用户名: 密码: 验证码:
基于两亲性聚合物的纳米材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代人类生活环境及生活方式等诸多因素的影响,癌症发病率正逐年增高,而癌症的诊断及治疗却一直是医学界亟待解决的难题。虽然人们已经陆续开发出一些具有良好药效的药物,但大多存在着同样的问题:缺乏对肿瘤的特异性,导致在临床应用中产生严重的毒副作用。因此,实现抗癌药物专一性选择性地作用于肿瘤细胞成为当今生物医学相关领域的研究热点及焦点。
     本论文主要针对目前抗肿瘤药物载体药物输送效率、智能化以及材料安全性等问题设计并合成了一系列基于两亲性聚合物的智能型药物控释体系。此类载体的优势在于,药物载体本身具有良好的稳定性并能在到达肿瘤部位后在其内部弱酸环境刺激下控制释放所负载的药物。同时,这些体系能选择性地对肿瘤细胞或组织产生抑制作用而对正常细胞或组织具有良好的安全性。
     (1)设计合成了一种含肉桂醛缩醛结构的pH-敏感亲油性单体SDMA,将其与亲水性单体OEGMA通过自由基共聚的方法合成了pH-敏感两亲性聚合物PSO,在中性的水溶液中能自组装成平均粒径为130nm左右的聚合物胶束。对其进行体外细胞实验,发现在肿瘤细胞的微酸环境中聚合物侧链上对酸不稳定的环状缩醛结构会发生水解,释放出的肉桂醛小分子对人黑素瘤A375细胞株具有抑制存活的作用。此外,在体外细胞实验中我们还发现,pH敏感的PSO聚合物胶束可以作为药物载体包裹模拟药物尼罗红进入小鼠黑素瘤细胞B16,并在肿瘤细胞的酸性环境中迅速释放。
     (2)为了有效提高载药量并增加胶束纳米粒子的稳定性,我们将两亲性聚合物与中空介孔二氧化硅纳米粒子复合,构建了多功能核-壳型纳米复合物。首先将含肉桂醛缩醛结构的pH敏感的亲油性单体SDMA、亲水性单体OEGMA及含有红色荧光发色团的罗丹明单体通过简单的自由基共聚得到多功能的两亲性共聚物PSOR,接着通过简单的自组装将其包裹在经C18修饰的中空介孔二氧化硅(HMS@C18)表面,得到核-壳型多功能纳米复合物(HMS@C18@PSOR)。利用该结构的空腔可以负载抗癌药物阿霉素。本体系不仅有较高的载药能力,而且能通过HMS表面覆盖其孔道的PSOR在肿瘤细胞中的弱酸环境下的pH-响应水解达到药物控制释放的目的。同时水解释放出来的小分子肉桂醛能够选择性地抑制人黑素瘤细胞A375。相对而言,该纳米复合物对人正常成纤细胞GM几乎没有毒性。此外该纳米复合物由于含有罗丹明结构还可用于荧光细胞成像。
     (3)在上述核-壳型纳米复合物的结构基础上,我们进一步优化壳层聚合物的结构,设计了具有荧光发色团的引发剂DIA,并依次引发亲油性单体SDMA和亲水性单体OEGMA,通过ATRP方法合成了结构更可控的多功能两亲性嵌段共聚物(PSDMA-b-POEGMA),然后与带有长烷基链的中空介孔二氧化硅(HMS@C18)自组装形成了pH-敏感的核-壳型纳米粒子(HMS@C18@PSDMA-b-POEGMA),用于药物的负载和控制释放。该纳米粒子对抗癌药物阿霉素(DOX)具有较高的负载能力,并能在肿瘤细胞弱酸性环境中实现药物的控制释放;与此同时释放出来的肉桂醛能抑制人黑素瘤细胞A375生长,相对于人正常成纤细胞GM而言,该纳米复合物载体几乎没有毒性。此外,纳米粒子表面所包裹的聚合物中含有引发剂的荧光链段,可用作细胞的荧光造影。
     (4)为了得到粒径更适合于临床使用的的超小纳米粒子,设计合成了含有双羧基螯合基团的两亲性低聚物,通过自组装得到粒径在10nm左右的聚合物胶束,其亲油性内核为低聚苯乙烯,亲水性外壳为EDTA结构的一半(—N(CH2COOH)2)。利用该结构与顺铂的螯合作用,可以方便地得到表面负载铂的聚合物胶束。因为双羧基结构是通过RAFT试剂引入到聚合物链端的,因此顺铂与聚合物胶束的作用几乎是化学计量的。基于胶束的药物载体对于顺铂具有较高的载药效率。因为该负载铂体系(PS(COOH)2-Pt)在弱酸性条件下可释放出铂,所以能够选择性地在肿瘤细胞中释放出铂。在体外细胞实验和体内实验中,该体系比游离态的顺铂具有更强的对肿瘤细胞Sk-Br3的抑制作用;并且无论药物载体,还是载体-铂的纳米复合物体系,都没有明显的系统毒性。
     (5)上述基于两亲性聚合物的功能材料除了在生物应用领域有良好的应用前景以外,由于其结构方面的优势,经与磁性纳米粒子组装后还可用于水处理:将端基功能化的两亲性低聚物通过简单的自组装方法修饰在亲油性的单分散四氧化三铁超顺磁纳米粒子表面,得到的超顺磁纳米复合物在水中能很好地分散,因其表面官能团双羧基能与汞离子迅速发生作用,能在非常低的磁场梯度下快速有效地除去水中低浓度的汞离子。
The incidence of cancer is growing increasingly because of the living environment and lifestyle of modern people. However, the treatment of cancer was still difficult to overcome.Some drugs with good therapy efficacy have been developed and applied in clinic, butmost of them lack of specific pharmacological effects and show serious side effects. As aresult, how to achieve selective efficacy of drugs on tumor cells and tissues has attractedthe attention in the biomedical research field. In this thesis, we fabricated a series ofintelligent drug delivery systems based on amphiphilic polymers to resolve problemsincluding low drug loading capacity, functionality limitations, safety issue, and so on. Ournamomaterials could accumuate in tumor sites and realize controlled release. Besides,theses systems would selectively inhibit the proliferation of cultured tumor cells or tissues,in comparison, show negligible toxicity in normal cells or tissues.
     (1) The pH-responsive amphiphilic copolymer poly(SDMA-co-OEGMA)(PSO) wasprepared from the pH-sensitive hydrophobic monomer2-styryl-1,3-dioxan-5-ylmethacrylate (SDMA) and the hydrophilic monomer oligo(ethylene glycol) methyl ethermethacrylate (OEGMA) by radical polymerization. Polymeric aggregates with about130nm diameter were obtained by the self-assembly of PSO in neutral aqueous solution.Cinnamic aldehyde (CA) small molecules are broken away from PSO side chains after thehydrolysis of acid-labile cyclic acetal in cultured A375human melanoma cells and furthersuppress the proliferation of this kind of tumor cells. Furthermore, the PSO aggregate wasdemonstrated to be a drug carrier for encapsulating Nile Red as model drug in in vitrotesting. Based on the pH-responsive characteristic, the Nile Red molecules loaded inself-assembly process could be released from the aggregate inside cultured B16mousemelanoma cells.
     (2) In order to improve the drug loading content and stability of carriers, amultifunctional nanocomposite (HMS@C18@PSOR) was synthesized by assembling hollow mesoporous silica nanoparticles (HMS) and as-sythesized pH-sensitive amphiphiliccopolymer from rhodamine chromophore, hydrophobic monomer SDMA, hydrophilicmonomer OEGMA. The obtained nanocomposites have high drug loading content due tothe HMS core, selectively release the encapsulated drug in mild acidicendosomal/lysosomal compartments as a result of the degradation of the pH-resposivepolymer PSOR, and also selectively inhibit the proliferation of cultured A375humanmelanoma cells by cinnamic aldehyde from pH-degradation of PSOR. In addition, thenanocomposites have potential of optical imaging in live cells.
     (3) Based on the core-shell nanocomposite mentioned above, we fabricated a novelmultifunctional nanocomposites (HMS@C18@PSDMA-b-POEGMA) consisting of HMSand well defined amphiphilic capping agent. The first step was the synthesis of amphiphilicblock polymer (PSDMA-b-POEGMA), by atom transfer radical polymerization frominitiator with a chromophore, hydrophobic monomer SDMA, hydrophilic monomerOEGMA. The second step was the self-assembly of amphiphilic polymer and hydrophobicHMS modified with C18, and the obtained multifuctional nanocomposites could be welldispersed in aqueous solution, have high drug loading content. After uptake by A375human melanoma cells, the pH-responsive shell would hydrolized due to cleavage of acetalmoieties in the weakly acidic endosomal/lysosomal compartments, resulting in loaded drugrelease. Furthermore, the simultaneously released cinnamic aldehyde (CA) would inhibitthe proliferation of cultured A375human melanoma cells. In comparison, thenanocomposites show negligible toxicity in GM human normal fibroblast. In addition, thenanocomposites have potential of optical imaging in live cells due to chromophores fromamphiphilic block polymer.
     (4) In order to obtain ultra small nanocomposite more suiltable for clinic application,polymeric micelles (~10nm) have been prepared from the amphiphilic oligomercomprising of oligomeric polystyrene as the hydrophobic inner core and half of EDTA(-N(CH2COOH)2) as the hydrophilic outermost shell. After chelating cisplatin with-N(CH2COOH)2in water, polymeric micelles containing Pt on the spherical surface havebeen easily obtained. Since the chelate group is introduced into amphiphilic oligomer asthe terminal group by RAFT agent, the chelation of cisplatin with PS(COOH)2is almoststoichiometric. The drug carrier based on PS(COOH)2showed a high loading efficiencytowards cisplatin. The release of the therapeutic Pt from the cisplatin-loaded composites (PS(COOH)2-Pt) triggered under weak acidic conditions resulted in good Pt-releasing andaccumulation in tumor cells. Both in vitro and in vivo, the chelated cisplatin inhibitedSk-Br3cancer more effectively than the intact cisplatin do. Furthermore, neitherPS(COOH)2nor PS(COOH)2-Pt showed obvious systematic toxicity.
     Based on the above works, we further studied the potential applications of amphiphilicpolymer and iron oxide in water treatment materials.
     (5) Bifunctional oligomers were synthesized and could be easily used to coatmonodisperse hydrophobic magnetite (Fe3O4) superparamagnetic nanoparticles (MSPNPs).And the resulting hydrophilic modified MSPNPs (M-MSPNPs) with abundant groups onthe surface, which could bond with Hg ions, could be used in the fast, efficient removal ofHg ions from water samples by low-field magnetic separation.
引文
[1] Holden G., Legge N.R., Quirk R., Schroeder H.E., Thermoplastic Elastomers,2ndEd.Cincinnati: Hanser/Gardner Publishers.1996.
    [2] Klumpp C., Kostarelos K., Prato M., Bianco A., Functionalized carbon nanotubes asemerging nanovectors for the delivery of therapeutics, Biochem. Biophys. Acta.,2006,1758,404-412.
    [3] ShenY., Zhang Y., Kuehner D., Yang G., Yuan F., Niu L., Ion-Responsive Behavior ofIonic-Liquid Surfactant Aggregates with Applications in Controlled Release andEmulsification, Chem. Phys. Chem.,2008,9,2198-2202.
    [4] Elhasi S., Astaneh R., Lavasanifar A., Solubilization of an amphiphilic drug bypoly(ethylene oxide)-block-poly(ester) micelles, Eur. J. Pharm. Biopharm.,2007,65,406-413.
    [5] Park M., Harrison C., Chaikin P.M., Gegister R.A., Adamson D.H., Block copolymerlithography: Periodic arrays of similar to10(11) holes in1square centimeter, Science,1997,276,1401-1404.
    [6] Morkved T.L., Wiltzius P., Jaeger H.M., Grier, D.G., Witten, T.A., Mesoscopicself-assembly of gold islands on diblock-copolymer films, Appl. Phys. Lett.,1994,64,422-424.
    [7] Archibald D.D., Mann S., Template mineralization of selfssembled anisotropic lipidmicrostructues, Nature,1993,364,430-433.
    [8] DengY.H., Yu T., Wan Y, Shi Y.F., Ordered Mesoporous Silicas and Carbons withLarge Accessible Pores Templated from Amphiphilic Diblock CopolymerPoly(ethylene oxide)-b-polystyrene, J. Am. Chem. Soc.,2007,23,1690-1694.
    [9] Kang Y.J., Taton T.A., Core/shell gold nanoparticles by self-assembly and crosslinkingof micellar, block-copolymer shells, Angew. Chem. Int. Ed.2005,44,409-412.
    [10] Wang C.Y., Mao YD., Wang D.Y., Fabrication of highly ordered microporous thinfilms by PS-b-PAA self-assembly and investigation of their tunable surface properties,J. Mater. Chem.,2008,18,683-690.
    [11] Woodle M.C., Lasic D.D., Sterically stabilized liposomes, Biochim. Biophys. Acta.,1992,1113,171–199.
    [12] Molineux G., Pegylation: engineering improved pharmaceuticals for enhanced therapy,Cancer Treat. Rev.,2002,28,13–16.
    [13] Lee J.H., Lee H.B., Andrade J.D., Blood compatibility of polyethylene oxide surfaces,Prog. Polym. Sci.,1995,20,1043–1079.
    [14] Benahmed A., Ranger M., Leroux J.C., Novel polymeric micelles based on theamphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide),Pharm. Res.,2001,18,323–328.
    [15] Inoue T., Chen G., Nakamae K., Hoffman A.S., An AB block copolymer ofoligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery ofhydrophobic drugs, J. Control. Release,1998,51,221–229.
    [16] Kabanov A.V., Batrakova E.V., Alakhov V.Y., Pluronic block copolymers as novelpolymer therapeutics for drug and gene delivery, J. Control. Release,2002,82,189–212.
    [17] Yokoyama M., Fukushima S., Uehara R., Okamoto K., Kataoka K., Sakurai Y.,Okano T., Characterization of physical entrapment and chemical conjugation ofadriamycin in polymericmicelles and their design for in vivo delivery to a solid tumor,J. Control. Release,1998,50,79–92.
    [18] Kwon G.S., Naito M., Yokoyama M., Okano T., Sakurai Y., Kataoka K., Physicalentrapment of adriamycin in AB block-copolymer micelles, Pharm. Res.,1995,12,192–195.
    [19] Hagan S.A., Coombes A.G.A., Garnett M.C., Dunn S.E., Davis, M.C. Illum L.,Davis S.S., Harding S.E., Purkiss S., Gellert P.R., Polylactide-poly (ethylene glycol)copolymers as drug delivery systems.1. Characterization of water dispersiblemicelle-forming systems, Langmuir,1996,12,2153–2161.
    [20] Liggins R.T., Burt H.M., Polyether–polyester diblock copolymers for the preparationof paclitaxel loaded polymeric micelle formulations, Adv. Drug Deliv. Rev.,2002,54,191–202.
    [21] Allen C., Han J., Yu Y., Maysinger D., Eisenberg A., Polycaprolactone-bpoly(ethylene oxide) copolymer micelles as a delivery vehicle fordihydrotestosterone, J. Control. Release,2000,63,275–286.
    [22] Letchford K., Zastre J., Liggins R., Burt H., Synthesis and micellar characterization ofshort block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblockcopolymers, Colloids Surf., B Biointerface,2004,35,81–91.
    [23] Zhang Z., Grijpma D.W., Feijen J., Thermo-sensitive transition of monomethoxypoly(ethylene glycol)-block-poly(trimethylene carbonate) films tomicellar-likenanoparticles, J. Controlled. Release,2006,112,57–63.
    [24] Goodwin A.P., Mynar J.L., Ma Y., Fleming G.R., Fréchet J.M.J., Synthetic micellesensitive to IR light via a two-photon process, J. Am. Chem. Soc.,2005,127,9952–9953.
    [25] Zhang L., Eisenberg A., Multiple Morphologies of “Crew-Cut” Aggregates ofPolystyrene-b-poly(acrylic acid) Block Copolymers, Science,1995,268,1728-1731
    [26] Zhang L., Eisenberg A., Formation of crew-cut aggregates of vatious morphologiesfrom amphiphilic block copolymers in solution, Polym. Adv. Technol.,1998,9,677-699
    [27] Shen H., Eisenberg A., Control of Architecture in Block-Copolymer Vesicles, Angew.Chem. Int. Ed.,2000,39,3310-3312.
    [28] Shen H., Eisenberg A., Block Length Dependence of Morphological Phase Diagramsof the Ternary System of PS-b-PAA/Dioxane/H2O, Macromolecules,2000,33,2561-2572
    [29] Liang H., Ravis B.D., Yu Y.S., EisenbergA., Correlation between the InterfacialTension and Dispersed Phase Morphology in Interfacially Modified Blends of LLDPEand PVC, Macromolecules,1999,32,1637-1652.
    [30] Yu K., Eisenberg A., Bilayer Morphologies of Self-Assembled Crew-Cut Aggregatesof Amphiphilic PS-b-PEO Diblock Copolymers in Solution, Macromolecules,1998,31,3509-3518.
    [31] Yu K., Bartels C., Eisenberg A., Vesicles with Hollow Rods in the Walls: A TrappedIntermediate Morphology in the Transition of Vesicles to Inverted HexagonallyPacked Rods in Dilute Solutions of PS-b-PEO, Macromolecules1998,31,9399-9402.
    [32] Yu K.,Zhang L.,Eisenberg A., Novel Morphologies of “Crew-Cut” Aggregates ofAmphiphilic Diblock Copolymers in Dilute Solution, Langmuir1996,12,5980-5984.
    [33] Zhang L.,Eisenberg A., Multiple Morphologies and Characteristics of “Crew-Cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers inAqueous Solutions, J.Am.Chem.Sci.,1996,118,3168-3181.
    [34] Shen H., Eisenberg A., Morphological Phase Diagram for a Ternary System of BlockCopolymer PS310-b-PAA52/Dioxane/H2O, J. Phys. Chem. B.1999,103,9473-9487.
    [35] Yu Y., Zhang L., Eisenberg A., Morphogenic Effect of Solvent on Crew-CutAggregates of Apmphiphilic Diblock Copolymers, Macromolecules,1998,31,1144-1154
    [36] Desbaumes L., Eisenberg A., Single-Solvent Preparation of Crew-Cut Aggregates ofVarious Morphologies from an Amphiphilic Diblock Copolymer, Langmuir1999,15,36-38.
    [37] Forster S., Plantenberg T., From self-organizing polymers to nanohybrid andbiomaterials, Angew. Chem., Int. Ed. Engl.,2002,41,689–714.
    [38] Riess G., Micellization of block copolymers, Prog. Polym. Sci.,2003,28,1107–1170.
    [39] Harada A., Kataoka K., Chain length recognition: core–shell supramolecular assemblyfrom oppositely charged block copolymers, Science,1999,283,65–67.
    [40] Kang N., Perron M.-è., Prud'homme R.E., Zhang Y.B., Gaucher G., Leroux J.C.,Stereocomplex block copolymer micelles: core–shell nanostructures with enhancedstability, Nano Lett.,2005,5,315–319.
    [41] Discher D.E., Eisenberg A., Polymer vesicles, Science,2002,297,967–973.
    [42] Luo L., Eisenberg A., Thermodynamic Size Control of Block Copolymer Vesicles inSolution, Langmuir,2001,17,6804-6811
    [43] Yu K., Bartels C., Eisenberg A., Trapping of Intermediate Structures of theMorphological Transition of Vesicles to Inverted Hexagonally Packed Rods in DiluteSolutions of PS-b-PEO, Langmuir,1999,15,7157–7167.
    [44] Zhang L., Eisenberg A., Morphogenic Effect of Added Ions on Crew-Cut Aggregatesof Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions, Macromolecules1996,29,8805–8815.
    [45] Yu K., Eisenberg A., Bilayer Morphologies of Self-Assembled Crew-Cut Aggregatesof Amphiphilic PS-b-PEO Diblock Copolymers in Solution, Macromolecules,1998,31,3509–3518.
    [46] Tian F., Yu Y., Wang C., Yang S., Consecutive Morphological Transitions inNanoaggregates Assembled from Amphiphilic Random Copolymer via Water-DrivenMicellization and Light-Triggered Dissociation, Macromolecules,2008,41,3385-3388.
    [47] Sugihara S., Kanaoka S., Aoshima S., Thermosensitive Random Copolymers ofHydrophilic and Hydrophobic Monomers Obtained by Living CationicCopolymerization, Macromolecules,2004,37,1711-1719.
    [48] Evanoff D.D., Carroll J.B., Roeder R.D., et a1., Poly(methyl methacrylate)copolymers containing pendant carbazole and oxadiazole moieties for applications insingle-layer organic light emitting devices, J. Polym. Sci. Part A: Polym. Chem.2008,46,7882-7897
    [49] Lefay C., Charleux B., Save M., Chassenieux C., Guerret O., Magnet S., Amphiphilicgradient poly(styrene-co-acrylic acid) copolymer prepared via nitroxide-mediatedsolution polymerization. Synthesis, characterization in aqueous solution andevaluation as emulsion polymerization stabilizer, Polymer,2006,47,1935-1945.
    [50] Ribaut T., Desmazes P.L., Fournel B., Sarrade S., Synthesis of gradient copolymerswith complexing groups by RAFT polymerization and their solubility in supercriticalCO2, J. Polym. Sci. Part A: Polym. Chem.,2009,47,5448-5460.
    [51] Kim J., Zhou H., Nguyen S.T., Torkelson J.M., Synthesis and application ofstyrene/4-hydroxystyrene gradient copolymers made by controlled radicalpolymerization: Compatibilization of immiscible polymer blends viahydrogen-bonding effects, Polymer,2006,47,5799-5809.
    [52] Geetha B., Mandal A.B., Ramasami T., Synthesis, characterization, and micelleformation in an aqueous solution of methoxypolyethylene glycol macromonomer,homopolymer, and graft copolymer, Macromolecules,1993,26,4083-4088.
    [53] Berlinova I.V., Amzil A., Tsvetkova S., Panayotov I.M., Amphiphilic graft copolymerswith poly(oxyethylene) side chains: Synthesis via activated esterintermediates—properties, J. Polym. Sci. PartA: Polym. Chem.,1994,32,1523-1530.
    [54] Li L., Zhang S.X., Poly(ethylene imine)-graft-poly(ethylene oxide) brush-likecopolymers: Preparation, thermal properties, and selective supramolecular inclusioncomplexation with-cyclodextrin, J. Polym. Sci. Part B: Polym. Phys.,2008,46,2296-2306.
    [55] Pang X.C., Jing R.K., Huang J.L., Synthesis of amphiphilic macrocyclic graftcopolymer consisting of a poly(ethylene oxide) ring and multi-poly(-caprolactone)lateral chains, Polymer,2008,49,893-900.
    [56] Horgan A., SaunderS B., Vincent B., Heenan R.K., Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties, J.Colloid. Interface Sci.,2003,262,548-559.
    [57] Njikang GN., Cao L., Gauthier M., Self-Assembly of Arborescent Polystyrene-graft-Poly(ethylene oxide) Copolymers at the Air/Water Interface, Macromol. Chem. Phys.,2008,209,907-918.
    [58] Xiong S.D., LI L., Wu S.L., Xu Z.S., Chu Paul K., Synthesis and properties offluorine-containing amphiphilic graft copolymer P(HFMA)-g-P(SPEG), J. Polym. Sci.Part A: Polym.Chem.2009,47,4895-4907.
    [59] Hadjichristidis N., Pitsikalis M., Pispas S., Iatrou H., Polymers with ComplexArchitecture by Living Anionic Polymerization, Chem. Rev.2001,101,3747-3792.
    [60] Strandman S., Zarembo A., Darinskii A.A., Loflund B., Butcher S.J., Tenhu H.,Self-assembling of star-like amphiphilic block copolymers with polyelectrolyte blocks.Effect of pH, Polymer,2007,48,7008-7016.
    [61] Hedden R.C., Bauer B.J., Structure and Dimensions of PAMAM/PEG Dendrimer StarPolymers, Macromolecules,2003,36,1829-1835.
    [62] Stevelmans S., van Hest J.C.M., Jansen J.F.G A., van Boxtel D.A.F.J., vall den BergE.M.M.B., Meijer E.M., Synthesis, Characterization, and Guest Host Properties ofInverted Unimolecular Dendritic Micelles, J. Am. Chem. Soc.,1996,118,7398-7399.
    [63] Schenning A.P.H.J., Peeters E., Meijer E.W., Energy Transfer in SupramolecularAssemblies of Oligo(p-phenylene vinylene)s Terminated Poly(propylene imine)Dendrimers, J. Am. Chem. Soc.,2000,122,4489-4495.
    [64] Cho S.Y., Allcock H.R., Dendrimers Derived from PolyphosphazenePoly(propyleneimine) Systems: Encapsulation and Triggered Release of HydrophobicGuest Molecules, Macromolecules,2007,40,3115-3121.
    [65] Atanasov V., Sinigersky V., Klapper M., Müllen K., Core Shell Macromoleculeswith Rigid Dendritic Polyphenylene Cores and Polymer Shells, Macromolecules,2005,38,1672-1683.
    [66] Lu J., Li N., Xu Q., Ge J., Lu J., Xia X.. Acetals Moiety Contained pH-sensitiveAmphiphilic Copolymer Selfassembly Used for Drug Carrier, Polymer,2010,51,1709–1715
    [67] Szwarc M., Levy M., Milkovich R., Polymerization Initiated by Electron Transfer toMonomer. A New Method of Formation of Block Polymers, J. Am. Chem. Soc.,1956,78,2656-2657.
    [68] Hsieh H.L., Qurirk R., P.,Ed.,Anionic Polymerization, Principles and PracticalApplications, Marcel Dekker, Inc., New York,1996, Chapter2.
    [69] Szwark M.C., Living Polymers and Electron Transfer Processes, New York:Wiely-interscience,1968.
    [70] Faust R., Kennedy J.P., Living Carbocationic Polymerization, Polym. Bull.,1986,15,317-323.
    [71] De Brouwer H., RAFT Memorabilia:“Living” Radical Polymerization inHomogeneous and Heterogeneous Media,2001.
    [72] Fayt R.,ForteR., Teyssie P., New Initiator System for the Living AnionicPolymerization of Tert-alkryl Acrylates, Macromolecules,1987,20,1442-1444.
    [73] Reetz M.T., New Methods for the Anionic Polymerization of a-Activated Olefins,1988,27,994-998.
    [74] Aida T., Inoue S.,“Immortal” Polymerization: Polymerization of Epoxide andβ-1actone with Aluminum Porpyrin in the Presence of compound, Macromolecules,1981,14,1162-1166.
    [75] Tang L.Y., Wang Y.C., Li Y., Du J.Z., Wang J., Shell-detachable micelles based ondisulfide-linked block copolymer as potential carrier for intracellular drug delivery,Bioconjugate Chem.,2009,20,1095–1099.
    [76] Ishizu K., Kakinuma H., Park J., Synthesis of Functionalized Macroinimer byN,N-Diethyldithiocarbamate-Mediated Living Free-Radical Polymerization, J. Polym.Sci. Part A: Polym. Chem.,2004,42,3644-3648.
    [77] Hawker C.J., Bosman A.M., Harth E., New Polymer Synthesis by Nitroxide MediatedLiving Radical Polymerizations, Chem. Rev.,2001,101,3661-3688.
    [78] Patten T.E., Matyjaszewski K., Atom Transfer Radical Polymerization and theSynthesis of Polymeric Materials, Adv. Mater.,1998,10,901-915.
    [79] Boyer C., Bulmus V., Davis T.P., Ladmiral V, Liu J.Q., Penier S., Bioapplications ofRAFT Polymerization, Chem. Rev.,2009,109,5402-5436.
    [80] Alexander H.S., Cyrille B., Fredrik N., Per B.Z., Michael R.W., High-OrderMultiblock Copolymers via lterative Cu(0)-Mediated Radical Polymerizations (SET-LRP): Toward Biological Precision, J. Am. Chem. Soc.,2011,133,11128-11131.
    [81] Wang J.S., Matyjaszewski K., Controlled/“living” radical polymerization, atomtransfer radical polymerization in the presence of transition-metal complexes, J. Am.Chem. Soc.,1995,117,5614-5615
    [82] Wang J.S., Matyjaszewski K., Controlled/“living” radical polymerization.Halogen atom transfer radical polymerization promoted by Cu(I)/Cu(II) redox process,Macromolecules1995,28,7901-7910.
    [83] Kato M., Kamigaito M., Sawamoto M., Polymerization of Methyl Methacrylate withthe Carbon Tetrachloride Dichloro-tris(triphenylphosphine)rutlhenium(II)/Methylaluminum Bis(2,6di-tert-butylphenoxide) Initiating System Possibility ofLiving Radical Polymerization, Macromolecules,1995,28(5):1721-1723
    [84] Percec V., Barboiu B.,“Living” Radical Polymerization of Styrene Initiated byArenesulfonyl Chlorides and cul(bpy)Cl, Macromolecules,1995,28(23),7970-7972
    [85] Beers K.L., Boo S., Gaynor S.G, Matyjaszewski K., Atom Transfer RadicalPolymerization of2-Hydroxyethyl Methacrylate, Macromolecules1999,32,5772-5776.
    [86] Edmondson S., Huck W.T.S., Controlled growth and subsequent chemicalmodification of poly(glycidyl methacrylate) brushes on silicon wafers, J. Mater.Chem.,2004,14,730-734.
    [87] Zhang X., Xia J., Matyjaszewski K., Controlled/“Living” Radical Polymerization of2-(Dimethylamino)ethyl Methacrylate, Macromolecules,1998,31,5167-5169.
    [88] Xia J., Zhang X., Matyjaszewski K., Atom Transfer Radical Polymerization of4-Vinylpyridine, Macromolecules,1999,32,3531-3533.
    [89] Coessens V., Pintauer T., Matyjaszewski K., Functional polymers by atom transferradical polymerization, Prog. Polym. Sci.,2001,26,337-377.
    [90] Davis K., Matyjaszewski K., Statistical, gradient, block, and graft copolymers bycontrolled/living radical polymerizations, Adv.Polym.Sci.,2002,159,1-13.
    [91] Matyjaszewski K., Macromolecular engineering: From rational design through precisemacromolecular synthesis and processing to targeted macroscopic material properties,Prog. Polym. Sci.,2005,30,858-875.
    [92] Kamigaito M., Ando T., Sawamoto M., Metal-catalyzed living radical polymerization,Chem. Rev.,2001,101,3689-3745.
    [93] Ouchi M., Terashima T., Sawamoto M., Transition Metal-Catalyzed Living RadicalPolymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis,Chem. Rev.,2009,109,4963-5050.
    [94] Xu F.J., Neoh K.Q, Kang E.T., Bioactive surfaces and biomaterials via atom transferradical polymerization, Prog. Polym. Sci.,2009,34,719-761.
    [95] Tsarevsky N.V., Matyjaszewski K.,“Green” atom transfer radical polymerization:From process design to preparation of well-defined environmentally friendlypolymeric materials, Chem. Rev.,2007,107,2270-2299.
    [96] Janeova K., Kops J., Chen X., Batsberg W., Synthesis by ATRP of poly(ethylene-co-butylene)-block-polystyrene, poly(ethylene-co-butylene)-block-poly(4-acetoxystyrene)and its hydrolysis product poly(ethylene-co-butylene)-block-poly(hydroxystyrene),Macromol. Rapid Commun.1999,20,219-223.
    [97] Tolstyka Z.P., Kopping J.T., Maynard H.D., Straightforward Synthesis ofCysteine-Reactive Telechelic Polystyrene, Macromolecules,2008,41,599-606.
    [98] Sarbu T., Lin K.Y., Ell J., Siegwart D.J., Spanswick J., Matyjaszewski K., Polystyrenewith Designed Molecular Weight Distribution by Atom Transfer Radical Coupling,Macromolecules,2004,37,3120-3127.
    [99] Liu H., Jiang X., Fan J., Wang G., Liu S., Aldehyde surface-functionalized shellcross-linked micelles with pH-tunable core swellability and their bioconjugation withlysozyme, Macromolecules,2007,40,9074–83.
    [100] Faucher S., Okrutny P., Zhu S., Catalyst solubility and experimental determination ofequilibrium constants for heterogeneous atom transfer radical polymerization, Ind.Eng. Chem. Res.,2007,46,2726-2734.
    [101] Xia J.H., Matyjaszewski K., Controlled/“Living” Radical PolymerizationHomogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as theInitiator, Macromolecules,1997,30,7692-7696.
    [102] Li M., Jahed N.M.,Min K., Matyjaszewski K., Preparation of Linear andStar-Shaped Block Copolymers by ATRP Using Simultaneous Reverse and NormalInitiation Process in Bulk and Miniemulsion, Macromolecules,2004,37,2434-2441.
    [103] Matyjaszewski K., Jakubowski W., Min K., Tang W., Huang J.Y, Braunecker W. A.,Tsarevsky N.V., Diminishing catalyst concentration in atom transfer radicalpolymerization with reducing agents, PNAS,2006,103,15309-15314.
    [104] Jakubowski W., Matyjaszewski K., Activator Generated by Electron Transfer forAtom Transfer Radical Polymerization, Macromolecules,2005,38,4139-4146.
    [105] Jakubowski W., Min K., Matyjaszewski K., Activators Regenerated by ElectronTransfer for Atom Transfer Radical Polymerization of Styrene, Macromolecules,2006,39,39-45.
    [106] Chiefari J., Chong Y. K., Ercole F., Krstina J., Jeffery J., Le T.P. T., Mayadunne R.T.A., Meijs G. F., Moad C.L., Moad G., Rizzardo E., Thang S.H., Living Free-RadicalPolymerization by Reversible Addition Fragmentation Chain Transfer: The RAFTProcess, Macromoleeules,1998,31,5559-5562.
    [107] Boyerr C., Bulmus V., Davis T.P., Ladmiral V., Liu J., Perrier S., Bioapplications ofRAFT Polymerization, Chem. Rev.,2009,109,5402-5436.
    [108] Kakwere H., Perrier S., Orthogonal “Relay” Reactions for Designing FunctionalizedSoft Nanoparticles, J. Am. Chem. Soc.,2009,131,1889-1891.
    [109] Zou P., Pan C., Multiple Vesicle Morphologies Formed from Reactive H-ShapedBlock Copolymers, Macromol. Rapid Commun.,2008,29,763-771.
    [110] Arot aréna M., Heise B., lshaya S., Laschewsky A., Switching the Inside and theOutside of Aggregates of Water-Soluble Block Copolymers with DoubleThermoresponsivity, J. Am. Chem. Soc.,2002,124,3787-3793.
    [111] Mitsukami Y., Donovan M.S., Lowe A.B., McCormick C.L., Water-SolublePolymers.81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers andBlock Copolymers in Aqueous Solution via RAFT, Macromolecules,2001,34,2248-2256.
    [112] Arumugam S., Vutukuri D.R., Thayumanavan S., Ramamurthy V., AmphiphilicHomopolymer as a Reaction Medium in Water: Product Selectivity within PolymericNanopockets, J. Am. Chem. Soc.,2005,127,13200-13206.
    [113] Basu S., Vutukuri D.R., Shyamroy S., Sandanaraj B.S., Thayumanavan S., InvertibleAmphiphilic Homopolymers, J. Am. Chem. Soe.,2004,126,9890-9891
    [114] Basu S., Vutukuri D.R., Thayumanavan S., Homopolymer Micelles inHeterogeneous Solvent Mixtures, J. Am. Chem. Soc.,2005,127,16794-16795.
    [115] Sandanaraj B.S., Vutukuri D.R., Simard J.M., Klaikherd A., Hong R., Rotello V.M.,Thayumanavan S., Noncovalent Modification of Chymotrypsin Surface Using anAmphiphilic Polymer Scaffold: Implications in Modulating Protein Function, J. Am.Chem. Soc.,2005,127,10693-10698.
    [116] Kim J., Lee E., Lim Y., Lee M., Supramolecular Capsules with Gated Pores from anAmphiphilic Rod Assembly, Angew. Chem. Int. Ed.,2008,47,4662-4666.
    [117] Patton D.L., Advincula R.C, A Versatile Synthetic Route to Macromonomers viaRAFT Polymerization, Macromolecules,2006,39,8674-8683.
    [118] Carter S., Hunt B., Rimmer S., Highly Branched Poly(N-isopropylacrylamide)s withImidazole End Groups Prepared by Radical Polymerization in the Presence of a StyrylMonomer Containing a Dithioester Group, Macromolecules,2005,38,4595-4603.
    [119] Childs M.A., Matlock D.D., Dorgan J.R., Ohno T.R., Surface Morphology ofPoly(caprolactone)-b-poly(dimethylsiloxane)-b-poly(caprolactone) Copolymers:Effects on Protein Adsorption, Biomacromolecules,2001,2,526-537.
    [120] Lowe A.B., McCormick C.L., Reversible addition–fragmentation chain transfer(RAFT) radical polymerization and the synthesis of water-soluble (co)polymers underhomogeneous conditions in organic and aqueous media, Prog. Polym. Sci.,2007,32,283-351.
    [121] Savariar E.N., Aathimanikandan S.V., Thayumanavan S., SupramolecularAssemblies from Amphiphilic Homopolymers: Testing the Scope, J. Am. Chem. Soc.,2006,128,16224-16230.
    [122] Bader H., Ringsdorf H., Schmidt B., Water soluble polymers in medicine, Angew.Makromol. Chem.,1984,123/124,457–485.
    [123] Yokoyama M., Kwon G.S., Okano T., Sakurai Y., Seto T., Kataoka K., Preparationof micelle-forming polymer–drug conjugates, Bioconjug. Chem.,1992,3,295–301.
    [124] Kabanov A.V., Chekhonin V.P., Alakhov V.Y., Batrakova E.V., Lebedev A.S.,Melik-Nubarov N.S., Arzhakov S.A., Levashov A.V., Morozov G.V., Severin E.S.,Kabanov V.A., The neuroleptic activity of haloperidol increases after itssolubilization in surfactant micelle. Micelles as microcontainers for drug targeting,FEBS Lett.989,258,343–345.
    [125] Allen C., Maysinger D., Eisenberg A., Nano-engineering block copolymeraggregates for drug delivery, Colloids Surf., B Biointerface,1999,16,3–27.
    [126] Adams M.L., Lavasanifar A., Kwon G.S., Amphiphilic block copolymers for drugdelivery, J. Pharm. Sci.,2003,92,1343–1355.
    [127] Lavasanifar A., Samuel J., Kwon G.S., Poly(ethylene oxide)-block-poly (L-aminoacid) micelles for drug delivery, Adv. Drug Deliv. Rev.,2002,54,169–190.
    [128] Jones M.C., Leroux J.C., Polymeric micelles—a new generation of colloidal drugcarriers, Eur. J. Pharm. Biopharm.,1999,48,101–111.
    [129] Torchilin V.P., Structure and design of polymeric surfactant-based drug deliverysystems, J. Control. Release,2001,73,137–172.
    [130] Mathot F., van Beijsterveldt L., Preat V., Brewster M., Arien A., Intestinal uptakeand biodistribution of novel polymeric micelles after oral administration, J. Control.Release,2006,111,47–55.
    [131] Sant V.P., Smith, D. Leroux J.-C., Enhancement of oral bioavailability of poorlywater-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies, J. Control. Release,2005,104,289–300.
    [132] Lyer A.K., Khaled G., Fang J., Maeda H., Exploiting the enhanced permeability andretention effect for tumor targeting, Drug Discov. Today,2006,11,812-818.
    [133] Baban D.F., Seymour L.W., Control of tumour vascular permeability, Adv. DrugDeliver. Rev.1998,34,109-119.
    [134] Maeda H., The enhanced permeability and retention (EPR) effect in tumorvasculature: the key role of tumor-selective macromolecular drug targeting, Adv.Enzyme Regul.,2001,41,189-207.
    [135] Maeda H., Wu J., Sawa T., Matsumura Y., Hori K., Tumor vascular permeability andthe EPR effect in macromolecular therapeutics: a review, J. Control. Release,2000,65,271-284.
    [136] Greish K., Enhanced permeability and retention of macromolecular drugs in solidtumors: A royal gate for targeted anticancer nanomedicines, J. Drug Targeting,2007,15,457-464.
    [137] Brigger I., Dubernet C., Couvreur P., Nanoparticles in cancer therapy and diagnosis,Adv. Drug Deliver. Rev.,2002,54,631-651.
    [138] Maeda H., Bharate G.Y., Daruwalla J., Polymeric drugs for efficient tumor-targeteddrug delivery based on EPR-effec, Eur. J. Pharm. Biopharm.,2009,71,409-419.
    [139] Prakash S., Malhotra M., Shao W., Tomaro-Duchesneau C., Abbasi S., Polymericnanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancertherapy, Adv. Drug Delivery Rev.,2011,63,1340–1351
    [140] Ding C., Gu J., Qu X., Yang Z., Preparation of multifunctional drug carrier fortumor-specific uptake and enhanced intracellular delivery through the conjugation ofweak acid labile linker, Bioconjugate Chem.,2009,20,1163–1170
    [141] Gillies E.R., Fréchet J.M.J., A new approach towards acid sensitive copolymermicelles for drug delivery, Chem. Commun.,2003,14,1640–1641
    [142] Bae Y., Fukushima S., Harada A., Kataoka K., Design of environment-sensitivesupramolecular assemblies for intracellular drug delivery: Polymeric Micelles that areResponsive to Intracellular pH Change, Angew. Chem. Int. Ed.,2003,42,4640–4643
    [143] Tonchevaa V., Schachta E., Ngb S.Y., Barrb J., Hellerb J., Use of block copolymersof poly(ortho esters) and poly (ethylene glycol) micellar carriers as potential tumourtargeting systems, Journal of Drug Targeting,2003,11,345–353
    [144] Jin Y., Song L., Su Y., Zhu L.J., Pang Y., Qiu F., Tong G.S., Yan D.Y., Zhu B.S.,Zhu X.Y., Oxime link: a robust tool for the design of pH-sensitive polymeric drugcarriers, Biomacromolecules,2011,12,3460–3468.
    [145] Gillies E.R., Jonsson T.B., Fréchet J.M., Stimuli-responsive supramolecularassemblies of linear-dendritic copolymers, J. Am. Chem. Soc.,2004,126,11936–11943.
    [146] Gillies E.R., Fréchet J.M., pH-Responsive copolymer assemblies for controlledrelease of doxorubicin, Bioconjug. Chem.,2005,16,361–368.
    [147] Chen W., Meng F.H., Li F., Ji S.J., Zhong Z.Y., pH-Responsive BiodegradableMicelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and TriggeredDrug Release, Biomacromolecules,2009,10,1727–1735
    [148] Du Y.F., Chen W., Zheng M., Meng F.H., Zhong Z.Y., pH-sensitive degradablechimaeric polymersomes for the intracellular release of doxorubicin hydrochloride,Biomaterials,2012,33,7291-7299
    [149] Liu Z.Z., Meng F.H., Zheng M., Zhong Z.Y., Non-viral gene transfection in vitrousing endosomal pH-sensitive reversibly hydrophobilized polyethylenimine,Biomaterials,2011,32,9109-9119
    [150] Rao N.V., Mane S.R., Kishore A., Sarma J.D., Shunmugam R., Norbornene DerivedDoxorubicin Copolymers as Drug Carriers with pH Responsive Hydrazone Linker,Biomacromolecules,2012,13,221230
    [151] Zhou L., Cheng R., Tao H., Ma S., Guo W., Meng F., Liu H., Liu Z., Zhong Z.,Endosomal pH-Activatable Poly(ethylene oxide)-graft-Doxorubicin Prodrugs:Synthesis, Drug Release, and Biodistribution in Tumor-Bearing Mice,Biomacromolecules,2011,12,1460–1467
    [152] Zhan F., Chen W., Wang Z., Lu W., Cheng R., Deng C., Meng F., Liu H., Zhong Z.,Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release,Biomacromolecules,2011,12,36123620
    [153] Guo X., Shi C., Wang J., Di S., Zhou S., pH-triggered intracellular release fromactively targeting polymer Micelles, Biomaterials,2013,34,4544-4554
    [154] Thambi T., Deepagan V.G., Yoo C.K., Park J.H., Synthesis and physicochemicalcharacterization of amphiphilic block copolymers bearing acid-sensitive orthoesterlinkage as the drug carrier, Polymer,2011,52,4753-4759
    [155] Song C., Su C., Cheng J., Du F., Liang D., Li Z., Toward tertiary amine-modulatedacid-triggered hydrolysis of copolymers containing pendent ortho ester groups,Macromolecules,2013,46,10931100
    [156] Qiao Z., Du F., Zhang R., Liang D., Li Z., Biocompatible thermoresponsivepolymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups,Macromolecules,2010,43,6485–6494
    [157] Lee E.S., Shin H.J., Na K., Bae Y.H., Poly(L-histidine)-PEG block copolymermicelles and pH-induced destabilization, J. Control. Release,2003,90,363–374.
    [158] Lee E.S., Na K., Bae Y.H., Polymeric micelle for tumor pH and folatemediatedtargeting, J. Control. Release,2003,91,103–113.
    [159] Martin T.J., Prochazka K., Munk P., Webber S.E., pH-dependent micellization ofpoly(2-vinylpyridine)-block-poly(ethylene oxide), Macromolecules,1996,29,6071–6073.
    [160] Lee A.S., Gast A.P., Butun V., Armes S.P., Characterizing the structure of pHdependent polyelectrolyte block copolymer micelles, Macromolecules,1999,32,4302–4310.
    [161] Tang Y., Liu S.Y., Armes S.P., Billingham N.C., Solubilization and controlledrelease of a hydrophobic drug using novel micelle-forming ABC triblock copolymers,Biomacromolecules,2003,4,1636–1645.
    [162] Borchert U., Lipprandt U., Bilang M., Kimpfler A., Rank A., Peschka R., SchubertR., Lindner P., Forster S., pH-Induced release from P2VP-PEO block copolymervesicles, Langmuir,2006,22,5843–5847.
    [163] Zhang Y., Wang C., Xu C., Yang C., Zhang Z., Yan H., Liu K.,Morpholino-decorated long circulating polymeric micelles with the function ofsurface charge transition triggered by pH changes, Chem. Commun.,2013,49,7286-7288
    [164] Saito G., Swanson J.A., Lee K.D., Drug delivery strategy utilizing conjugation viareversible disulfide links: role and site of cellular reducing activities, Advanced DrugDelivery Reviews,2003,55,199–215.
    [165] Ballatori N., Krance S.M., Notenboom S., Shi S., Tieu K., Hammond C.L.,Glutathione dysregulation and the etiology and progression of human diseases, Biol.Chem.,2009,390,191–214.
    [166] Estrela J.M., Ortega A., Obrador E., Glutathione in cancer biology and therapy.Critical Reviews in Clinical Laboratory, Science,2006,43,143–144.
    [167] Franco R., Schoneveld O.J., Pappa A., Panayiotidis M.I., The central role ofglutathione in the pathophysiology of human diseases, Archives of Physiology andBiochemistry,2007,113,234–258.
    [168] Franco R., Cidlowski J.A., Apoptosis and glutathione: beyond an antioxidant. CellDeath and Differ.,2009,16,1303–1314.
    [169] Schafer F.Q., Buettner G.R., Redox environment of the cell as viewed through theredox state of the glutathione disulfide/glutathione couple. Free Radical Bio. Med.,2001,30,1191–1212.
    [170] Russo A., DeGraft W., Friedman N., Mitchell J.B., Selective modulation ofglutathione levels in human normal versus tumor cells and subsequent differentialresponse to chemotherapy drugs, Cancer Res.,1986,46,2845–2848.
    [171] Cheng R., Feng F., Meng F.H., Deng C., Feijen J., Zhong Z.Y.,Glutathioneresponsive nano-vehicles as a promising platform for targeted intracellulardrug and gene delivery, J. Control. Release,2011,152,2–12.
    [172] Li J., Huo M., Wang J., Zhou J., Mohammada J.M., Zhang Y., Zhu Q., Waddad A.Y.,Zhang Q., Redox-sensitive micelles self-assembled from amphiphilic hyaluronicaciddeoxycholic acid conjugates for targeted intracellular delivery of paclitaxel,Biomaterials2012,33,2310-2320
    [173] Liu J.Y., Pang Y., Huang W., Huang X.H., Meng L.L., Zhu X.Y., Zhou Y.F., YanD.Y., Bioreducible micelles self-assembled from amphiphilic hyperbranchedmultiarm copolymer for glutathione-mediated intracellular drug delivery,Biomacromolecules,2011,12,1567–1577.
    [174] Liu J.Y., Pang Y., Huang W., Zhu Z.Y., Zhu X.Y., Zhou Y.F., Yan D.Y.,Redox-responsive polyphosphate nanosized assemblies: a smart drug deliveryplatform for cancer therapy, Biomacromolecules,2011,12,2407–2415.
    [175] Sun H.L., Guo B.N., Cheng R., Meng F.H., Liu H.Y., Zhong Z.Y., Biodegradablemicelles with sheddable poly(ethylene glycol) shells for triggered intracellular releaseof doxorubicin, Biomaterials,2009,30,6358–6366.
    [176] Sun H.L., Guo B.N., Li X.Q., Cheng R., Meng F.H., Liu H.Y., Zhong Z.Y.,Shell-sheddable micelles based on dextran-SS-poly(ε-caprolactone) diblockcopolymer for efficient intracellular release of doxorubicin, Biomacromolecules,2010,11,848–854.
    [177] Sun Y., Yan X.L., Yuan T.M., Liang J., Fan Y.J., Gu Z.W., Zhang X.D.,Disassemblable micelles based on reduction-degradable amphiphilic graft copolymersfor intracellular delivery of doxorubicin, Biomaterials,2010,31,7124–7131.
    [178] Fan H.L., Huang J., Li Y.P., Yu J.H., Chen J.H., Fabrication of reduction-degradablemicelle based on disulfide-linked graft copolymer–camptothecin conjugate forenhancing solubility and stability of camptothecin, Polymer,2010,51,5107–5114.
    [179] Sourkohi BK, Cunningham A, Zhang Q, Oh JK. Biodegradable block copolymermicelles with thiol-responsive sheddable coronas. Biomacromolecules,2011,12,3819–3825.
    [180] Wen H.Y., Dong H.Q., Xie W.J., Li Y.Y., Wang K., Paulettic G.M., Shi D.L.,Rapidly disassembling nanomicelles with disulfide-linked PEG shells forglutathione-mediated intracellular drug delivery, Chem. Commun.,2011,47,3550–3552.
    [181] Ren T.B., Feng Y., Zhang Z.H., Lia L., Li Y.Y., Shell-sheddable micelles based onstar-shaped poly(ε-caprolactone)-SS-poly(ethyl glycol) copolymer for intracellulardrug release, Soft Matter,2011,7,2329–2331.
    [182] Ren T.B., Xia W.J., Dong H.Q., Li Y.Y., Sheddable micelles based ondisulfide-linked hybrid PEG–polypeptide copolymer for intracellular drug delivery,Polymer,2011,52,3580–3586.
    [183] Pelton R., Temperature-sensitive aqueousmicrogels, Adv. Colloid Interface Sci.,2000,85,1–33.
    [184] Schild H.G., Poly (N-isopropylacrylamide)—experiment, theory and application,Prog. Polym. Sci.,1992,17,163–249.
    [185] Kabanov A.V., Batrakova E.V., Alakhov V.Y., Pluronic block copolymers as novelpolymer therapeutics for drug and gene delivery, J. Control. Release,2002,82,189–212.
    [186] Jeong B., Bae Y.H., Lee D.S., Kim S.W., Biodegradable block copolymers asinjectable drug-delivery systems, Nature,1997,388,860–862.
    [187] Chilkoti A., Dreher M.R., Meyer D.E., Raucher D., Targeted drug delivery bythermally responsive polymers, Adv. Drug Deliv. Rev.,2002,54,613–630.
    [188] Hoffman A.S., Stayton P.S., Volga B., Chen G., Chen J., Cheung C., Chilkoti A.,Ding Z., Dong L., Fong R., Lackey C.A., Long C.J., Miura M., Morris J.E., MurthyN., Nabeshima Y., Park T.G., Press O.W., Shimoboji T., Shoemaker S., Yang H.J.,Monji N., Nowinski R.C., Cole C.A., Priest J.H., Harris J.M., Nakamae K., Nishino T.,Miyata T., Really smart bioconjugates of smart polymers and receptor proteins, J.Biomed. Mater. Res.,2000,52,577–586.
    [189] Jeong B., Kim S.W., Bae Y.H., Thermosensitive sol–gel reversible hydrogels, Adv.Drug Deliv. Rev.,2002,54,37–51.
    [190] Huang X., Lowe T.L., Biodegradable thermoresponsive hydrogels for aqueousencapsulation and controlled release of hydrophilic model drugs, Biomacromolecules,2005,6,2131–2139.
    [191] Mori T., Maeda M., Temperature-responsive formation of colloidal nanoparticlesfrom poly(N-isopropylacrylamide) grafted with singlestranded DNA, Langmuir,2004,20,313–319.
    [192] Kavanagh C.A., Gorelova T.A., Selezneva, Rochev Y.A., Dawson, K.A. GallagherW.M., Gorelov A.V., Keenan A.K., Poly(N-isopropylacrylamide) copolymer films asvehicles for the sustained delivery of proteins to vascular endothelial cells, J. Biomed.Mater. Res. A,2005,72,25–35.
    [193] Kono K., Thermosensitive polymer-modified liposomes, Adv. Drug Deliv. Rev.,2001,53,307–319.
    [194] Leroux J., Roux E., Le Garrec D., Hong K., Drummond D.C., Nisopropylacrylamidecopolymers for the preparation of pH-sensitive liposomes and polymeric micelles, J.Control. Release,2001,72,71–84.
    [195] Chung J.E., Yokoyama M., Okano T., Inner core segment design for drug deliverycontrol of thermo-responsive polymeric micelles, J. Control. Release,2000,65,93–103.
    [196] Feil H., Bae Y.H., Feijen J., Kim S.W., Effect of comonomer hydrophilicity andionization on the lower critical solution temperature of N-isopropylacrylamidecopolymers, Macromolecules,1993,26,2496–2500.
    [197] Shibayama M., Mizutani S., Nomura S., Thermal properties of copolymer gelscontaining N-isopropylacrylamide, Macromolecules,1996,29,2019–2024.
    [198] Liu X., Liu Y., Zhang Z., Huang F., Tao Q., Ma R., An Y., Shi L.,Temperature-Responsive Mixed-Shell Polymeric Micelles for the Refolding ofThermally Denatured Proteins, Chem. Eur. J.,2013,19,7437–7442
    [199] Topp M.D.C., Dijkstra P.J., Talsma H., Feijen J., Thermosensitive micelle-formingblock copolymers of poly(ethylene glycol) and poly (N-isopropylacrylamide),Macromolecules,1997,30,8518–8520.
    [200] Zhu P.W., Napper D.H., Effect of heating rate on nanoparticle formation ofpoly(N-isopropylacrylamide)-poly(ethylene glycol) block copolymer microgels,Langmuir,2000,16,8543–8545.
    [201] Qiu X.P., Wu C., Study of the core–shell nanoparticle formed through the“coil-to-globule” transition of poly(N-isopropylacrylamide) grafted withpoly(ethylene oxide), Macromolecules,1997,30,7921–7926.
    [202] Sershen S.R., Westcott S.L., Halas N.J., West J.L., Temperature-sensitivepolymer-nanoshell composites for photothermally modulated drug delivery, J.Biomed. Mater. Res.,2000,5,293–298.
    [203] Jiang J., Tong X., Zhao. Y., A new design for light-breakable polymer micelles, J.Am. Chem. Soc.,2005,127,8290–8291.
    [204] Jiang J., Tong X., Morris D., Zhao Y., Toward photocontrolled release usinglight-dissociable block copolymer micelles, Macromolecules,2006,39,4633–4640.
    [205] Mynar J.L., Goodwin A.P., Cohen J.A., Ma Y., Fleming G.R., Fréchet J.M.J.,Two-photon degradable supramolecular assemblies of linear-dendritic Copolymers,Chem. Commun.,2007,2081–2082
    [206] Wang G., Wang X., A novel hyperbranched polyester functionalized with azochromophore: synthesis and photoresponsive properties, Polym. Bull.,2002,49,1–8.
    [207] Pieroni O., Fissi A., Popova G., Photochromic polypeptides, Prog. Polym. Sci.,1998,23,81–123.
    [208] Minoura N., Higuchi M., Kinoshita T., Stimuli-responsive formation of helicalpolypeptide rod assemblies, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst.,1997,4,249–254.
    [209] Lee H., Wu W., Oh J.K., Mueller L., Sherwood G., Peteanu L., Kowalewski T.,Matyjaszewski K., Light-Induced Reversible Formation of Polymeric Micelles,Angew. Chem. Int. Ed.,2007,46,2453–2457
    [210] Yin T., Wang P., Li J., Zheng R., Zheng B., Cheng D., Li R., Lai J., Shuai X.,Ultrasound-sensitive siRNA-loaded nanobubbles formed by heteroassembly ofpolymeric micelles and liposomes and their therapeutic effect in gliomas,Biomaterials,2013,34,4532-4543
    [211] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli, J.C.; Beck, J.S., Orderedmesoporous molecular-sieves synthesized by a liquid-crystal template mechanism.Nature,1992,359(6397):710–712.
    [212] Vallet-Regi M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew.Chem. Int. Ed.,2007,46(40),7548–7558.
    [213] Liong M., Angelos S., Choi E., Patel K., Stoddart J.F., Zink J.I., Mesostructuredmultifunctional nanoparticles for imaging and drug delivery, J. Mater. Chem.,2009,19(35),6251–6257.
    [214] Wang S.B., Ordered mesoporous materials for drug delivery, Micro. Meso. Mater.,2009,117(1/2),1-9.
    [215] Piao Y., Burns A., Kim J., Wiesner U., Hyeon T., Designed fabrication ofsilica-based nanostructured particle systems for nanomedicine applications, Adv.Funct. Mater.,2008,18(23),3745–3758.
    [216] He Q.J., Shi J.L., Mesoporous silica nanoparticle based nano drug delivery systems:synthesis, controlled drug release and delivery, pharmacokinetics andbiocompatibility, J. Mater. Chem.,2011,21(16),5845–5855.
    [217] Huang X.L., Teng X., Chen D., Tang F.Q., He J.Q., The effect of the shape ofmesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials,2010,31,438-448.
    [218] Chen Y., Chen H.R., Guo L.M., He Q.J., Chen F., Zhou J., Feng J.W., Shi J. L.,Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-BasedSelective Etching Strategy, ACS Nano,2010,4,529-539.
    [219] Pan L.M., He Q.J., Liu J.N., Chen Y., Ma M., Zhang L.L., Shi J.L.,Nuclear-Targeted Drug Delivery of TAT Peptide-Conjugated MonodisperseMesoporous Silica Nanoparticles, J. Am. Chem. Soc.2012,134,5722-5725.
    [220] Cauda V., Schlossbauer A., Kecht J., Zurner A., Bein T., Multiple Core ShellFunctionalized Colloidal Mesoporous Silica Nanoparticles, J. Am. Chem. Soc.2009,131,11361-11370.
    [221] Kim M.H., Na H.K., Kim Y. K., Ryoo S.R., Cho H.S., Lee K.E., Jeon H., Ryoo R.,Min D.H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles withUltralarge Pores and Their Application in Gene Delivery, ACS Nano,2011,5,3568-3576.
    [222] Hartono S.B., Gu W.Y., Kleitz F., Liu J., He L.Z., Middelberg A.P.J., Yu C.Z., Lu,G.Q. Qiao S.Z., Poly-L-lysine Functionalized Large Pore Cubic MesostructuredSilica Nanoparticles as Biocompatible Carriers for Gene Delivery, ACS Nano,2012,6,2104-2117.
    [223] Na H.K., Kim M.H., Park K., Ryoo S.R., Lee, K.E. Jeon H., Ryoo R., Hyeon C.,Min D.H., Efficient Functional Delivery of siRNA using Mesoporous SilicaNanoparticles with Ultralarge Pores, Small,2012,8,1752-1761.
    [224] Chen D., Li L.L., Tang F.Q., Qi S.O., Facile and Scalable Synthesis of TailoredSilica “Nanorattle” Structures, Adv. Mater.2009,21,3804-3807.
    [225] Yang X., Liu X., Liu Z., Pu F., Ren J., Qu X., Near-Infrared Light-Triggered,Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles, Adv. Mater.2012,24,2890-2895.
    [226] Zhang Z., Wang L., Wang J., Jiang X., Li X., Hu Z., Ji Y., Wu X., Chen C.,Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated MultifunctionalTheranostic Platform for Cancer Treatment, Adv. Mater.2012,24,1418-1423.
    [227] Liu J.N., Bu W.B., Zhang S.J., Chen F., Xing H.Y., Pan L.M., Zhou L.P., Peng W.J.,Shi J.L., Controlled Synthesis of Uniform and Monodisperse UpconversionCore/Mesoporous Silica Shell Nanocomposites for Bimodal Imaging, Chem. Eur. J.2012,18,2335-2341.
    [228] Chen Y., Yin Q., Ji X.F., Zhang S.J., Chen H.R., Zheng Y.Y., Sun Y., Qu H.Y., WangZ., Li Y.P., Wang X., Zhang K., Zhang L.L., Shi J.L., Manganese oxide-basedmultifunctionalized mesoporous silica nanoparticles for pH-responsive MRI,ultrasonography and circumvention of MDR in cancer cells, Biomaterials,2012,33,7126-7137.
    [229] Chen Y., Chen H., Zhang S., Chen F., Sun S., He Q., Ma M., Wang X., Wu H., ZhangL., Zhang L., Shi J., Structure-property relationships in manganese oxide-mesoporoussilica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drugdelivery, Biomaterials,2012,33,2388-2398.
    [230] Lee J.E., Lee N., Kim H., Kim J., Choi S.H., Kim J.H., Kim T., Song I.C., Park S.P.,Moon W.K., Hyeon T., Uniform Mesoporous Dye-Doped Silica NanoparticlesDecorated with Multiple Magnetite Nanocrystals for Simultaneous EnhancedMagnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery, J. Am.Chem. Soc.,2010,132,552-557.
    [231] Chen Y., Xu P.F., Chen H.R., Shi J.L., In Vivo Bio-Safety Evaluations andDiagnostic/Therapeutic Applications of Chemically Designed Mesoporous SilicaNanoparticles, Adv. Mater.,2013,25,3144–3176
    [232] Mei X., Chen D., Li N., Xu Q., Ge J., Li H., Lu J., Hollow mesoporous silicananoparticles conjugated with pH-sensitive amphiphilic diblock polymer forcontrolled drug release, Microporous and Mesoporous Materials,2012,152,16-24.
    [233] Mei X., Chen D., Li N., Xu Q., Ge J., Li H., Yang B., Xu Y., Lu J., Facile Preparationof Coating Fluorescent Hollow Mesoporous Silica Nanoparticles with pH-SensitiveAmphiphilic Diblock Copolymer for Controlled Drug Release and Cell Imaging, SoftMatter,2012,8,5309-5316.
    [234] Mei X., Yang S., Chen D., Li N., Li H.,Xu Q., Ge J., Lu J., Light-triggered reversibleassemblies of azobenzene-containing amphiphilic copolymer with b-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release, Chem.Commun.,2012,48,10010–10012
    [235] Martina M.S., Fortin J.E., Ménager C., Clément O., Barratt G., Grabielle-MadelmontC., Gazeau F., Cabuil V., Lesieur S., Generation of superparamagnetic liposomesrevealed as highly efficient MRI contrast agents for in vivo imaging. J. Am. Chem.Soc.,2005,127(30),10676-10685
    [236] Bulte J.W.M., Douglas T., Witwer B., van Gelderen P., Moskowitz B.M., DuncanI.D., Frank J.A., Magnetodendrimers allow endosomal magnetic labeling and invivo tracking of stem cells, Nat. Biotechnol.,2001,19,1141-1147
    [237] Nam J.M., Thaxton C.S., Mirkin C.A., Nanoparticle-based bio-bar codes fortheultrasensitive detection of proteins, Science,2003,301,1884-1886
    [238] Donadel K., Felisberto M.D.V., Ffivere V.T.M., Rigoni M., Batistela N.J., LaranjeiraM.C.M., Synthesis and characterization of the iron oxide magnetic particles coatedwith chitosan biopolymer, Mater. Sci. Eng. C.,2008,28,509-514
    [239] Chertok B., Moffat B.A., David A.E., Yu F., Bergemann C., Ross B.D., Yang V.C.,Iron oxide nanoparticles as a drug delivery vehicle for MIU monitored magnetictargeting of brain tumors, Biomaterials,2008,29,487-496
    [240] Liu J.F., Zhao Z.S., Jiang G.B., Coating Fe3O4magnetic nanoparticles with humicacid for high efficient removal of heavy metals in water, Environ. Sci. Technol.,2008,42,6949-6954
    [241] Zhang W.M., Wu X.L., Hu J.S., Guo, Y.G., Wan, L.J., Carbon Coated Fe3O4Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Adv. Funct.Mater.,2008,18,3941–3946
    [242] Ge J.P., Hu Y.X., Blasini M., Beyermann W.P., Yin Y.D., Superparamagneticmagnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed.,2007,46,4342-4345
    [243] Wang C.Y., Zhu G.M., Chen Z.Y., Lin, Z.G., The preparation of magnetite Fe3O4and its morphology control by a novel arc2electrodeposition method. MaterialsResearch Bulletin,2002,37,2525-2529
    [244] Fan R., Chen X.H., Gui Z., Liu L., Chen Z.Y., A new simple hydrothermalpreparation of nanocrystalline magnetite Fe3O4, Materals Research Bulletin,2001,36,497-502
    [245]陈捷,薛博,白姝,新型磁性亲和载体的制备及其对溶菌酶的吸附,天津大学学报,2001,34(1),103-106
    [246] Park J., An K., Hwang Y., Park J.G., Noh H.J., Kim J.Y., Park J.H., Hwang N.M.,Hyeon T., Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater.,2004,3,891-895.
    [247] Chen D.Y., Li N.J., Gu H.W., Xia X.W., Xu Q.F., Ge J.F., Lu J.M., Li Y.G., A novelpH-sensitive polymeric fluorescent probe, Synthesis, characterization and opticalproperties, Chem. Commun.,2010,46,6708-6710.
    [1] Gu H.W., Ho P.L., Tong E., Wang L., Xu B., Presenting vancomycin on nanoparticlesto enhance antimicrobial activities, Nano Lett.,2003,9,1261-1263.
    [2] Miyata K., Polymeric micelles for nano-scale drug delivery, React. Funct. Polym.,2011,71,227-234.
    [3] Wang B.D., Xu C.J., Xie J., Yang Z.Y., Sun S.H., pH Controlled release of chromonefrom chromone-Fe3O4nanoparticles, J. Am. Chem. Soc.,2008,130,14436-14437.
    [4] Nakayama M., Okano T., Multi-targeting cancer chemotherapy usingtemperature-responsive drug carrier systems, React. Funct. Polym.,2011,71,235-244.
    [5] Alemdaroglu F.E., Alemdaroglu N.C., Langguth P., Herrmann A., DNA BlockCopolymer Micelles-A Combinatorial Tool for Cancer Nanotechnology, Adv. Mater.,2008,20,899-902.
    [6] Wua H.X., T L.H., An L., Wang X., Zhang H.Q., Shi J.L., Yang S.P., pH-responsivemagnetic mesoporous silica nanospheres for magnetic resonance imaging and drugdelivery, React. Funct. Polym.,2012,72,329-336.
    [7] Ren J., Hong H.Y., Ren T.B., Teng X.R., Preparation and characterization of magneticPLA–PEG composite nanoparticles for drug targeting, React. Funct. Polym.,2006,66,944-951.
    [8] Ohtsuka N., Konno T., Miyauchi Y., Maeda H., Anticancer effects of arterialadministration of the anticancer agent SMANCS with lipiodol on metastatic lymphnodes, Cancer,1987,59,1560-1565.
    [9] Maeda H., Matsumura Y., Tumoritropic and lymphotropic principles ofmacromolecular drugs, Crit Rev Ther Drug Carrier Syst.,1989,6,193–210.
    [10] Chiu H.C., Lin Y.W., Huang Y.F., Chuang C.K., Chern C.S., Polymer VesiclesContaining Small Vesicles within Interior Aqueous Compartments andpH-Responsive Transmembrane Channels, Angew. Chem. Int. Edit.,2008,47,1875-1878.
    [11] Wang L., Liu M.Z., Gao C.M., Ma L.W., Cui D.P., A pH-, thermo-, and glucose-,triple-responsive hydrogels: Synthesis and controlled drug delivery, React. Funct.Polym.,2010,70,159-167.
    [12] Albarran B., Hoffman A.S., Stayton P.S., Efficient intracellular delivery of apro-apoptotic peptide with a pH-responsive carrier, React. Funct. Polym.,2011,71,261-265.
    [13] Du J., Dai J., Liu J.L., Dankovich T., Novel pH-sensitive polyelectrolytecarboxymethyl Konjac glucomannan-chitosan beads as drug carriers, React. Funct.Polym.,2006,66,1055-1061.
    [14] Auguste D., Furman K., Wong A., Fuller J., Armes S.P., Deming T., Langer R.,Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependentliposomes, J. Control. Release,2008,130,266-274.
    [15] Takae S., Miyata K., Oba M., Ishii T., Nishiyama N., Itaka K., Yamasaki Y., KoyamaH., Kataoka K., PEG-Detachable Polyplex Micelles Based on Disulfide-Linked BlockCatiomers as Bioresponsive Nonviral Gene Vectors, J. Am. Chem. Soc.,2008,130,6001-6009.
    [16] Thornton P.D., Mart R.J., Ulijn R.V., Enzyme-Responsive Polymer HydrogelParticles for Controlled Release, Adv. Mater.,2007,19,1252-1256.
    [17] Sundararaman A., Stephan T., Grubbs R.B., Reversible Restructuring of AqueousBlock Copolymer Assemblies through Stimulus-Induced Changes in Amphiphilicity,J. Am. Chem. Soc.,2008,130,12264-12265.
    [18] Kale A., Torchilin V.P., Design, Synthesis, and Characterization of pH-SensitivePEG PE Conjugates for Stimuli-Sensitive Pharmaceutical Nanocarriers: The Effectof Substitutes at the Hydrazone Linkage on the pH Stability of PEG PE Conjugates,Bioconjugate Chem.,2007,18,363-370.
    [19] Bae Y., Nishiyama N., Fukushima S., Koyama H., Yasuhiro M., Kataoka K.,Preparation and Biological Characterization of Polymeric Micelle Drug Carriers withIntracellular pH-Triggered Drug Release Property: Tumor Permeability, ControlledSubcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy,Bioconjugate Chem.,2005,16,122-130.
    [20] Lin S., Du F., Wang Y., Ji S., Liang D., Yu L., Li Z., An Acid-Labile BlockCopolymer of PDMAEMA and PEG as Potential Carrier for Intelligent GeneDelivery Systems, Biomacromolecules,2008,9,109-115.
    [21] Chan Y., Bulmus V., Hadi Z.M., Byrne F.L., Barner L., Kavallaris M., Acid-cleavablepolymeric core–shell particles for delivery of hydrophobic drugs, J. Control. Release,2006,115,197-207.
    [22] Murthy N., Thng Y.X., Schuck S., Xu M.C., Fréchet J.M.J., A Novel Strategy forEncapsulation and Release of Proteins: Hydrogels and Microgels with Acid-LabileAcetal Cross-Linkers, J. Am. Chem. Soc.,2002,124,12398-12399.
    [23] Yoo H.S., Lee E.A., Park T.G., Doxorubicin-conjugated biodegradable polymericmicelles having acid-cleavable linkages, J. Control. Release,2002,82,17-27.
    [24] Bae Y., Fukushima S., Harada A., Kataoka K., Design of environment-sensitivesupramolecular assemblies for intracellular drug delivery polymeric micelles that areresponsive to intracellular pH change, Angew. Chem. Int. Edit.,2003,42,4640-4643.
    [25] Jeong H.W., Han D.C., Son K.H., Han M.Y., Lim J.S., Ha J.H., Lee C.W., Kim H.M.,Kim H.C., Kwon B.M., Antitumor effect of the cinnamaldehyde derivative CB403through the arrest of cell cycle progression in the G2/M phase, Biochem. Pharmacol.,2003,65,1343-1350.
    [26] Ka H., P H.J., Jung H.J., Choi J.W., Cho K.S., Ha J., Lee K.T., Cinnamaldehydeinduces apoptosis by ROS-mediated mitochondrial permeability transition in humanpromyelocytic leukemia HL-60cells, Cancer Lett.,2003,196,143-152.
    [27] Liao B.C., Hsieh C.W., Liu Y.C., Tzeng T.T., Sun Y.W., Wung B.S.,Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of celladhesion molecules in endothelial cells by suppressing NF-κB activation: Effectsupon IκB and Nrf2, Toxicol. Appl. Pharm.,2008,229,161-171.
    [28] Imai T., Yasuhara K., Tamura T., Takizawa T., Ueda M., Hirose M., Mitsumori K.,Inhibitory effects of cinnamaldehyde on4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis in rasH2mice, Cancer Lett.,2002,175,9-16.
    [29] Cabello C.M., The cinnamon-derived Michael acceptor cinnamic aldehyde impairsmelanoma cell proliferation, invasiveness, and tumor growth, Free Radical Bio. Med.,2009,46,220-231.
    [30] Hibbert H., Whelen M.S., Studies on reactions relating to carbohydrates andpolysaccharides. xxii. the isomeric cinnamylidene glycerols, J. Am. Chem. Soc.,1929,51,620-625
    [31] Gillies E.R., Fréchet J.M.J., A new approach towards acid sensitive copolymermicelles for drug delivery, Chem. Commun.,2003,14,1640–1641
    [32] Gillies E.R., Jonsson T.B., Fréchet J.M., Stimuli-responsive supramolecularassemblies of linear-dendritic copolymers, J. Am. Chem. Soc.,2004,126,11936–11943.
    [33] Kwon S., Park J.H., Chung H., Kwon I.C., Jeong S.Y., PhysicochemicalCharacteristics of Self-Assembled Nanoparticles Based on Glycol Chitosan Bearing5β-Cholanic Acid, Langmuir,2003,19,10188-10193.
    [34] Kim K., Kwon S., Park J.H., Chung H., Jeong S.Y., Kwon I.C., PhysicochemicalCharacterizations of Self-Assembled Nanoparticles of Glycol Chitosan DeoxycholicAcid Conjugates, Biomacromolecules,2005,6,1154-1158.
    [35] Lu J.S., Li N.J., Xu Q.F., Ge J.F., Lu J.M., Xia X.W., Acetals moiety containedpH-sensitive amphiphilic copolymer self-assembly used for drug carrier, Polymer,2010,51,1709-1715.
    [36] Kataoka K., Harada A., Nagasaki Y., Block copolymer micelles for drug delivery:design, characterization and biological significance, Adv. Drug Deliver. Rev.,2001,47,113-131.
    [37] Matsumura Y., Maeda H., A New Concept for Macromolecular Therapeutics inCancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and theAntitumor Agent Smancs, Cancer Res.,1986,46,6387-6392.
    [38] Maeda H., Wu J., Sawa T., Matsumura Y., Hori K., Tumor vascular permeability andthe EPR effect in macromolecular therapeutics: a review, J. Control. Release,2000,65,271-284.
    [1]何京涛,药物释放系统(DDS)的应用现状及发展对策,中国人民解放军军事医学科学院,2005,5
    [2] Ding C., Gu J., Qu X., Yang Z., Preparation of multifunctional drug carrier fortumor-specific uptake and enhanced intracellular delivery through the conjugation ofweak acid labile linker, Bioconjugate Chem.,2009,20,1163-1170.
    [3] Gao Y., Chen Y., Ji X., He X., Yin Q., Zhang Z., Shi J., Li Y., Controlled intracellularrelease of doxorubicin in multidrug-resistant cancer cells by tuning the shell-poresizes of mesoporous silica nanoparticles, ACS Nano,2011,5,9788-9798.
    [4] Mulder W.J.M., Strijkers G.J., vail Tilborg GA.F., Cormode D.P., Fayad Z.A., NicolayK., Nanoparticulate assemblies of amphiphiles and diagnostically active materials formultimodality imaging, Acc.Chem. Res.,2009,42,904-914.
    [5] Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., Lin V.S.Y., Mesoporous silicananoparticles for intracellular controlled drug delivery, Small,2010,6,1952-1967.
    [6] Chen Y., Chen H.R., Zeng D.P., Tian Y.B., Chen F., Feng J.W., Shi J.L., Core/shellstructured hollow mesoporous nanocapsules:a potential platform for simultaneous cellimaging and anticancer drug delivery, ACS Nano,2010,4,6001-6013.
    [7] Liu T., Li L., Teng X., Huang X., Liu H., Chen D., Ren J., He J., Tang E., Single andrepeated dose toxicity of mesoporous hollow silica nanoparticles in intravenouslyexposed mice, Biomaterials,2011,32,1657-1668.
    [8] Jiang X., Ward T.L., Cheng Y.S., Liu J., Brinker C.J., Aerosol fabrication of hollowmesoporous silica nanoparticles and encapsulation of L-methionine as a candidatedrug cargo, Chem. Commun.,2010,46,3019-3021.
    [9] Zhu Y., Fang Y., Borchardt L., Kaskel S., PEGylated hollow mesoporous silicananoparticles as potential drug delivery vehicles, Micropor. Mesopor. Mater.,2011,141,199-206.
    [10] Zhu Y.F., Shi J.L., Shen W.H., Dong X.R., Feng J.W., Ruan M.L., Li Y.S.,Stimuli-responsive controlled drug release from a hollow mesoporous silicasphere/polyelectrolyte multilayer core-shell structure, Angew. Chem. Int. Ed.,2005,44,5083-5087.
    [11] Zhao Y., Lin L.N., Lu Y., Chen S.E., Dong L., Yu S.H., Templating synthesis ofpreloaded doxorubicin in hollow mesoporous silica nanospheres for biomedicalapplications, Adv. Mater.,2010,22,5255-5259.
    [12] Shim M.S., Kim C.S., Alan Y.C., Chen Z., Kwon Y.J., Combined multimodal opticalimaging and targeted gene silencing using stimuli·transforming nanotheragnostics, J.Am. Chem. Soc.,2010,132,8316-8324.
    [1] Lu J., Li N., Xu Q., Ge J., Lu J., Xia X.. Acetals Moiety Contained pH-sensitiveAmphiphilic Copolymer Selfassembly Used for Drug Carrier, Polymer,2010,51,1709–1715
    [2] Wang J.S., Matyjaszewski K.,Controlled/“living” radical polymerization, atomtransfer radical polymerization in the presence of transition-metal complexes, J. Am.Chem. Soc.,1995,117,5614-5615
    [3] Wang J.S., Matyjaszewski K., Controlled/“living” radical polymerization.Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu(II) redox process, Macromolecules1995,28,7901-7910.
    [4] Kato M., Kamigaito M., Sawamoto M., Polymerization of Methyl Methacrylate withthe Carbon Tetrachloride Dichloro-tris(triphenylphosphine)rutlhenium(II)/Methylaluminum Bis(2,6di-tert-butylphenoxide) Initiating System Possibility ofLiving Radical Polymerization, Macromolecules,1995,28(5):1721-1723
    [5] Percec V., Barboiu B.,“Living” Radical Polymerization of Styrene Initiated byArenesulfonyl Chlorides and cul(bpy)Cl, Macromolecules,1995,28(23),7970-7972
    [6] Coessens V., Pintauer T., Matyjaszewski K., Functional polymers by atom transferradical polymerization, Prog. Polym. Sci.,2001,26,337-377.
    [7] Davis K., Matyjaszewski K., Statistical, gradient, block, and graft copolymers bycontrolled/living radical polymerizations, Adv.Polym.Sci.,2002,159,1-13.
    [8] Matyjaszewski K., Macromolecular engineering: From rational design through precisemacromolecular synthesis and processing to targeted macroscopic material properties,Prog. Polym. Sci.,2005,30,858-875.
    [9] Ouchi M., Terashima T., Sawamoto M., Transition Metal-Catalyzed Living RadicalPolymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis,Chem. Rev.,2009,109,4963-5050.
    [10] Xu F.J., Neoh K.Q, Kang E.T., Bioactive surfaces and biomaterials via atom transferradical polymerization, Prog. Polym. Sci.,2009,34,719-761.
    [11] Tsarevsky N.V., Matyjaszewski K.,“Green” atom transfer radical polymerization:From process design to preparation of well-defined environmentally friendlypolymeric materials, Chem. Rev.,2007,107,2270-2299.
    [12] Chen Y., Chen H.R., Zeng D.P., Tian Y.B., Chen F., Feng J.W., Shi J.L., Core/shellstructured hollow mesoporous nanocapsules:a potential platform for simultaneous cellimaging and anticancer drug delivery, ACS Nano,2010,4,6001-6013.
    [13] Shim M.S., Kim C.S., Alan Y.C., Chen Z., Kwon Y.J., Combined multimodal opticalimaging and targeted gene silencing using stimuli·transforming nanotheragnostics, J.Am. Chem. Soc.,2010,132,8316-8324.
    [14] Zhao Y., Lin L.N., Lu Y., Chen S.E., Dong L., Yu S.H., Templating synthesis ofpreloaded doxorubicin in hollow mesoporous silica nanospheres for biomedicalapplications, Adv. Mater.,2010,22,5255-5259.
    [15] Liu T., Li L., Teng X., Huang X., Liu H., Chen D., Ren J., He J., Tang E., Single andrepeated dose toxicity of mesoporous hollow silica nanoparticles in intravenouslyexposed mice, Biomaterials,2011,32,1657-1668.
    [16] Mei X., Chen D., Li N., Xu Q., Ge J., Li H., Lu J., Hollow mesoporous silicananoparticles conjugated with pH-sensitive amphiphilic diblock polymer forcontrolled drug release, Microporous and Mesoporous Materials,2012,152,16-24.
    [17] Mei X., Chen D., Li N., Xu Q., Ge J., Li H., Yang B., Xu Y., Lu J., Facile Preparationof Coating Fluorescent Hollow Mesoporous Silica Nanoparticles with pH-SensitiveAmphiphilic Diblock Copolymer for Controlled Drug Release and Cell Imaging, SoftMatter,2012,8,5309-5316.
    [18] Mei X., Yang S., Chen D., Li N., Li H.,Xu Q., Ge J., Lu J., Light-triggered reversibleassemblies of azobenzene-containing amphiphilic copolymer with b-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release, Chem.Commun.,2012,48,10010–10012
    [1] Rosenberg, B., Van Camp, L., Krigas, T., Inhibition of cell division in Escherichia coliby electrolysis products from a platinum electrode, Nature,1965,205,698-699.
    [2] Jung Y. W., Lippard S. J., Direct Cellular Responses to Platinum-Induced DNADamage, Chem. Rev.,2007,107,1387-1407.
    [3] Wong E., Giandomenico C.M., Current Status of Platinum-Based Antitumor Drugs,Chem. Rev.,1999,99,2451-2466.
    [4] Wang B.D., Xu C.J., Xie J., Yang Z.Y., Sun S.H., pH Controlled release of chromonefrom chromone-Fe3O4nanoparticles, J. Am. Chem. Soc.,2008,130,14436-14437.
    [5] Simovic S., Barnes T.J., Tan A., Prestidge C.A., Assembling nanoparticle coatings toimprove the drug delivery performance of lipid based colloids, Nanoscale,2012,4,1220-1230.
    [6] Gao J.H., Gu H.W., Xu B., Multifunctional magnetic nanoparticles: design,synthesis, and biomedical applications, Acc. Chem. Res.,2009,42,1097-1107.
    [7] Rosenholm J.M., Sahlgren C., Lindén M., Towards multifunctional, targeted drugdelivery systems using mesoporous silica nanoparticles–opportunities&challenges,Nanoscale,2010,2,1870-1883.
    [8] Cotí K.K., Belowich M.E., Liong M., Ambrogio M.W., Lau Y.A., Khatib H.A., ZinkJ.I., Khashab N.M., Stoddart J.F., Mechanised nanoparticles for drug delivery,Nanoscale,2009,1,16-39.
    [9] Dhar S., Liu Z., Thomale J., Dai H.J., Lippard S.J.. Targeted Single-Wall CarbonNanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device, J.Am. Chem. Soc.,2008,130,11467-11476.
    [10] Cheng L., Yang K., Li Y.G., Chen J.H., Wang C., Shao M.W., Lee S.T., Liu Z..,Facile preparation of multifunctional upconversion nanoprobes for multi-modalimaging and dual-targeted photothermal therapy, Angew. Chem. Int. Ed.,2011,50,7385-7390.
    [11] Xu C.J., Wang B.D., Sun S.H., Dumbbell-like Au-Fe3O4nanoparticles fortarget-specific platin delivery, J. Am. Chem. Soc.,2009,131,4216-4217.
    [12] Cheng K., Peng S., Xu C.J., Sun S.H., Porous Hollow Fe3O4Nanoparticles forTargeted Delivery and Controlled Release of Cisplatin, J. Am. Chem. Soc.,2009,131,10637-10644.
    [13] Ajima K., Murakami T., Mizoguchi Y., Tsuchida K., Ichihashi T., Iijima S., YudasakaM., Enhancement of in vivo anticancer effects of cisplatin by incorporation insidesingle-wall carbon nanohorns, ACS Nano,2008,2,2057-2064.
    [14] Jin Y., Song L., Su Y., Zhu L.J., Pang Y., Qiu F., Tong G.S., Yan D.Y., Zhu B.S., ZhuX.Y.. Oxime Linkage: A Robust Tool for the Design of pH-Sensitive Polymeric DrugCarriers, Biomacromolecules,2011,12,3460-3468.
    [15] Su J., Chen F., Cryns V.L., Messersmith P.B., Catechol polymers for pH-responsive,targeted drug delivery to cancer cells, J. Am. Chem. Soc.,2011,133,11850-11853.
    [16] Liu J.Y., Huang W., Pang Y., Huang P., Zhu X.Y., Zhou Y.F., Yan D.Y.,Self-Assembly of A Homopolymer: An Alternative to Fabricate Drug DeliveryPlatform for Cancer Therapy, Angew. Chem. Int. Ed.,2011,50,9162-9166.
    [17] Gaitzsch J., Appelhans D., Gr fe D., Schwille P., Voit B., Photo-crosslinked and pHsensitive polymersomes for triggering the loading and release of cargo, Chem.Commun.,2011,47,3466-3468.
    [18] Huang Y.X., Lu J.Q., Gao X., Li J., Zhao W.C., Sun M., Stolz D.B., VenkataramananR., Rohan L.C., Li S., PEG-Derivatized Embelin as a Dual Functional Carrier for theDelivery of Paclitaxel, Bioconjugate Chem.,2012,23,1443-1451.
    [19] J. Yoo, S. R. D’Mello, T. Graf, A. K. Salem, and N. B. Bowden., Synthesis of theFirst Poly(diaminosulfide)s and an Investigation of Their Applications as DrugDelivery Vehicles, Macromolecules,2012,45,688-697.
    [20] Xu P.S., Kirk E.A.V., Murdoch W.J., Zhan Y.H., Isaak D.D., Radosz M., Shen Y.Q.,Anticancer Efficacies of Cisplatin-Releasing pH-Responsive Nanoparticles,Biomacromolecules,2006,7,829-835.
    [21] Dhar S., Gu F.X., Langer R., Farokhzad O.C., Lippard S.J., Targeted delivery ofcisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA–PEG nanoparticles, Proc. Natl. Acad. Sci. U.S.A.,2008,105,17356-17361.
    [22] Fujiyama J., Nakase Y., Osaki K., Sakakura C., Yamagishi H., Hagiwara A., Cisplatinincorporated in microspheres: development and fundamental studies for its clinicalapplication, J. Control. Release,2003,89,397-408.
    [23] Yokoyama M., Okano T., Sakurai Y., Suwa S., Kataoka K., Introduction of cisplatininto polymeric micelle, J. Control. Release,1996,39,351-356.
    [24] Mao J.Y., Qi X.X., Cao X.Q., Lu J.M., Xu Q.F., Gu H.W., Facile synthesis ofpolymer/Au heteronanoparticles, Chem. Commun.,2011,47,4228-4230.
    [25] Goodwin A.P., Mynar J.L., Ma Y., Fleming G.R., Fréchet J.M.J., Synthetic MicelleSensitive to IR Light Via a Two-Photon Process, J. Am. Chem. Soc.,2005,127,9952-9953.
    [26] Lu J.S., Li N.J., Xu Q.F., Ge J.F., Lu J.M., Xia X.W., Acetals moiety containedpH-sensitive amphiphilic copolymer self-assembly used for drug carrier, Polymer,2010,51,1709-1715.
    [27] Brown S.D., Nativo P., Smith J.A., Stirling D., Edwards P.R., Venugopal B., FlintD.J., Plumb J.A., Graham D., Wheate N.J.. Gold nanoparticles for the improvedanticancer drug delivery of the active component of oxaliplatin, J. Am. Chem. Soc.,2010,132,4678-4684.
    [1] Malm O., Gold mining as a source of mercury exposure in the Brazilian Amazon,Environ. Res.1998,77,73–78.
    [2] Boudou A., Maury-Brachet R., Coquery M., Durrieu G., Cossa D., Synergic effect ofgold mining and damming on mercury contamination in fish, Environ. Sci. Technol.2000,39,2448–2454.
    [3] Pirrone N., Allegrini I., Keeler, G.J. Nriagu J.O., Rossmann R., Robbins J.A.,Historical atmospheric mercury emissions and depositions in North Americacompared to mercury accumulations in sedimentary records, Atmos. Environ.,1998,32,929–940.
    [4] Kambey J.L., Farrell A.P., Bendell-Young L.I., Influence of illegal gold mining onmercury levels in fish of North Sulawesi’s Minahasa Peninsula (Indonesia), Environ.Pollut.,2001,114,299–302.
    [5] Kinsey J.S., Anscombe F.R., Lindberg S.E., Southworth G.R., Characterization of thefugitive mercury emissions at a chlor-alkali plant: overall study design, Atmos.Environ.,2004,38,633–641.
    [6] Kinsey J.S., Swift J., Bursey J., Characterization of fugitive mercury emissions fromthe cell building at a US chlor-alkali plant, Atmos. Environ.,2004,38,623–631.
    [7] Futatsuka M., Kitano T., Shono M., Fukuda Y., Ushijima K., Inaoka T., Nagano M.,Wakamiya J., Miyamoto, K. Health surveillance in the population living in a methylmercury-polluted area over a long period, Environ. Res.,2000,83,83–92.
    [8] Seyferth D., Phenyl(trihalomethyl)mercury compounds. Exceptionally versatiledihalocarbene precursors, Acc. Chem. Res.,1972,5,65–74.
    [9] Sunderland E.M., Chmura G.L., An inventory of historical mercury emissions inMaritime Canada: implications for present and future contamination, Sci. TotalEnviron.,2000,256,39–57.
    [10] Yudovich Y.E., Ketris M.P., Mercury in coal: a review. Part2. Coal use andenvironmental problems, Int. J. Coal Geol.,2005,62,135–165.
    [11] Holden C., Death by lab poisoning, Science,1997,276,1797-1797.
    [12] Boening D.W., Ecological effects, transport, and fate of mercury: a general review,Chemosphere,2000,40,1335–1351.
    [13] Tchounwou P.B., Ayensu W.K., Ninashvili N., Sutton D., Review: environmentalexposure to mercury and its toxicopathologic implications for public health, Environ.Toxicol.,2003,18,149–175.
    [14] Bakir F., Damluji S.F., Amin-Zaki L., Murtadha M., Khalidi A., Al-Rawi Y., TikritiS., Dhahir H.I., Clarkson T.W., Smith J.C., Doherty R.A., Methylmercury poisoningin Iraq, Science,1973,181,230–241.
    [15] Auger N., Kofman O., Kosatsky T., Armstron B., Low-level methylmercury exposureas a risk factor for neurologic abnormalities in adults, NeuroToxicology2005,26,149–157.
    [16] Clarkson T.W., Human toxicology of mercury, J. Trace Elem. Exp. Med.,1998,11,303–317.
    [17] Harada M., Nakanishi J., Yasoda E., Pinheiro M.C.N., Oikawa T., Guimaraes G.A.,Cardoso B., Kizaki T., Ohno H., Mercury pollution in the Tapajos River basin,Amazon, Environ. Int.,2001,27,285–290.
    [18] Morel F.M.M., Kraepiel A.M.L., Amyot M., The chemical cycle and bioaccumulationof mercury, Annu. Rev. Ecol. Syst.,1998,29,543–571.
    [19] Renzoni A., Zino F., Franchi E., Environ. Res.,1998,77,68.
    [20] Basu N., Kwan M., Chan H.M., J. Toxicol. Environ. Health Part A,2006,69,1133.
    [21] Shen J.C., Huang Z.Y., Zhuang Z.X., Wang X.R., Lee F.S.C., Guangpuxue YuGuangpu Fenxi,2005,25,1688.
    [22] Ziemba S.E., Mattingly R.R., McCabe M.J., Rosenspire A.J., Toxicol. Sci.,2006,49,145.
    [23] E.P.A., National Primary Drinking Water Regulations (2002),40CFR Ch.I (7-1-02ed.), US Environmental Protection Agency (EPA), Washington, DC,2002,http://www.access.gpo.gov/nara/cfr/waisidx02/40cfr14102.html.
    [24] Ritter J.A., Bibler J.P., Removal of mercury from waste water: large-scaleperformance of an ion-exchange process, Water Sci. Technol.,1992,25,165–172.
    [25] Wu X.W., Ma H.W., Li J.H., Zhang J., Li Z.H., The synthesis of mesoporousaluminosilicate using microcline for adsorption of mercury(II), J. Colloid InterfaceSci.,2007,315,555–561.
    [26] Herrero R., Lodeiro P., Rey-Castro C., Vilari o T., Manuel E., de Vicente S.,Removal of inorganic mercury from aqueous solutions by biomass of the marinemacroalga Cystoseira baccata, Water Res.,2005,39,3199–3210.
    [27] Melamed R., Lux A.B., Efficiency of industrial minerals on the removal of mercuryspecies from liquid effluents, Sci. Total Environ.,2006,368,403–406.
    [28] Velicu M., Fu H., Suri R.P.S., Woods K., Use of adsorption process to removeorganic mercury thimerosal from industrial process wastewater, J. Hazard. Mater.,2007,148,599–605.
    [29] Green-Ruiz C., Mercury(II) removal from aqueous solutions by nonviable Bacillus sp.from a tropical estuary, Bioresour. Technol.,2006,97,1907–1911.
    [30] Chiarle S., Ratto M., Rovatti M., Mercury removal from water by ion exchange resinsadsorption, Water Res.,2000,34,2971–2978.
    [31] Vieira R.S., Beppu M.M., Dynamic and static adsorption and desorption of Hg(II)ions on chitosan membranes and spheres, Water Res.,2006,40,1726–1734.
    [32] Ying X., Fang Z., Experimental research on heavy metal wastewater treatment withdipropyl dithiophosphate, J. Hazard. Mater. B,2006,137,1636–1642.
    [33] Liu J., Valsaraj K.T., Devai I., DeLaune R.D., Immobilization of aqueous Hg(II) bymackinawite (FeS), J. Hazard. Mater.,2008,157,432–440.
    [34] Sajidu S.M.I., Persson I., Masamba W.R.L., Henry E.M.T., Mechanisms of heavymetal sorption on alkaline clays from Tundulu in Malawi as determined by EXAFS, J.Hazard. Mater.,2008,158,401–409.
    [35] Khalil L.B., Rophael M.W., Mourad W.E., The removal of the toxic Hg(II) salts fromwater by photocatalysis, Appl. Catal. B: Environ.,2002,36,125–130.
    [36] Miranda C., Yá ez J., Contreras D., Garcia R., Jardim W.F., Mansilla H.D.,Photocatalytic removal of methylmercury assisted by UV-A irradiation, Appl. Catal.B: Environ.,2009,90,115–119.
    [37] Yavuz C.T., Mayo J.T., Yu W.W., Prakash A., Falkner J.C., Yean S., Cong L.,Shipley H.J., Kan A., Tomson M., Natelson D., Colvin V.L., Low-Field MagneticSeparation of Monodisperse Fe3O4Nanocrystals, Science,2006,314,964-967
    [38] Watson J.H.P., Magnetic filtration J. Appl. Phys.,1973,44,4209-4213.
    [39] Fletcher D., Fine particle high gradient magnetic entrapment. IEEE Trans. Magn.1991,27,3655–3677.
    [40] Kelland D.R., Magnetic separation of nanoparticles, IEEE Trans. Magn.,1998,34,2123-2125.
    [41] Cotten G.B., Eldredge H.B., Nanolevel Magnetic Separation Model. ConsideringFlow Limitations, Sep. Sci. Technol.,2002,37,3755-3779.
    [42] Hirschbein B.L., Brown D.W., Whitesides G.M., Magnetic Separations in Chemistryand Biochemistry, Chemtech1982,12,172-179.
    [43] Moeser G.D., Roach K.A., Green W.H., Hatton T.A., Laibinis P.E., High-gradientmagnetic separation of coated magnetic nanoparticles, Am. Inst. Chem. Eng. J.,2004,50,2835-2848.
    [44] Jana N.R., Chen Y.F., Peng X.G., Size-and Shape-Controlled Magnetic (Cr, Mn, Fe,Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater.,2004,16,3931-3935.
    [45] Park J., An K.J., Hwang Y.S., Park J.G., Noh H.J., Kim J.Y., Park J.H., Hwang N.M.,Hyeon T., Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater.,2004,3,891-895.
    [46] Kovalenko M.V., Bodnarchuk M.I., Lechner R.T., Hesser G., Schffler F., Heiss W.,Shape-Controlled Nanocrystal Synthesis: The Case of Inverse Spinel. Iron Oxide, J.Am. Chem. Soc.,2007,129,6352-6353.
    [47]中药类制药工业水污染物排放标准,中华人民共和国国家标准GB21906-2008
    [48] Directive84/176/EEC, COUNCIL DIRECTIVE of8March1984on limit values andquality objectives for mercury discharges by sectors other than the chlor-alkalielectrolysis industry. Official Journal of the European Communities, No. L74/49.
    [49] Lopes C.B., Otero M., Lin Z., Silva C.M., Rocha J., Pereira E., Duarte A.C., Removalof Hg2+ions from aqueous solution by ETS-4microporous titanosilicate—Kinetic andequilibrium studies, Chemical Engineering Journal,2009,151,247-254.
    [50] Marin A.B.P., Aguilar M.I., Meseguer V.F., Ortuno J.F., Saez J., Llorens M.,Biosorption of chromium (III) by orange (Citrus cinensis) waste: batch andcontinuous studies. Chemical Engineering Journal,2009,155(1-2),199-206.
    [51] Freundlich H.M.F., Adsorption in solution, J. Phys. Chem.,1906,57,384–470.
    [52] Langmuir I., The adsorption of gases on plane surfaces of glass, mica an platinum, J.Am. Chem. Soc.,1918,40,1361–1368.
    [53] Lopes C.B., Otero M., Coimbra J., Pereira E., Rocha J., Lin Z., Duarte A., Removal oflow concentration Hg2+from natural waters by microporous and layeredtitanosilicates, Microporous and Mesoporous Materials,2007,103,325-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700