediated Growth of Al2O3Nanobelts and Their Enhanced Dielectric Responses. Advanced Materials.2005,17(13):1661-1665.
    [146]戴道生.铁磁学下册,北京:科学出版社,1976,6-75.
    [147] Yamada S, Otsuki E. Analysis of eddy current loss in Mn–Zn ferrites for powersupplies. Journal of Applied Physics.1997,81(8):4791-4793.
    [148] J. Huo, L. Wang, H. J. Yu. Polymeric nanocomposites for electromagnetic waveabsorption. Journal of Materials Science.2009,44(15):3917-3927.
    [149] Q. Zhang et.al. Effect of metal grain size on microwave resonances of Fe/TiO2metal-semiconductor composite. Applied Physics Letters.97(2010)133115.
    [150] G. X. Tong, W. H. Wu, J. G. Guan, H. S. Qian, J. H. Yuan, W. Li. Synthesis andcharacterization of nanosized urchin-like-Fe2O3and Fe3O4. Journal of Alloysand Compounds.2011,509(11):4320-4326.
    [151] Takanori Tsutaoka. Frequency dispersion of complex permeability in Mn–Znand Ni–Zn spinel ferrites and their composite materials. Journal of AppliedPhysics.2003,93(5):2789-2796.
    [152] T.Kasagi, T.Tsutaoka, and K.Hatakeyama. Proceedings of the Ninth InternationalConference on Ferrites.2005,653.
    [153] Y. Yang, C.L. Xu, Y.X. Xia, T. Wang, and F.S. Li. Synthesis and microwaveabsorption properties of FeCo nanoplates. Journal of Alloys and Compounds.2010,493(1-2):549-552.
    [154] Andrey N. Lagarkov, Konstantin N. Rozanov. High-frequency behavior ofmagnetic composites. Journal of Magnetism and Magnetic Materials.2009,321(14):2082-2092.
    [155] J. Q Wei, T. Wang, F. S. Li. Effect of shape of Fe3Al particles on theirmicrowave permeability and absorption properties. Journal of Magnetism andMagnetic Materials.2011,323(21):2608-2612.
    [156] J. Q. Wei, Z. Q. Zhang, B. C. Wang, T. Wang, and F. S. Li. Microwave reflectioncharacteristics of surface-modified Fe50Ni50fine particle composites. Journal ofApplied Physics.2010,108(12):123908:1-5.
    [157] Teruhiro Kasagi, Takanori Tsutaoka, and Kenichi Hatakeyama. Negativepermeability spectra in Permalloy granular composite materials. Applied PhysicsLetters.2006,88(17):172502.
    [158] X. Tang, Q. Tian, B. Y. Zhao, K. Hu. The microwave electromagnetic andabsorption properties of some porous iron powders. Materials Science andEngineering A.445–446(2007)135-140.
    [159] Hillert M. On the Theory of normal and abnormal grain growth. ActaMeallurgica.13(1966)227-238.
    [160]周亚栋.无机材料物理化学,武汉:武汉理工大学出版社,1992, p298.
    [161] Brook R J. Ceramic Fabrication Processes. New York:Academic press,1976
    [162]周亚栋无机材料物理化学,武汉:武汉理工大学出版社,1992, p317.
    [163] B Lu, et al. Catalytic pyrogenation synthesis of C/Ni composite nanoparticles:controllable carbon structures and high permittivities. Journal of Physics D:Applied Physics.2010,43(10):105403.
    [164] Zhanhu Guo, et al. Magnetic and electromagnetic evaluation of the magneticnanoparticle filled polyurethane nanocomposites. Journal of Applied Physics.2007,101(9):09M511
    [165] Xi’an Fan, et al. One-pot low temperature solution synthesis, magnetic andmicrowave electromagnetic properties of single-crystal iron submicron cubes. J.Mater. Chem.2010,20(9):1676–1682.
    [166] Bo Lu, et al. Influence of alloy components on electromagnetic characteristics ofcore/shell-type Fe–Ni nanoparticles. Journal of Applied Physics.2008,104(11):114313.
    [167] Lidong Liu, Yuping Duan, Jingbo Guo, et al. Influence of particle size onelectromagnetic and microwave absorption properties of FeSi/paraffincomposites. Physica B.2011,406(11):2261–2265.
    [168] Sung-Soo Kim, Sun-Tae Kim, Yeo-Choon, and Kyung-Sub Lee, Magnetic,dielectric, and microwave absorbing properties of iron particles dispersed inrubber matrix in gigahertz frequencies. Journal of Applied Physics.2005,97(10):10F905.
    [169] B.Lu, et al. Microwave absorption properties of the core/shell-type iron andnickel nanoparticles. Journal of Magnetism and Magnetic Materials.320(2008)1106-1111.
    [170]朱雨涛等.聚合物基复合绝缘中的界面极化.绝缘材料通讯.1995,4:1-4.
    [171] C. Brosseau and A. Beroual. Computational Electromagnetics and the RationalDesign of New Dielectric Heterostructures. Prog. Mat. Sci.2003,48(5):373-456.
    [172] Nicola Bowler. Designing Dielectric Loss at Microwave Frequencies usingMulti-Layered Filler Particles in a Composite. IEEE Transactions on Dielectricsand Electrical Insulation.2006,13(4):703-711.
    [173] E. Tuncer, Y. V. Serdyuk and S. M. Gubanski. Dielectric Mixtures: ElectricalProperties and Modeling, IEEE Trans. Dielectr. Electr. Insul.2002,9(5):809-828.
    [174] Guoxiu Tong et al. Polymorphous Fe/FeχOycomposites: One-step oxidationpreparation, composition control, and static magnetic and electromagneticcharacteristics. Materials Chemistry and Physics.2011,129(3):1189-1194.
    [175] Qing Yuchang et al. Microwave electromagnetic property of SiO2-coatedcarbonyl iron particles with higher oxidation resistance, Physica B:CondensedMatter.2011,406(4):777–780.
    [176] Zhang, X.F. et al. Multidielectric polarizations in the core/shell Co/graphitenanoparticles, Applied Physics Letters.2010,96(22):223111.
    [177] H. Huang, et al. Enhanced polarization in tadpole-shaped (Ni, Al)/AlNnanoparticles and microwave absorption at high frequencies. Progress InElectromagnetics Research B,2011,34:31-46.
    [178] C. Wu, J. Qiu, J. Wang, M. Xu, and L. Wang. Thermochromic property ofLa0.8Sr0.2MnO3thin-film material sputtered on quartz glass. J Alloys Compd.2010,506(2):L22–L24.
    [179] L. Liu, Y. Duan, J. Guo, L. Chen, and S. Liu. Influence of particle size on theelectromagnetic and microwave absorption properties of FeSi/paraffincomposites. Physica B: Condensed Matter.2011,406(11):2261–2265.
    [180] En-Gang Fu, Da-Ming Zhuang, Gong Zhang, Wei-Fang Yang, Ming Zhao.Substrate temperature dependence of the properties of ZAO thin films depositedby magnetron sputtering. Applied Surface Science.2003,217(1–4):88–94
    [181] C. G. Koops. On the Dispersion of Resistivity and Dielectric Constant of SomeSemiconductors at Audiofrequencies. Phys. Rev.1951,83(1):121-124.
    [182]游天桂、张志勇、阎军锋,赵武和张龙. ZnO:Co粉体的制备及其电磁性能研究.西北大学学报自然科学版.2009,39(6):944-947.
    [183] S. Ni, X. Sun, X. Wang, G. Zhou, F. Yang, J. Wang, and D. He. Low temperaturesynthesis of Fe3O4micro-spheres and its microwave absorption properties.Mater. Chem. Phys.2010,124(1):353-358.
    [184] Z. B. Li, Y. D. Deng, B. Shen, W. B. Hu. Preparation and microwave absorptionproperties of Ni–Fe3O4hollow spheres. Mater. Sci. Eng. B.2009,164(2):112-115.
    [185] G. X. Tong, W. H. Wu, J. G. Guan, J. P. Wang, J. Ma, J. H. Yuan, and S. L. Wang.Solution synthesis and novel magnetic properties of ball-chain iron nanofbers. J.Mater. Res.2011,26(20):2590-2598.
    [186]戴道生.铁磁学下册,北京:科学出版社,1976,6-48.
    [187]胡传炘.隐身涂层技术.北京:化学工业出版社,2004,196-197.
    [188] G. X. Tong, W. H. Wu, R. Qiao, and J. H. Yuan, J. G. Guan, H. S. Qian.Morphology dependence of static magnetic and microwave electromagneticcharacteristics of polymorphic Fe3O4nanomaterials. J. Mater. Res.2011,26(13):1639-1645.
    [189] A. Aharoni. Introduction to the Theory of Ferromagnetism.(Clarendon, Oxford),1996, Chap.8p.181.
    [190] F.Ma, Y.Qin, and Y.Li. Enhanced microwave performance of cobalt nanoflakeswith strong shape anisotropy. Appl. Phys.Lett.96(2010)202507:1-3
    [191] F.S.Wen, H.B.Yi, L.Qiao, H.Zheng, D.Zhou, and FS.Li. Analyses on doubleresonance behavior in microwave magnetic permeability of multiwalled carbonnanotube composites containing Ni catalyst. Appl. Phys. Lett.92(2008)042507.
    [192] J.L.Snoek. Dispersion and absorption in magnetic ferrites at frequencies aboveone Mc/s. Physica (Amsterdam).1948,14(4):207-217
    [193]戴道生.铁磁学下册,北京:科学出版社,1976,41-46.
    [194] C. Kittel. On the Theory of Ferromagnetic Resonance Absorption. Phys.Rev.1948,73(2):155-161.
    [195] Takanori Tsutaoka, Masahiro Ueshima, Toshihiko Tokunaga, Tatsuya Nakamura,and Kenichi Hatakeyama. Frequency dispersion and temperature variation ofcomplex permeability of Ni-Zn ferrite composite materials. J. Appl. Phys.1995,78(6):3983-3991.
    [196] P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, and F. Fievet.Monodisperse Ferromagnetic Particles for Microwave Applications. Adv. Mater.1998,10(13):1032–1035
    [197] K. J. Vinoy and R. M. Jha, Radar Absorbing Materials—From Theory to Designand Characterization. Boston: Kluwer Academic Publishers, MA,1996.
    [198] K. M. Lim, M. C. Kim, K. A. Lee, and C. G. Park. Electromagnetic waveabsorption properties of amorphous alloy-ferrite-epoxy composites inquasi-microwave band. IEEE Transaction on Magnetics.2003,39(3):1836-1841.
    [199] J. Willard Gibbs. On the Equilibrium of Heterogeneous Substances. Trans. Conn.Acad. iii,1876,108-248.
    [200] J. Willard Gibbs. On the Equilibrium of Heterogeneous Substances. Trans. Conn.Acad. iii,1878,343-524.
    [201] J. Willard Gibbs. Abstract of―The Equilibrium of Heterogeneous Substances‖.Am. J. Sci. Ser.3xvi,1878,441-458.
    [202]仲维卓,华素坤.负离子配位多面体生长基元与晶体的结晶习性.硅酸盐学报.1995,23(4):464-470.
    [203]李汶军,施尔畏,仲维卓及殷之文.负离子配位多面体生长基元的理论模型与晶粒形貌.人工晶体学报.1999,28(2):117-125.
    [204]洪时明.溶液中金刚石晶体生长的第三种驱动力.超硬材料工程.2005,17(1):1-5.
    [205]徐毓龙.氧化物与半导体化合物基础.西安:西安电子科技大学出版社,1991,7-12.
    [206]黄云霞,曹全喜,李智敏,李桂芳,王毓鹏和卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.物理学报.2009,58(11):8002-8007.
    [207] G.X. Tong, W.H. Wu, Q. Hua, Y.Q. Miao, J.G. Guan, H.S. Qian. Enhancedelectromagnetic characteristics of carbon nanotubes/carbonyl iron powderscomplex absorbers in2-18GHz ranges. J. Alloys Compd.2011,509(2):451-456.
    [208] Guoxiu Tong, Ji Ma, Wenhua Wu, Qiao Hua, Ru Qiao and Haisheng Qian.Grinding speed dependence of microstructure, conductivity, and microwaveelectromagnetic and absorbing characteristics of the faked Fe particles. Journalof Materials Research.2011,26(05):682-688.
    [209] J.P.Wright, J.P. Attfeld, P.G. Radaelli. Charge ordered structure of magnetiteFe3O4below the Verwey transition. Phys Rev B.66(2002)214-422
    [210] F.Walz. The Verwey transition-a topical review. J. Phys.: Condens. Matter.2002,14(12):R285-R340.
    [211] Y.S. Du, B. Wang, T.Li, D.B. Yu, H. Yan. Effects of annealing procedures on thestructural and magnetic properties of epitaxial La0.7Sr0.3MnO3flms. J. Magn.Magn. Mater.2006,297(2):88–92.
    [212] A.M. De Leon-Guevara, P. Berthet, J. Berthon, F. Millot, A. Revcolevschi.Influence of controlled oxygen vacancies on the magnetotransport andmagnetostructural phenomena in La0.85Sr0.15MnO3-. Phys. Rev. B.1997,56(10):6031-6035.
    [213] Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang. Systematicstudy on the growth of the aligned arrays of-Fe2O3and Fe3O4nanowires by aVapor-Solid Process. Adv. Funct. Mater.2006,16(17):2243-2251.
    [214] L. J. Deng, P. H. Zhou, J. L. Xie, and L. Zhang. Characterization and microwaveresonance in nanocrystalline FeCoNi flake composite. Journal of AppliedPhysics.101(2007)103916
    [215] Ph.Toneguzzo, G.Viau, O.Acher, F. Guillet, E. Bruneton, F.Fievet-Vincent,F.Fievet. CoNi and FeCoNi fine particles prepared by the polyol process:Physico-chemical characterization and dynamic magnetic properties. Journal ofMaterials Science.200035(15):3767-3784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700