用户名: 密码: 验证码:
辽西凹陷油气成藏机制及主控因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究区辽西凹陷位于渤海湾盆地海域西北部,是下辽河坳陷陆上辽河西部凹陷向海域的自然延伸,辽西凹陷和辽河西部凹陷属于下辽河坳陷西部凹陷带的两个次级“凹陷”,二者具有相同的构造背景和沉积充填序列以及相似的凹陷结构,借鉴陆上辽河西部凹陷成功勘探实践,类比二者的油气成藏条件的差异性和共性对认识辽西凹陷成藏规律具有一定的指导意义。自从1986年对辽西凹陷开始钻探以来,共钻探16个构造,发现3个油气田,7个含油气构造,北洼、中洼、南洼油气富集差异性较大,分析辽西凹陷的油气成藏机制及主控因素对该区及类似地区的油气勘探具有重要的理论指导意义。
     本文利用各类地质、地震、地化资料,以含油气系统、成藏动力学、成藏主控因素论及地质类比等理论为指导,从辽西凹陷沉积、构造演化特征入手,在烃源岩、储集层、盖层、生储盖组合及圈闭等成藏地质条件系统分析及其与辽河西部凹陷地质条件类比的基础上,重建了油气成藏动力学过程,分析了辽西凹陷油气富集规律,并通过典型油气藏剖析,划分、建立了主要的油气成藏模式,探讨了成藏主控因素。论文主要取得了以下认识:
     一、油气成藏条件
     基于地化资料,分析评价了辽西凹陷烃源岩的有机质丰度、类型和成熟度,结果表明辽西凹陷主要发育东三段、沙一二段和沙三段3套烃源岩,其中沙三段烃源岩厚度大,有机质丰度高、类型主要为Ⅰ-Ⅱ型为主、成熟度高,为研究区的主力烃源岩,对成藏的贡献最大;沙一二段烃源岩有机质丰度高,类型主要为Ⅱ型,成熟度较高,但厚度薄,是研究区的一套重要烃源岩,对成藏有一定贡献;东三段烃源岩有机质丰度一般、类型主要为Ⅱ-Ⅲ型、成熟度较低、厚度大,对成藏的贡献较小。
     辽西凹陷主要发育三角洲砂体、辫状河三角洲砂体、扇三角洲砂体、近岸水下扇砂体和浊积扇砂体;储集空间有原生孔隙和次生孔隙两种,凹陷内次生孔隙较为发育,自上而下存在三个主要次生孔隙发育带,主要受到成岩作用和后期溶蚀作用等影响;辽西凹陷储集体物性条件较为优越,平均孔隙度25.6%,平均渗透率479.3mD,储层孔隙度多分布在20%以上,渗透率多分布在100mD以上,多为高孔高渗的Ⅰ类储层。
     辽西凹陷发育三套区域性盖层,自上而下分别是东一段-东二上段、东二下-东三段和沙三段,其中以东二下-东三段区域性盖层最为重要,在全区范围内分布广,封盖能力最强。辽西凹陷的生储盖配置可大致分为三类:自生自储式配置、上生下储式配置及下生上储式配置。
     辽西凹陷发现的圈闭类型比较单一,主要都是与断层有关的构造圈闭,单纯的岩性圈闭和地层圈闭很少,其构造圈闭主要分为断背斜、滚动背斜、披覆背斜、断鼻和断块5大类,圈闭的规模整体较小,闭合面积平均约16.3km2,闭合幅度平均为178.85m。
     辽西凹陷的输导体系主要由断层、砂体和不整合面组成,可分为断层单要素型、断层-砂体复合型及断层-不整合复合型三种,由于凹陷内油源断裂较为发育,圈闭多依附油源断裂分布,因此辽西凹陷的输导体系以断层单要素型为主,断层-砂体复合型也较为发育,不整合-断层复合型输导体系发现较少。二、油气成藏机制及富集规律
     利用盆地模拟分析技术研究了辽西凹陷的地层埋藏过程及演化、流体动力场及演化、烃源岩发育及演化和油气的充注历史。研究表明,受构造的旋回演化影响,凹陷的地层埋藏经历了不同的沉积变化,特征分别对应于构造演化的四个阶段:孔店-沙四时期,地壳开始拱张,沉降速率较小,沉降量也较小,凹陷为分割的湖盆;沙三时期,裂陷作用最强,沉降速率剧增,沉降量也剧增;沙一二段时期,裂陷作用变弱,沉降速率变小,沉降量最小;东营组沉积时期,再次发生裂陷作用,地层沉积速率再次增大,埋藏厚度剧增;新近系之后,地层稳定的沉积埋藏,进入坳陷阶段。
     实测地温数据揭示,辽西凹陷现今地温梯度主要分布在2.2℃/100m-3.7℃/100m,平均地温梯度为2.94℃/100m,略低于辽东湾的平均值(3.0℃/100m),盆地数值模拟结果揭示,辽西凹陷古地温与古热流经历了较为类似的变化过程,在地史时期先由高到低,后又继续升高的趋势。裂陷作用强的阶段古地温梯度和古热流较高,裂陷作用弱时,二者相应降低。实测压力数据揭示,研究区存在泥岩欠压实-超压现象,利用泥岩声波时差方法分析出,研究区发育深浅两套泥岩欠压实-超压体系,分别对应于沙三段和东二下-东三段,且深部超压体系发育强度要大于浅部超压体系,但浅部超压体系分布范围要广一些。盆地数值模拟分析得知,研究区的压力演化存在三期的增压-泄压旋回,构造运动强烈的沙三段沉积时期,因为地层沉降速率大,产生了强烈的欠压实超压;沙一二段沉积时期,构造运动减弱,孔隙流体渗出,部分压力释放,超压强度减小;东三段沉积时期,构造运动再次增强,地层欠压实沉积作用增强,又积累了部分压力;东二段沉积时期,压力本应减弱,但是部分烃源岩开始生烃,导致压力继续增加,直到东一段沉积末期,地层发生抬升剥蚀,这时候压力因构造抬升得到部分的释放;明化镇组沉积时期,生烃达到高峰,压力增大;第四纪平原组沉积时期,生烃作用减弱,压力又减小。如此便经历了增压(沙三时期)-泄压(沙一二时期)-增压(东三-东一时期)-泄压(东一末期)-增压(明化镇组时期)-泄压(平原组时期)三期的旋回。
     盆地数值模拟结果表明:沙三段烃源岩从沙一二段沉积时期开始进入生烃门限,东营组沉积时期开始排烃,馆陶组沉积时期达到生烃高峰同时开始排烃,明化镇组沉积时期达到排烃高峰;部分沙一二段烃源岩从馆陶组组沉积时期开始进入生烃门限并少量生烃,明化镇组沉积时期达到生烃高峰,同时开始排烃,平原组达到排烃高峰;极少量的东三段烃源岩从馆陶组沉积开始进入生烃门限并开始生烃,因数量较少,生排烃量也较少,对成藏的贡献很微弱。结合前人流体包裹体测试分析结果,利用生排烃史方法推测辽西凹陷油气发生大规模运移充注的时间大致为24.6Ma,即馆陶组沉积时期。
     辽西凹陷原油物性差异较大,深层油大部分为密度较小的轻质、中质油,而浅层原油多为重质油;根据烃源岩甾烷成熟度参数,对辽西凹陷的原油类型进行了划分,包括未成熟油、低成熟油和成熟油,其上限深度分别为2500m、2780m和2900m;油源对比结果表明,辽西凹陷生成的油气多具有洼内成藏的规律,不存在穿洼运移现象;研究区油气富集规律在平面上南北富、中间贫,在纵向上浅层富、深层贫,在区带上高部位富、低部位贫。
     三、成藏模式及主控因素
     选取了辽西凹陷不同洼陷和不同构造带的典型油气藏,对其成藏条件、成藏机制和成藏主控因素进行了解剖分析,在此基础上,根据供烃洼陷、油气来源、油气储层、输导体系及富集程度等可将辽西凹陷的油气成藏模式区分为3大类和11亚类,并分析了各大类模式油气藏的主控因素与分布特征。
     辽西凹陷油气成藏的模式可划分为混源深层古储型、单向浅层古储型和单向复合新储型三大类,其中混源深层古储型模式油气藏的主控因素为储层物性和输导通道,单向浅层古储型的主控因素为烃源岩条件、运移动力和储盖组合;单向混源复合新储型的主控因素为盖层发育及断裂活动。
     三大类模式的油气藏具有明显的分布规律:深层古储型油气藏主要分布在辽西凹陷北洼;浅层古储型油气藏分布范围较广,在北洼、中洼和南洼都有分布;新储型油气藏只分布在南洼。各亚类模式的油气藏分布也有一定的规律:富集型油气藏主要分布在凹中隆构造带和陡坡带:混源型油气藏主要分布在北洼和南洼。
     辽西凹陷油气差异富集是烃源岩、断裂、温压系统和储层综合控制的结果,各类要素的具体控制作用表现为:优质烃源岩决定油气富集程度,生烃中心控制富集区域,烃源岩热演化影响油、气分布的差异,断裂强烈活动期提供了优质烃源岩的发育条件,构造旋回式演化导致了多套生储盖组合的形成,断裂纵横交错分布控制了圈闭发育,断裂的晚期活化改良了油气运移通道,复式温压系统形成“异常压力流体封存箱”,油气主要聚集在超压系统边缘,储层整体质量影响油气聚集规模。
The Liaoxi depression is located in the northwest of Bohaiwan basin, it is the offshore extension of onshore western Liaohe depression in Xialiaohe depression, Liaoxi depression and western Liaohe depression are two sub-depression belongs to Xialiaohe depression, the two depression have the same tectonic setting and sedimentary sequence and similar structure, according to ghe successful exploration practice of onshore western Liaohe depression, the difference and commonness analogy between the hydrocarbon accumulation conditions of these depressions will provide guiding for understanding the accumulation regularity of Liaoxi depression. Since1986,16structures have been drilled, with three oil fields, seven oil and gas construction found, the enrichment difference among the north sag, center sag and south sag is big, the analysis of petroleum accumulation mechanism and main controlling factors of hydrocarbon accumulation in Liaoxi depression has important theoretical guiding significance in the exploration of study area and other similar areas.
     Starting from the basic geological conditions and tectonic background of the Liaoxi depression, based on the comprehensive utilization of the data of geology, geophysics and geochemistry, under the guidence of multi-disciplinary theories, this paper studied firstly the elements of hydrocarbon accumulation such as source rock, reservoir, seal rock, source-reservoir-seal assemblage,trap and then make a comparative analogy of geological conditions in Western Liaohe depression sag. After that, the accumulation progress was established, oil and gas enrichment regularity were analyzed, and through anatomy of typical reservoirs, division, the major patterns of oil and gas accumulation were established and the control factors of petroleum accumulation are discussed. The results are as followed:
     The elements of hydrocarbon accumulation
     Based on geochemical data, the organic matter abundance, types and maturity of source rocks in Liaoxi depression were evaluated, the results show that there are three sets of source rocks in Liaoxi depression namely Ed3, Es1+2and ES3, among them the ES3source rock have large thickness, high abundance of organic matter type, Ⅰ-Ⅱ kerogen type and high maturity is the largest contributor of accumulation in the study area; Es1+2source rocks with high abundance of organic matter and Ⅱ kerogen type, high maturity, thin thickness, is a set of important hydrocarbon source rocks in the study area; Ed3source rock with general abundance of organic matter,Ⅱ-Ⅲ type kerogen, general maturity, large thickness, is a minor contributor to the petroleum accumulation.
     There exist delta sand body, sand bodies of braided river delta, fan delta sand body, nearshore subaqueous fan sand body and turbidite fan sand body deposit in Liaoxi depression; two kinds of reservoir spaces as primary pore and secondary pore, the secondary pore developed well, from top to bottom there are three major zones for the development of secondary porosity belts, mainly affected by the late diagenesis and dissolution, etc; the physical condition of reservoir in Liaoxi depression is superior with average of25.6%, the average permeability of479.3mD, most reservoir porosity more than20%, most permeability more than100mD, belong to type I reservoir with high porosity and permeability.
     There are three sets of regional cap rock deposit in Liaoxi depression, namely Ed1-Ed2U, Ed2L-Ed3and ES3, among which, the Ed2L-Ed3regional cap rocks are the most important and widely distributed in the whole study area with strongest capping ability. Reservoir-seal associations in Liaoxi depression can be roughly divided into three categories:self sourced reservoirs, source rocks in the upper part and reservoirs in the lower part and source rocks in the lower part and reservoirs in the upper part.
     The trap type developed in of the Liaoxi depression is unitary, mainly belong to structural trap related to the faults, pure lithologic trap and stratigraphic trap are rare, structural trap can be divided into faulted anticline, rolling anticline trap structure, draping anticline, fault nose and fault block5categories, the size of the traps is small, with average closed area of about16.3km2and average close range of178.85m.
     The conducting system in Liaoxi depression is mainly composed of fault, sand body and unconformable surface, which can be divided into three kinds of faults namely the single fault element type, fault-sand body composite and composite unconformity, due to well developed oil source faults, trap mostly distribute dependent on oil source faults. Therefore, transportation systems in Liaoxi depression is given priority to with single fault element type, fault, sand body compound are developed, unconformity-fault rarely found.
     Hydrocarbon accumulation mechanism and enrichment regularity
     Basin simulation technology was used to study the buriing processes and evolution, hydrodynamic field and evolution, development and evolution and hydrocarbon source rocks of oil and gas filling history in Liaoxi depression. Results show that affected by tectonic evolution, buried formation has experienced different sedimentary changes and characteristics respectively corresponding to the tectonic evolution of four phases:during the Kongdian-Shasi period, the earth's crust begin to arch, sedimentation rate decrease, settlement become smaller, the whole depression become a segmented lake basin; during the ES3period, the rupturing is strongest, sedimentation rate increased, the subsidence quantity also increased; during the ES1+2period, the rupturing weaker, sedimentation rate become smaller and subsidence is minimal; during the Dongying group sedimentary period, the recurrence of lacunae, formation deposition rate increases again, thickness increased; After Neogene, formation and sedimentary being stable buried, entered the stage of depression..
     Nowadays, measured temperature data revealed that the geothermal gradient in Liaoxi depression mainly distributed in2.2℃/100m to3.7℃/100m, average geothermal gradient at2.95℃/100m, slightly lower than the average of Longdongwan (3.0℃/100m), basin numerical simulation results revealed that the palaeogeothermal and palaeo-heat flow in Liaoxi depression has experienced relatively similar change process, which is from high to low first, and then continue to rise during the period of geologic history. The paleogeothermal gradient and palaeo-heat flow is higher during the chasmic strong stage, when the chasmic function is weak, they reduced correspondingly.
     Measured pressure data revealed compaction, mudstone overpressure phenomenon in the study area, according to mudstone acoustic time difference method, there are two sets of mudstone undercompaction and overpressure system in the study area, namely ES3formation and Lower Ed2-Ed3formation, and the overpressure intensity in the deep overpressure system is larger than shallow overpressure system, but the shallow overpressure system distributes wider.
     Basin numerical simulation analysis show that there are three periods of pressure-pressure release evolution cycle in the study area, and strong tectonic movement and high sedimentation rate, there exist strong undercompaction overpressure during the Es3sedimentary period,; druing the ES2sedimentary period, the tectonic movement is abate, pore fluid seepage, partial pressure release, overpressure intensity decreases; during the Ed3sedimentary period, tectonic movement intensity increase again, compaction increase, pressure accumulated; during the Ed2sedimentary period, the pressure should be reduced, but part of the hydrocarbon source rock began to expulsion hydrocarbon, lead to increase pressure, until the end of the east section of sedimentary strata uplift, due to the tectonic uplift and denudation, the pressure release; during the Minghuazhen formation, the source rock entered the hydrocarbon generation peak, pressure increase correspondingly; during the Quaternary Pingyuan formation sedimentary period, the hydrocarbon generation abate, pressure decrease again. These are the three phase of the pressure evolution cycle.
     Sand basin numerical simulation results show that the ES3source rocks entered hydrocarbon generation threshold during the Es1+2formation sedimentary period, began to expulse hydrocarbon during the Dongying formation sedimentary period, reach the peak of hydrocarbon generation during the Guantao formation sedimentary period, reach the peak of hydrocarbon expulsion during the Minghuazhen formation sedimentary period; part of hydrocarbon source rocks from Guantao formation entered hydrocarbon generation threshold during the Minghuazhen formation sedimentary period and a small amount of hydrocarbon were expulsed, reached the hydrocarbon generation peak during the Minghuazhen formation sedimentary period, reach the hydrocarbon expulsion peak during the Pingyuan formation sedimentary period; very small amounts of Ed3source rocks entered hydrocarbon generation threshold and expulsed hydrocarbon during the Guantao formation sedimentary period, however the expulsion amount is rare, with minor contribution to the accumulation.Combining previous By combine the fluid inclusion test and analysis with the use of traditional generation and expulsion history of hydrocarbon, the results show that the mass migration and filling time of oil and gas in Liaoxi depression is roughly at24.6Ma, that is to say during the Guantao formation sedimentary period.
     The physical properties of crude oil in Liaoxi depression varies with each other, most deep buried oils are light oil and intermediate oil, and shallow buried oils are mainly heavy oil; according to the hydrocarbon source rocks sterane maturity parameters, the types of crude oil in Liaoxi depression are divided, including immature oil, low mature oil and mature oil, their maximum depths are2500m,2780m and2900m respectively. Oil-source correlation results show that the Liaoxi depression mainly have a hollow accumulation rule, does not exist migration phenomenon between pools; the enrichment regularity in the study area show the oil and gas resources are abundant in north-south, with center area deficient on plane, deep layers abundant and shallow layers poverty vertically, high position abundant and low poverty laterally. Controlling factors and models of hydrocarbon accumulation
     Several typical reservoirs were selected in different sub-sag, and different structural belt among the Liaoxi depression, then the accumulation conditions, the accumulation mechanism and main control factors of these reservoirs were analyzed, on this basis, according to the hydrocarbon sub-sag, oil and gas source, oil and gas reservoirs, conducting system and the degree of enrichment, the hydrocarbon accumulation model of Liaoxi depression can be divided into three categories and11sub-types, then the main control factors and distribution characteristics of oil and gas reservoirs were analyzes.
     The hydrocarbon accumulation pattern of Liaoxi depression can be divided into three categories namely deep mixed source old reservoir type, one-way shallow old reservoir type and unidirectional composite new reservoir, in particular, the main controlling factors of deep mixed source old type reservoir are reservoir quality and conducting channel, main controlling factors for one-way shallow old reservoir type are hydrocarbon source rock condition, migration dynamics and assemblages; control factors for unidirectional composite new reservoir are caprock and faulting.
     The distribution model of these three types of the reservoir is obvious:deep oil stored reservoirs are mainly distributed in the north sag of Liaoxi depression; shallow old reservoir distributes widely in the north sag, center and south sag; new storage reservoir distributes only in the south sag. Various kinds and patterns of hydrocarbon reservoirs distribution also follow a certain law:rich reservoirs are mainly distributed in the concave structure zone and the steep slope zone; mix sourced gas reservoirs are mainly distributed in the north sag and the south sag.
     The different oil and gas enrichment mechanism in Liaoxi depression is controlled by comprehensive factors such as hydrocarbon source rocks, fracture, reservoir temperature pressure system, the control function of the various elements is shown as:high-quality hydrocarbon source rocks development deicide the distribution area of oil and gas, the hydrocarbon generation center control the enrichment area of oil and gas, the hydrocarbon source rock thermal evolution affect the difference of oil and gas distribution, intence fracture activity provides development condition for the high quality hydrocarbon source rock, tectonic evolution cycle led to the formation of multiple sets of reservoir-seal associations, and fracture distribution control the trap development, late activation of fractures improved oil and gas migration channel, double entry temperature pressure system manufacturing " fluid compartment", oil and gas mainly gathered on the edge of the overpressure system, reservoir quality affect the overall oil-gas accumulation scale.
引文
[1]韩栓民.兴隆台旋卷构造的初步探讨[J].石油与天然气地质,1983(04):403-415.
    [2]Magoon L B, Dow W G. Petroleum System-from source to trap[J]. AAPG Memoir,1974,60:3-24.
    [3]田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,(2):20-24.
    [4]康永尚,郭黔杰.论油气成藏流体动力系统[J].地球科学,1998,23(3):281-284.
    [5]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21.
    [6]Gleadow A, Gleadow S J, Belton D X, et al. Fully-Automated Counting for Fission Track Dating and Thermochronology[J]. Geochimica Et Cosmochimica Acta Supplement,2006,70: 205.
    [7]Toupin D, Eadington P J, Person M, et al. Petroleum Hydrogeology of the Cooper and Eromanga Basins, Australia; Some Insights From Mathematical Modeling and Fluid Inclusion Data[J]. AAPG Bulletin,1997,81(4):577-603.
    [8]Jerry J S, Alan K B. Evaluation of a Simple Model of Vitrinite Reflectance Based On Chemical Kinetics[J]. AAPG Bulletin,1990,74(10):1559-1570.
    [9]Tissot B P, Pelet R, Ungerer P H. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation[J]. AAPG Bulletin,1987,71(12):1445-1466.
    [10]Duddy I R, Green P F, Bray R J, et al. Recognition of the Thermal Effects of Fluid Flow in Sedimentary Basins[J]. Geological Society, London, Special Publications,1994,78(1): 325-345.
    [11]Hao F, Li S, Dong W, et al. Abnormal Organic-Matter Maturation in the Yinggehai Basin, South China Sea:Implications for Hydrocarbon Expulsion and Fluid Migration From Overpressured Systems[J]. Journal of Petroleum Geology,1998,21(4):427-444.
    [12]郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005.
    [13]Wilkinson M, Haszeldine R S, Fallick A E. Hydrocarbon Filling and Leakage History of a Deep Geopressured Sandstone, Fulmar Formation, United Kingdom North Sea[J]. AAPG Bulletin.2006,90(12):1945-1961.
    [14]Webster M, O'Connor S, Pindar B, et al. Overpressures in the Taranaki Basin:Distribution, Causes, and Implications for Exploration[J]. AAPG Bulletin,2011,95(3):339.
    [15]Boles J R, Eichhubl P, Garven G, et al. Evolution of a Hydrocarbon Migration Pathway Along Basin-Bounding Faults:Evidence From Fault Cement[J]. AAPG Bulletin.2004, 88(7):947-970.
    [16]Borge H. Modelling Generation and Dissipation of Overpressure in Sedimentary Basins:An Example From the Halten Terrace, Offshore Norway [J]. Marine and Petroleum Geology. 2002,19(3):377-388.
    [17]Nordgard Bolas H M, Hermanrud C, Teige G M G Origin of Overpressures in Shales: Constraints From Basin Modeling[J]. AAPG Bulletin,2004,88(2):193-211.
    [18]Luo X, Wang Z, Zhang L, et al. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China[J]. AAPG Bulletin,2007,91(8):1123-1139.
    [19]Valdemar Vejbaek O. Disequilibrium Compaction as the Cause for Cretaceous-Paleogene Overpressures in the Danish North Sea[J]. Aapg Bulletin.2008,92(2):165-180.
    [20]Guo X, He S, Liu K, et al. Oil Generation as the Dominant Overpressure Mechanism in the Cenozoic Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin,2010,94(12): 1859-1881.
    [21]胡朝元.生油区控制油气分布—中国东部陆相盆地进行区域勘探的有效理论[J].石油学报,1982,2:9-13.
    [22]胡朝元.我国海上沉积盆地油气田分布区域控制因素的探讨[J].海洋地质与第四纪地质,1986,6(4):23-29.
    [23]胡朝元.“源控论”适用范围量化分析[J].天然气工业,2005,25(10):1-3,7.
    [24]童晓光,牛嘉玉.区域盖层在油气聚集中的作用[J].石油勘探与开发,1989,16(4):1-7.
    [25]邱蕴玉,徐滚.扬子区海相油气保存条件及油气成藏规律研究;见:中国南方古、中生界海相油气勘探研究,北京:科学出版社,1993,184-208.
    [26]周兴熙.源-盖共控论述要[J].石油勘探与开发,1997,24(6):4-7.
    [27]罗群,姜振学,庞雄奇.断裂控藏机理与模式[M].北京:石油工业出版社,2007.
    [28]罗群,庞雄奇.海南福山凹陷顺向和反向断裂控藏机理及油气聚集模式[J].石油学报,2008,29(3):363-367.
    [29]周兴怀,牛成民,滕长宇.环渤中地区新构造运动期断裂活动与油气成藏关系[J].石油与天然气地质,2009,30(4):469-475.
    [30]罗群.断裂带的疏导与封闭性及其控藏特征[J].石油实验地质,2011,33(5):474-479.
    [31]卓勤功,宁方兴,荣娜.断陷盆地输导体系类型及控藏机制[J].地质评论,2005,51(4):416-422.
    [32]罗佳强,沈忠民.主运移通道控烃论[J].成都理工大学学报,2005,32(3):221-229.
    [33]冷济高,庞雄奇,杨克明,等.断块圈闭控藏模式—以辽河盆地西部凹陷为例[J].油气地质与采收率,2011,18(2):1-6.
    [34]何登发,李德生,童晓光,等.多期叠加盆地古隆起控油规律[J].石油学报,2008,29(4):475-488.
    [35]马中良,曾溅辉,王永诗,等.济阳坳陷“相-势”耦合控藏的内涵及其地质意义[J].石油学报,2009,30(2):176-182.
    [36]张俊杰,闫长辉,陈青,等.东营凹陷北带砂砾岩扇体相-势控藏定量化研究-以利85区块为例[J].2010,22(1):53-58.
    [37]Yukler M A, Comford C, Welte D H. One-dimensional model to simulate geologic hydro-dynamic and thermo-dynamic development of a sedimentary basin[J]. Geol Rundschau,1978,67(3):960-979.
    [38]Nakayama K, Van Siclen D C. Simulation model for petroleum exploration[J].AAPG Bulletin,1981,65(7):1230-1255.
    [39]Ungerer P, Bessis F, Chenet P Y, et al. Geological and geochemical models in oil exploration: principles and practical examples[A].In Demasion G, ed. Petroleum geochemistry and basin evaluation[C].AAPG Memoir 35,1984,53-77.
    [40]Lampe C, Kornpihl K, Sciamanna S, et al. Petroleum Systems Modeling in Tectonically Complex Areas--A 2D Migration Study From the Neuquen Basin, Argentina[J]. Journal of Geochemical Exploration,2006,89(1-3):201-204.
    [41]Sciamanna S S W. Thrustbelt Petroleum Systems:2D Modeling, a Minimum Requirement. Case Study From Neuquen Basin, Argentina[C].2004.
    [42]Schneider F, Devoitine H, Faille I, et al. Ceres2D:A Numerical Prototype for He Potential Evaluation in Complex Area[J]. Oil & Gas Science and Technology,2002,57(6):607-619.
    [43]Sassi W, Rudkiewicz J L, Divies R. New Methods for Integrated Modeling of Deformation and Petroleum Generation in Fold and Thrust Belts[C].1998.
    [44]Baur F, Littke R, Wielens H, et al. Basin Modeling Meets Rift Analysis-A Numerical Modeling Study From the Jeanne D'arc Basin, Offshore Newfoundland, Canada[J]. Marine and Petroleum Geology,2010,27(3):585-599.
    [45]Baur F, Di Benedetto M, Fuchs T, et al. Integrating Structural Geology and Petroleum Systems Modeling-A Pilot Project From Bolivia's Fold and Thrust Belt[J]. Marine and Petroleum Geology.2009,26(4):573-579.
    [46]Kroeger K F, Ondrak R, di Primio R, et al. A Three-Dimensional Insight Into the Mackenzie Basin (Canada):Implications for the Thermal History and Hydrocarbon Generation Potential of Tertiary Deltaic Sequences[J]. AAPG Bulletin,2008,92(2):225.
    [47]Corradi A, Ruffo P, Corrao A, et al.3D Hydrocarbon Migration by Percolation Technique in an Alternate Sand-Shale Environment Described by a Seismic Facies Classified Volume[J]. Marine and Petroleum Geology.2009,26(4):495-503.
    [48]Hildenbrand A, Urai J L. Investigation of the Morphology of Pore Space in Mudstones-First Results[J]. Marine and Petroleum Geology.2003,20(10):1185-1200.
    [49]Meakin P, Wagner G, Vedvik A, et al. Invasion Percolation and Secondary Migration: Experiments and Simulations[J]. Marine and Petroleum Geology.2000,17(7):777-795.
    [50]Carruthers D J. Modeling of Secondary Petroleum Migration Using Invasion Percolation Techniques [J]. AAPG Discovery Series.2003,7:21-37.
    [51]Kroeger K F, di Primio R, Horsfield B. Hydrocarbon Flow Modeling in Complex Structures (Mackenzie Basin, Canada)[J]. AAPG Bulletin.2009,93(9):1209-1234.
    [52]朱扬明.流体包裹体在油气勘探中的应用[J].勘探家,1992,4(4):29-32.
    [53]刘得光,王飞宇.准噶尔盆地马桥凸起侏罗系油气成藏期次[J].新疆石油地质,1999,20(6):465-467.
    [54]陶士振,张宝民,赵长毅,等.流体包裹体方法在油气源追踪对比中的应用—以四川盆地 碳酸盐岩大型气田为例[J].岩石学报,2003,19(2):327-335.
    [55]逢建东,柳忠泉,吕新彪,等.运用流体包裹体计算流体势并预测油气聚集区带[J].特种油气藏,2003,10(3):42-43,52.
    [56]李善鹏,邱楠生,尹长河,等.利用包裹体研究沉积盆地古压力[J].矿产与地质,2003,2(17):161-165.
    [57]沈传波,李祥权,杜学斌,等.流体包裹体在油田断裂研究中的某些应用[J].大庆石油地质与开发,2003,22(4):4-6.
    [58]沈传波,陈少平.流体包裹体在含油气系统成藏研究中的应用[J].新疆石油学院学报,2002(3):13-16.
    [59]Tobin R C, Claxton B L. Multidisciplinary Thermal Maturity Studies Using Vitrinite Reflectance and Fluid Inclusion Microthermometry:A New Calibration of Old Techniques[J]. AAPG Bulletin,2000,84(10):1647-1665.
    [60]Hao F, Li S, Gong Z, et al. Thermal Regime, Interreservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea: Evidence for Episodic Fluid Injections in Overpressured Basins?[J]. AAPG Bulletin,2000, 84(5):607-626.
    [61]Rowan E L, Goldhaber M B, Hatch J R. Regional Fluid Flow as a Factor in the Thermal History of the Illinois Basin:Constraints from Fluid Inclusions and the Maturity of Pennsylvanian Coals[J]. AAPG Bulletin,2002,86(2):257-277.
    [62]Rossi C, Goldstein R H, Ceriani A, et al. Fluid Inclusions Record Thermal and Fluid Evolution in Reservoir Sandstones, Khatatba Formation, Western Desert, Egypt:A Case for Fluid Injection[J]. AAPG Bulletin,2002,86(10):1773-1799.
    [63]Chan M A, Parry W T, Bowman J R. Diagenetic Hematite and Manganese Oxides and Fault-Related Fluid Flow in Jurassic Sandstones, Southeastern Utah[J]. AAPG Bulletin, 2000,84(9):1281-1310.
    [64]Ohm S E, Karlsen D A. Biogenic gas(?) in fluid inclusions from sandstones in contact with oil-mature coals[J]. AAPG Bulletin,2007,91(5):715-739.
    [65]Barclay S A, Worden R H, Parnell J, et al. Assessment of Fluid Contacts and Compartmentalization in Sandstone Reservoirs Using Fluid Inclusions:An Example from the Magnus Oil Field, North Seal[J]. AAPG Bulletin,2000,84(4):489-504.
    [66]李思田.大型油气系统形成的盆地动力学背景[J].地球科学-中国地质大学学报,2004,29(5):505-512.
    [67]田在艺,王善书.我国海域地质构造与含油气沉积盆地特征[J].石油学报,1985(03):1-10.
    [68]Tong Xiaoguang, Xiao Kunye, Dou Lirong, et al.Great Palogue Field in Melut Basin, Sudan [J]. Abstracts:Annual Meeting-American Association of Petroleum Geologists.2005,14: A140.
    [69]Mchargue T R, Heidrick T L, Livingston J E. Tectonostratigraphic Development of the Interior Sudan Rifts, Central Africa [J]. Tectonophysics.1992,213(1-2):187-202.
    [70]Wilson K L, Blacque A G, Collins A G, et al.The Petroleum Prospectivity of the Melut Rift Basin, Sudan [J].Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists.2004,13:149.
    [71]李志.苏丹迈卢特盆地油气成藏条件与富集规律研究[D].中国石油勘探开发科学研究院中国石油勘探开发研究院,2004.
    [72]童晓光,徐志强,史卜庆,等.苏丹迈卢特盆地石油地质特征及成藏模式[J].石油学报,2006,27(2):1-5,10.
    [73]Dou Lirong, Xiao Kunye, Cheng Dingsheng, et al. Petroleum Geology of the Melut Basin and the Great Palogue Field, Sudan [J]. Marine and Petroleum Geology.2007,24(3): 129-144.
    [74]童晓光,史卜庆,张宏,等.苏丹迈卢特盆地富油气凹陷成藏规律与勘探实践[Z].北京:2009.
    [75]Biddle K T. The Los Angeles Basin:An Overview[J]. Active Margin Basins:Aapg Memoir. 1991,52:5-24.
    [76]Mann P, Escalona A, Castillo M V. Regional Geologic and Tectonic Setting of the Maracaibo Supergiant Basin, Western Venezuela[J]. Aapg Bulletin.2006,90(4):445-477.
    [77]Sutton F A. Geology of Maracaibo Basin, Venezuela[J]. AAPG Bulletin.1946,30(10): 1621-1741.
    [78]Yurewicz D A, Advocate D M, Lo H B, et al. Source Rocks and Oil Families, Southwest Maracaibo Basin (Catatumbo Subbasin), Colombia[J]. AAPG Bulletin.1998,82(7): 1329-1352
    [79]龚再升.中国近海大油气田[M].北京:石油工业出版社,1997:7-63.
    [80]赵文智,邹才能,汪泽成等.富油气凹陷“满凹含油”论:内涵与意义[J].石油勘探与开发,2004,31(2):5-14.
    [81]翟光明,何文渊.从区域构造背景看我国油气勘探方向[J].中国石油勘探,2005,10(2):1-8.
    [82]李小地.中国大油气田的分布特征与发现前景[J].石油勘探与开
    发,2006,33(2):127-130.
    [83]牛嘉玉,吴小洲,方杰,等.富油气凹陷勘探潜力、领域与重点区带分析[C]//中国石油勘探与生产分公司.渤海湾盆地油气勘探论文集,北京:石油工业出版社,2008:44-57.
    [84]贾承造,赵政璋,杜金虎等.中国石油重点勘探领域:地质认识、核心技术、勘探成效及勘探方向[J].石油勘探与开发,2008,35(4):385-396.
    [85]朱伟林,米立军,龚再升,等.渤海海域油气成藏与勘探[M].北京市:科学出版社,2009:142-255.
    [86]文志刚,刁帆,周东红,等.中国东部断陷盆地富油气凹陷评价体系探讨[J].石油天然气学报,2011,33(2):1-5.
    [87]陈云林.论富油洼陷及其意义[J].勘探家,1999,4(2):8-11.
    [88]袁选俊,谯汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探[J].石油与天然气地质,2002,23(2):130-133.
    [89]高瑞祺.青年勘探家论渤海湾盆地石油地质[M].北京:石油工业出版社,2004:165-180.
    [90]叶加仁,吴景富,舒誉,等.中国近海富烃凹陷油气成藏特征[J].地质科技情 报,2012,31(5):105-111.
    [91]Perrodon A.Essai de classification des bassins sedimentaires[J].Science de la Terre,1972, 16:197-227.
    [92]闵慧.南海北部富烃凹陷发育的构造控制条件分析--以惠州凹陷为例[D].中国地质大学(武汉),2011.
    [93]翟光明,沿海大陆架及毗邻海域油气地质志编写组编王善书主编.中国石油地质志卷16沿海大陆架及毗邻海域油气区下[M].石油工业出版社,1992.
    [94]朱伟林,江文荣,成鑫荣,等.中国北部近海沉积盆地形成时期的古地形与盆地的含油气性[J].中国海上油气(地质).2000,14(1):9-14.
    [95]张功成.渤海海域构造格局与富生烃凹陷分布[J].中国海上油气(地质).2000,14(2):93-99.
    [96]漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质.2007,12(004):43-50.
    [197]陈斯忠.从渤海周边陆上油气分布规律看海域的找油方向[J].中国海上油气(地质),1997(6):14-21.
    [98]吴国瑄,朱伟林,黎明碧,等.古湖缺氧条件是控制富生油凹陷形成的重要因素——来自珠江口盆地的证据[J].中国海上油气(地质),1999,13(1):3-8.
    [99]赵文智,池英柳.渤海湾盆地含油气层系区域分布规律与主控因素[J].石油学报.2000,21(1):10-15.
    [100]李丕龙.富油断陷盆地油气环状分布与惠民凹陷勘探方向[J].石油实验地质,2001,23(2):146-148.
    [101]李相博,袁剑英,林卫东,等.国内外中、小型盆地油气富集规律及勘探经验[J].新疆石油地质,2001,22(2):163-166.
    [102]金庆焕,刘振湖,陈强.万安盆地中部坳陷—一个巨大的富生烃坳陷[J].地球科学,2004,29(5):525-530.
    [103]杜金虎,易士威,卢学军,等.试论富油凹陷油气分布的”互补性”特征[J].中国石油勘探,2004(1):15-22.
    [104]易士威,王权.冀中坳陷富油凹陷勘探现状及勘探思路[J].石油勘探与开发,2004,31(3):82-85.
    [105]邱荣华.泌阳富油凹陷北部斜坡带浅层复杂断块群油气勘探[J].石油与天然气地质,2006,27(6):813-819,840.
    [106]郑红菊,董月霞,王旭东,等.渤海湾盆地南堡富油气凹陷烃源岩的形成及其特征[J].天然气地球科学,2007,18(1):78-83.
    [107]韩永科,胡英,王崇孝,等.酒泉盆地两个富油凹陷的区别与勘探潜力[J].新疆石油地质,2007,28(6):691-693.
    [108]贾承造,赵政璋,杜金虎,等.中国石油重点勘探领域-地质认识、核心技术、勘探成效及勘探方向[J].石油勘探与开发.2008,35(4):385-396.
    [109]陈波,夏永涛,黄发木,等.松辽盆地深层富烃断陷形成的地质条件研究[J].中国石油勘探,2008(6):19-25.
    [110]蒋有录,卓勤功,谈玉明,等.富油凹陷不同洼陷烃源岩的热演化及生烃特征差异性[J].石油实验地质,2009,31(5):500-505.
    [111]周心怀,刘震,李潍莲等.辽东湾断陷油气成藏机理[M].北京:石油工业出版社,2009.
    [112]漆家福,陈发景.辽东湾-下辽河盆地新生代构造样式[J].石油与天然气地质,1992,13(3):272-283.
    [113]徐长贵,许效松,丘东洲,等.辽东湾地区辽西凹陷中南部古近系构造格架与层序地层格架及古地理分析[J].古地理学报,2005,7(4):449-459.
    [114]李潍莲,代春萌,于水,等.辽东湾断陷与下辽河坳陷油气成藏条件及油气分布特征的差异性分析[J].西南石油大学学报(自然科学版),2006,21(4):15-19.
    [115]董春梅.辽东湾海域原油及生物标志化合物特征[J].石油大学学报,1995,19(2):12-17.
    [116]田金强,邹华耀,周心怀,等.辽东湾地区烃源岩生物标志物特征与油源对比[J].中国石油大学学报:自然科学版,2011,35(4):53-58.
    [117]姜雪,邹华耀,庄新兵,等.辽东湾地区烃源岩特征及其主控因素[J].中国石油大学学报:自然科学版,2010,34(2):31-37.
    [118]朱筱敏,董艳蕾,杨俊生,等.辽东湾地区古近系层序地层格架与沉积体系分布[J].中国科学D辑:地球科学,2008,30(增刊):1-10.
    [119]梁建设,张功成,苗顺德,等.辽东湾辽西凹陷沙河街组烃源岩评价及油源研究[J].沉积学报,2012,30(4):739-745.
    [120]左银辉,邱楠生,李建平,等.渤海盆地辽东湾地区古近系烃源岩成熟度演化模拟[J].现代地质田,1996,1(1):31-34.
    [121]蒋恕,蔡东升,朱筱敏,等.辽东湾地区孔隙演化的机理[J].地球科学,2007,32(3):366-372.
    [122]朱峰,高霞,吕玉珍.辽东湾地区古近系储层质量分析[J].石油天然气学报,2009,31(2):30-34.
    [123]刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-23.
    [124]田金强,邹华耀,姜雪,等.辽西凹陷中段走滑构造与油气运聚[A].第五届油气成藏机理与油气资源评价国际学术研讨会论文集,2011,405-411.
    [125]柳永军,朱文森,杜晓峰,等.渤海海域辽中凹陷走滑断裂分段性及其对油气成藏的影响[J].石油天然气学报,2012,34(7):6-10.
    [126]汤良杰,陈绪云,周兴怀,等.渤海海域郯庐断裂带构造解析[J].西南石油大学学报,2011,33(1):170-176.
    [127]李潍莲,刘震,代春萌,等.辽东湾JZS油气田西侧边界断层输导性能分析[J].现代地质,2009,23(2):292-298.
    [128]姜雪,邹华耀,田金强,等.辽东湾地区油气晚期成藏的证据[A].第五届油气成藏机理与油气资源评价国际学术研讨会论文集,2009,199-210.
    [129]李潍莲,刘震,刘俊榜,等.辽东湾地区辽西低凸起油气田地质成藏条件的差异[J].石油与天然气地质,2010,31(5):664-670.
    [130]中国石油地质志[M].北京:石油工业出版社,卷三,辽河油田,1993.
    [131]任德生,刘立,陈江,等.辽河坳陷西部凹陷曙北地区古近系层序地层桁架[J].石油勘探与 开发,2004:48-50.
    [132]夏庆龙,周心怀,薛永安,等.渤海海域油气藏形成分布与资源潜力[M].北京:石油工业出版社,2012.
    [133]张文昭.辽河坳陷西部凹陷西斜坡油气成藏形成条件与富集规律[J].石油与天然气地质,1987,8(1):77-85.
    [134]李晓光,陈振岩.辽河坳陷古近系碎屑岩储层孔隙演化特征探讨[J].古地理学报,2006,8(2):252-258.
    [135]张文昭.一个斜坡的油气富集区-辽河坳陷西部斜坡带[J].大庆石油地质与开发,1987,6(2):7-13.
    [136]单俊峰,陈振岩,回雪峰,等.辽河坳陷西部凹陷坡洼过渡带岩性油气藏形成条件[J].石油勘探与开发,2005,42-45.
    [137]李宏伟,朱怡翔,李胜利,等.辽河西部凹陷北部地区隐蔽油气藏预测与成藏机制分析[J].石油勘探与开发,2003,44-45.
    [138]朱芳冰,肖伶俐,唐小云,等.辽河盆地西部凹陷稠油成因类型及其油源分析[J].地质科技情报,2004,23(4):55-58.
    [139]单俊峰,陈振岩,回雪峰,等.辽河西部凹陷岩性油气藏展特征及有利勘探区带选择[J].石油地质,2005,29-33.
    [140]冉波,单俊峰,金科,等.辽河西部凹陷西斜坡南段隐蔽油气藏勘探实践[J].特种油气藏,2005,12(1):10-14.
    [141]高先志,陈振岩,邹志文,等.辽河西部凹陷兴隆台高潜山内幕油气藏形成条件和成藏特征[J].中国石油大学学报(自然科学版),2007,31(6):6-9.
    [142]方世虎,徐怀民,郭召杰,等.辽河西部凹陷滩海地区Es1+2异常压力特征与油气运聚[J].石油勘探与开发,2003,35-37.
    [143]方世虎,徐怀民,宋岩,等.辽河西部凹陷滩海地区复合含油气系统中的油气运移流向探讨[J].石油大学学报(自然科学版),2005,29(4):10-14.
    [144]薛会,李晓光,张金川,等.辽河坳陷西部凹陷兴隆台地区古近系油气运聚特征[J].大庆石油地质与开发,2008,27(3):9-14.
    [145]孟元林,赵小庆,黄文彪,等.辽河西部凹陷南段油气运移研究与有利聚集区预测[J].矿物岩石地球化学报,2009,12-17.
    [146]刘宝,母国妍,张宁,等.下辽河坳陷西部凹陷下第三系砂体时空展布规律及其主控因素[J].天然气地球科学,2005,16(6):747-751.
    [147]黄耀华,许小勇.辽河油田西部凹陷油气藏分布规律及控制因素[J].资源与产业,2007,9(6):56-59.
    [148]冷济高,庞雄奇,李晓光,等.辽河断陷西部凹陷油气成藏主控因素[J].古地球学报,2008,10(5):473-479.
    [149]高先志,李建海,邹志文,等.断裂对辽河西部凹陷大洼油田油气成藏和分布的控制作用[J].现代地质,2008,22(4):613-618.
    [150]强昆生,吕修祥,周兴怀,等.浅海断陷盆地天然气运聚成藏史研究:以渤海海域北部JZ20-A气田为例[J].中南大学学报,2013,44(3):1091-1099.
    [151]邓津辉,黄晓波,李慧勇,等.辽东湾海域JZ25地区流体包裹体与油气运移[J]石油与天然气地质,2009,30(4):420-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700