用户名: 密码: 验证码:
考虑SSI的减隔震简支桥梁(渡槽)建模及地震动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于建筑抗震体系,在理论分析和设计中通常忽略土-结构相互作用(SSI)。即采用刚性基础的假定,认为地震时基础的运动与邻近的自由场一致。也就是说,上部结构的惯性力传给地基,使之产生的变形,比地震波引起的地基变形应当小很多。否则假定不合理,基础会产生相对于地基的变形,从而导致上部结构的实际运动与按照刚性基础的假定得到的响应有较大的差别。因此,对柔性基础上的建筑物,在计算地震响应时有必要考虑土-结构的相互作用
     目前,隔震技术已经基本成熟,土-结构相互作用(SSI)研究正在深入,而二者的耦合研究则刚刚起步,研究文献不多,得出的结论有时还互相矛盾,因此关于隔震技术与SSI的耦合有待进一步研究。
     现今,关于考虑SSI影响的隔震研究还限于简单模型,结构简化为单质点或多质点剪切结构,地基假定为弹性半空间。研究主要集中在刚性浅基础对隔震的影响,对柔性基础对隔震的影响研究较少,但实际桥梁和渡槽很多采用具有一定柔性的桩基。本课题对柔性地基中简支桥梁(或渡槽)的减隔震进行研究,能够更真实地揭示土-结构相互作用对该类桥梁减隔震系统的影响。
     课题针对某试验隔震渡槽(即过水的桥梁)结构和常见的三跨桩基隔震桥梁结构,研究SSI对其减隔震效果的影响。
     研究内容如下:
     第一章绪论,综述了考虑土-结构动力相互作用问题的隔震结构研究与发展以及桥梁脆弱性曲线的研究与发展。
     第二章,论文对某简支渡槽进行了比较精细的有限元分析,桩采用梁单元建模,土和桩的相互作用采用弹簧单元,槽墩、槽身及槽中的水体,采用实体建模。这样可以得到工程上比较关注的上部结构不同部位的具体响应。通过该模型分析了实际的隔震支座对系统响应的的影响。
     第三章,对前面的模型桩基部分,采用了不同的建模方式,并进行了动力分析比较。即桩土之间的相互作用分别采用Mindlin方法和规范推荐的m法两种方法进行分析比较。改进的Penzien模型采用一组带阻尼的弹簧单元来模拟自由场土层在不同深度对桩的刚度效应和阻尼效应,弹簧的一端与桩连接,另一端和一足够大的质量单元连接,以模拟自由场地土对结构的质量效应;桩周土质量间增加了土的剪切弹簧和阻尼器;自由场地质量间也增加了土的剪切弹簧和阻尼器。
     第四章,采用Mindlin方法对某渡槽拟动力试验的结果进行了分析,说明该法有一定的可信性。实验位于大型土槽内,设计制作了缩尺的渡槽试验模型。模型由四根钢管桩支撑,上部槽体模拟单跨槽体和水体的作用,采用等效质量块代替,承台、槽墩及槽体均采用钢筋混凝土材料,槽墩与等效质量块之间布有四个抗震支座。实验主要了解桩土相互作用。本章采用三维有限元模型对实验进行了模拟。
     第五章,对不同场地土对智能隔震渡槽的影响进行了分析。
     智能隔震支座由隔震支座和磁流变阻尼器构成,位于渡槽墩顶,智能隔震系统的控制策略为半主动控制。对此智能隔震渡槽,分析了地震作用下,不同的场地土对结构体系的影响,智能隔震装置的有效性。
     第六章,对典型的三跨简支梁进行了隔震分析,特别考虑了桥面板之间、桥面板与桥台之间碰撞对隔震桥梁的的影响。
     前面的渡槽是简支结构,属于简支桥梁类型,与普通简支桥梁比,只是荷载不同罢了。前面的渡槽三维有限元模型比较复杂,自由度也较多。而第五章,考虑SSI的智能隔震渡槽的地震响应,其模型相对简单,自由度也较少。事实上,模型的复杂程度变化是很大的,可以从简单的,仅包括几个自由度的杆件模型(如第五章),到很精细的模型,即包括各个不同杆件的非线性行为的模型。合理的模型应该与桥梁的配置、桥梁的类型、期望的地震需求和地震响应相关。
     本章对典型的三跨简支桥梁进行了建模,比较全面地考虑了地震动力分析时的需要的一些重要因素,包括材料非线性、支座非线性、土-结构相互作用以及桥面板的碰撞等,对桥面板采用梁单元建模,对关键的桥墩柱采用纤维单元建模,对桥面板的碰撞采用碰撞单元建模。所建三维模型,既能较好反映该类桥梁的地震动力分析的响应特点,又不至于太复杂,导致后面脆弱性分析的计算成本过高。
     本章重点采用此模型,对桥面板的碰撞进行了研究,分析了碰撞对结构地震动力响应的影响,对隔震简支桥梁的减震效果的影响。
     第七章,对典型三跨简支梁进行了脆弱性分析,比较了隔震前后的桥梁构件和桥梁系统的脆弱性的变化。
     脆弱性是在给定地震动强度情况下,结构或结构达到或超过某个设定的损伤程度的条件概率。本章采用地震峰值加速度(PGA)作为地震动强度度量,挑选了五种地震类型中共10条地震波,每条地震以O.1g作为PGA增量来分析,共100个计算工况。
     通过对各个地震波的增量时程分析,共获得100个时程分析结果。从各时程分析中提取关注的响应变量,包括柱子曲率,固定支座位移,滑动支座位移等。这便是桥梁部件的地震需求。对这些量值进行回归分析,可以得到响应LN (Sd)和地震峰值LN (PGA)之间的关系。再根据桥梁损失极限状态比较,得出桥梁部件的脆弱性曲线,由此,进一步得到桥梁系统的脆弱性曲线。
     根据支座脆弱的特点,进行坚固处理时,优先考虑支座的替换。替换为隔震支座后,再按同样的方法进行各地震波的增量时程分析,得出隔震桥梁的需求响应。最后,可计算出隔震桥梁部件和桥梁系统的脆弱性曲线。并对隔震前后的脆弱性进行比较。
     第八章,给出了主要的研究结果和结论。
     论文的主要成果如下:
     1)渡槽结构采用减震支座后的动力响应
     安装减震支座后渡槽结构的最大动应力和内力得到了不同程度的抑制,支座在横槽向和顺槽向滞回曲线的滞回环明显、饱满,表明减震支座具有明显耗能效果。
     2)不同桩土作用模型
     在三维渡槽地震动力响应分析中,采用m法和Mindlin方法分别建立桩。土相互作用模型,其余相同,Mindlin方法计算的桩顶剪力和弯矩比m法略小,而桩顶位移略大,这说明两种考虑桩-土作用的方法差别不大。而且,两种方法对上部结构,特别是槽体影响不大,渡槽的前三阶振型均为槽体的运动振型,且频率保持不变,槽身的位移也不变,这也说明对此类结构,桩-土作用的影响对上部结构影响较小。
     3)计算分析与实验验证
     通过多种工况的计算,包括不同的地震波及不同地震波峰值,渡槽非线性有限元动力分析成果,无论是位移时程响应特征,在槽墩中部点位移响应的极值,还是桩体水平位响应值,与渡槽拟动力试验结果都比较接近,这在一定程度上验证了拟动力试验的合理性和正确性,也表明采用的计算模型在中、小震条件下,能够比较准确的模拟地震作用下的土-桩-结构-水体系统的地震响应。
     4)对不同土体类型,SSI对减震效果的影响
     有隔震支座时,考虑SSI后,槽身和墩顶的水平横向位移略大。土越软,横向位移越大,但最大基底剪力,无论是软基还是刚基,差别不大
     有智能隔震系统时,考虑SSI后,槽身和墩顶的水平横向位移急剧减小。这种效果可以避免位移过大,损坏水封。
     有智能隔震系统时,考虑SSI后,最大基底剪力减小了。土越硬,基底剪力越小。
     考虑SSI后的减隔震控制系统,其控制效果不如不考虑SSI的情况。土越软,控制效果越差。硬土和刚性基础的控制效果相接近。故,对硬土上的基础,可以当作刚性基础处理,对中、软土上的基础,要考虑SSI效果,否者会高估减震的效果。
     小阻尼隔震支座,对横向漂移、横向速度和最大基底剪力的减小,均比大阻尼隔震支座要好。
     5)考虑SSI的典型简支桥梁结构隔震
     (1)碰撞对响应的影响:
     由于地震波的不同,碰撞可能导致柱子的响应或呈增加趋势,或者呈减小趋势。
     (2)减震效果:
     从减震效果看,纵向减震效果良好,柱子的响应减小,减震支座的力-位移滞回曲线明显,但同时明显放大了支座以上梁的纵向瞬时加速度和梁的纵向位移。而横向减震,不仅没有效果,反而响应有所放大。
     (3)碰撞对减震效果的影响:
     考虑碰撞,对隔震支座以下部位柱子的纵向隔震影响比不考虑碰撞更有效或接近。但都放大了支座以上梁的纵向位移和加速度。对横向,隔振支座不仅不能减震,反而增加了横向响应,考虑碰撞产生的放大作用更明显。
     (4)隔震桥梁对基频更接近的地震波,减震效果更好。
     (5)对同样的隔震支座,不同场地土情况下,土变硬后,隔震桥梁纵向地震力逐渐变大,而墩顶的位移以及中跨面板梁的位移变化不大。
     6)通过对简支桥梁的脆弱性分析,明确了薄弱环节确实首先在于固定支座,其次是滑动支座和柱子。通过采用隔震支座,可以明显改善桥梁系统的脆弱性。
     论文的创新点:
     考虑土-结构相互作用对隔震桥梁的影响,以前的研究模型往往只考虑一个方向,并忽略碰撞的影响。本文采用合理的模型,可考虑两个方向的隔震效果,同时也考虑桥面板碰撞效果的影响。
     论文的章节安排如下:
     第一章,绪论。对考虑SSI的减隔震研究及桥梁结构脆弱性分析进行综述。
     第二章,简支渡槽动力数值模拟建模及减震模拟分析。包括建模及减震分析。
     第三章,考虑不同桩土作用模型的简支渡槽减震动力分析。包括两种桩土作用的模型建模,和对模型的动力时程分析和反应谱分析比较。
     第四章,对某渡槽拟动力试验的数值模拟分析。
     第五章,对不同场地土对智能隔震渡槽的影响进行了分析。
     第六章,考虑碰撞的简支桥梁在不同场地土中的隔震分析。对典型的三跨简支梁进行了隔震分析,特别考虑了桥面板之间、桥面板与桥台之间碰撞对桥梁隔震的影响。
     第七章,简支桥梁脆弱性分析,对典型三跨简支梁进行了脆弱性分析,比较了隔震前后的桥梁构件和桥梁系统的脆弱性的变化。
     第八章,结论与建议
Soil-Structural Interaction (SSI) is often ignored in practice on aseismic analysis. This leads to discrepancy between computed result and reality response when rigid foundation is assumed. This assumption is more common for isolated structures because of concept that SSI can be advantageous to structures. In fact, because of flexibility of foundation, SSI may be advantageous or detrimental to isolated structures or controlled structures. The effect of SSI on isolated structures is complex.
     Present isolated techniques and structural control techniques are getting more and more attractive in civil engineering. In practice, many stuctures are designed or retrofitted by the techniques, especially in bridge engineering. The research on SSI effect is getting deeper. Unfortunately, the research on combination of SSI and structural control is scarce.There is very limited literiture on the topic, in which controvesal conclusions sometimes got drawn. Therefore, further investigation on combination of SSI and structural control is needed. The present research on the combination focuses on rigid shallow foundation, seldom on flexible foundation, with simple mass point model under assumption that earth is elastic half space. In fact, most of bridges are built on pile foundation, one type of flexible foundations.
     The focus in this paper is on the isolated or hybrid isolated bridge (including aqueduct, a kind of bridge transporting water) with simply support considering SSI subjected to earthquake load.
     The reseach content is as follow.
     Chapter1introduces the development of seismic isolated stuctures considering SSI, and development of fragility analysis of bridge.
     Chapter2focuses on a simply supported aqueduct with isolated bearings. A refined finite element model is established in order to get data which is useful to designer. In the model, beam element is employed to represent pile, spring element is employed to represent SSI, relevant solid elements are used for pier, acqueduct body and water. By this model, dynamic analysis is accomplished. The effect of isolated bearings on structural response under earthquake is investigated.
     Chapter3uses the same model as in Chapter2. In the analytic model, keeping the superstructure unchanged, two kinds of methods of modeling foundation are applied. One is improved Penzien model, using Mindlin method to determinate spring and dashpot coeffecients. The orther one is m method recommended by the code. The comparison of these two methods is maked.
     Chapter4simulates the response of a scaled aqueduct model, which undergoed a quasi dynamic test in a large soil box. The analytic model employs the improved Penzien model to model pile-soil interaction.
     Chapter5studys a hybrid isolated aqueduct or intelligent control aqueduct subjected to earthquake load in different soil profiles. The hybrid isolated device is comprised of ordinary isolated bearing and MR damper, loacated on the top of pier. The control strategy is semi-active control. The influence of different soil profiles on the hybrid isolated aqueduct system is obtained.
     Chaper6takes a classic three-span simply supported isolated bridge as an example. Dynamic analysis is taken from the model, which considers the pounding between the decks or deck and abutment.
     The aqueduct aforementioned is also a simply supported bridge, just with different load. The analytic model complexity of bridge is varied according to analysis purposes. The models in Chapter2amd3are complex, but the model in Chapter5is simple. How to develop a reasonable model depends on types of bridge, layout of bridge, what you expect, analysis category et al.
     In this chapter, in order to perform full nonlinear dynamic time history analysis, a refined model is modeled, which includes some significant factors, such as materal nolinearity, bearing nonlinearity, soil-structure interaction and pounding between decks and deck and abutment. The column is modeled in fiber elements, pounding is modeled in pounding element and deck is modeled in beam elements, which is expected to be elastic. The whole model is not too complex, ortherwise it is unacceptable in fragility analysis in Chapter7.
     This model here is used to investigate the pounging effect on classic three-span isolated simply supported bridge.
     Chapter7takes fragility analysis to the aforementioned model in Chapter6. Furthermore, comparison of fragility before-isolated and after-isolated bridge is taken.
     Fragility is a conditional probability of structure reaching or exceeding a limit state damage under given earthquake intensity (such as PGA or Sa). In this Chapter,10earthquake waves are chosen from five earthquake wave bins,2waves per bin. Then incremental dynamic analysis is performed with0.1g incerement from0.1g to1g. Thus100time history analysis for non-isolated and isolated bridge are gathered respectively. The interested responses, such as column ductility, fixed bearing displacement, expansion bearing displacement et al, can be extracted. The extracted responses are earthquake demand. The relationship between demand and PGA can obtained through regression. Finally, based on limit state damage, fragility curve can be drawn. The system's fragility can be got based on components fragility curves according reliability theory.
     The fragilitie of isolated and non-isolated bridge are compared in order to understand the isolation effect.
     The main conclusions are drawn as follows.
     For the dynamic response of aqueduct mounted seismic isolated bearings
     The peak dynamic stress and acceleration are mitigated after employing seismic isolated bearings. The effectness of mitigation depends on frequency of the input earthquake wave.
     For different pile-soil interaction models
     Improved Penzien model method and m method lead to similar analysis result. But m method has more flexible to obtain spring coefficient, which is hard to master. Therefore, improved Penzien method is better.
     For simulation and test
     The responses, including displacement time history, peak displacement of pier, and pile displacement, are close between simulation and test under minor earthquake.
     For different soil profiles' effect on the hybrid isolated aqueduct
     The control effect of hybrid isolation device is less when considering SSI, especially in soft foundation.
     For classic simply supported bridge
     The displacement, shear force and moment of column are increased or decreased depending on the earthquake wave in horizontal direction when considering pounding. The effectiveness in longitudal direction is good, but is bad in transverse direction. The responses in transverse direction are amplified when isolated device employed considering pounding.
     For fragility analysis
     Through fragility analysis, fixed tranditional bearing is the weaket part, which needs to replace together with expansion bearing. After replacing tranditional bearings with isolated bearings, the fragility of components and system are improved.
     The highlight of the paper is to investigate pounding, between decks or deck and abutment, effect on the isolated simply supported bridge considering SSI through full nonlinear dynamic analysis.
引文
[1]Dicleli, M., Albhaisi, S., and Mansour, M. Static soil-structure interaction effects in seismic-isolated bridges[J]. Pract. Period. Struct. Des. Constr.,2005,10(1):22-33.
    [2]Vlassis, A. G., and Spyrakos, C. C. Seismically isolated bridge piers on shallow soil stratum with soil-structure interaction [J]. Comput. Struct.,2001,79(32):2847-2861.
    [3]Ucak, A., and Tsopelas, P. Effect of soil-structure interaction on seismic isolated bridges [J]. J. Struct. Eng.,2008,134(7):1154-1164.
    [4]Makris, N., and Zhang, J. Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers [J]. J. Struct. Eng.,2004,130(6):830-845.
    [5]Soneji, B. B., and Jangid, R. S. Influence of soil-structure interaction on the response of seismically isolated cable-stayed bridge [J]. Soil. Dyn. Earthquake Eng.,2008,28(4): 245-257.
    [6]Karim, K. R., and Yamazaki, F. Effect of isolation on fragility curves of highway bridges based on simplified approach [J]. Soil. Dyn. Earthquake Eng.,2007,27(5):414-426.
    [7]Zhang, J., and Huo, Y. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method [J]. Eng. Struct., 2009,31(8):1648-1660.
    [8]Kelly J M. Aseismic base isolation:review and ibliography[J]. Soil Dynamics and Earthquake Engineering,1986,5 (4):202-216
    [9]Skinner RI工程隔震概论.北京:地震出版社,1996
    [10]易伟建,马文丽,刘光栋.土-结构动力相互作用的振型分解法[J].湖南大学学报(自然科学版),2004,31(3):68-71.
    [11]李海岭,葛修润.土-结构相互作用对基础隔震体系的影响[J].土木工程学报,2001,34(4):83-87.
    [12]周占学;李延涛;张海;毕全超;基于结构-桩-土相互作用的MR控制[J];工程力学2009,26(sup.1):134-138
    [13]邹立华,赵人达.土-基础相互作用隔震体系地震随机响应分析[J].计算力学学报,2005,22(2):252-256.
    [14]邹立华.工程结构减震控制研究[D].成都:西南交通大学,2004.
    [15]陈国兴.岩土地震工程学[M].北京:科学出版社,2007
    [16]陈国兴,陈继华.土-结构-TMD体系振动台模型试验与数值模拟对比研究[J].岩土工程学报,2003,25(5):532-537.
    [17]吴京宁,楼梦麟.土-结构相互作用对高层建筑TMD控制的影响[J].同济大学学报,1997,25(5):515-520.
    [18]楼梦麟,王文剑.桩基础上结构TMD控制的振动台模型试验研究[J].同济大学学报,2001,29(6):636-642.
    [19]Wong H L.Luco J E. Structural control including soil-structure interaction effects[J]. Journal of EngineeringMechanics,ASCE,1991,17:2237-2250.
    [20]李海岭,葛修润.土-结构动力相互作用影响的TMD控制研究[J].岩土力学,2000,20(1):40-44.
    [21]李海岭,葛修润.土-结构动力相互作用对隔震结构影响的模态分析方法[J].振动与冲击,2000,19(3):63-67.
    [22]Smith H A, Wu W H. Effective optimal structural control of soil-structure interaction system[J]. Earthquake Engineering and Structural Dynamics,1997,26:549-570.
    [23]Smith H D, Wu W H, Borja R I. Structural control considering soil-structure interaction effects[J]. Earthquake Engineering and Structural Dynamics,1994,23:609-626.
    [24]Staudacher E, Habacher C, Siegenthaler R. Erdbebensicherung in Baum. Neue Zurcher Zeitung. Technikbeilage. Zurich. Switzerland; 1970.
    [25]International Council of Building Officials (ICBO). Uniform Building Code[M]. Whittier(CA);1991.
    [26]Constantinou MC, Kartoum A, Reinhorn AM et al. Sliding isolation system for bridges: Experimental study [J]. Earthquake Spectra,1992,(8):321-344.
    [27]Kelly JM. Earthquake-resistant design with rubber[M]. New York:Springer-Verlag; 1993.
    [28]Skinner RI, Robinson WH, McVerry GH. An introduction to seismic isolation[M]. New York:John Wiley & Sons,1993.
    [29]Tsopelas P, Constantinou MC, Kim YS, et al. Experimental study of FPS system in bridge seismic isolation[J]. Earthq Eng Struct Dyn 1996,25:65-78.
    [30]Jangid RS, Kelly JM. Base isolation for near-fault motions[J]. Earthq Eng Struct Dyn 2001,30:691-707.
    [31]Hall JF. Discussion on the role of damping in seismic isolation[J]. Earthq Eng Struct Dyn 1999,28:1717 20.
    [32]Hall JF, Ryan KL. Isolated buildings and the 1997 UBC near-source factors[J]. Earthq Spectra 2000,16 (2):393-411
    [33]Zhang Y, Iwan WD. Protecting base-isolated structures from near-field ground motion by tuned interaction damper[J]. J Eng Mech ASCE 2002,128(3):287_95.
    [34]Sahasrabudhe S, Nagarajaiah S. Experimental study of sliding base-isolated buildings with magnetorheological dampers in near-fault earthquakes[J]. J Struct Eng ASCE, 2005,131(7):1025-34.
    [35]Ryan KL, Chopra AK. Approximate analysis methods for asymmetric plan base isolated buildings[J]. Earthq Eng Struct Dyn,2002,31(1):33-54.
    [36]Ryan KL, Chopra AK. Estimating seismic demands for isolation bearings with building overturning effects[J]. J Struct Eng ASCE 2006; 132(7):1118_28.
    [37]Naeim F, Kelly JM. Design of seismic isolated structures[M]. New York:John Wiley & Sons INC.1999.
    [38]International Code Council (ICC). International Building Code[S]. Falls Church (VA); 2000.
    [39]European committee for standardization (CEN). Eurocode 8, Design of structures for earthquake resistance[S]. EN 1998. Brussels; 2004.
    [40]Johnson JJ. In:Chen WF, Scawthorn C, editors. Soil_structure interaction. Earthquake engineering handbook[M], Boca Raton:CRC Press; 2003. p.10.1-10.31
    [41]Wong HL, Luco JE. Dynamic response of rigid foundations of arbitrary shape[J]. Earthq Eng Struct Dyn 1976,4:587_97.
    [42]Idriss IM, Kennedy RP, Agrawal PK, et al. Analyses for soil_structure interaction effects for nuclear power plants[M]. New York:ASCE; 1979.
    [43]Johnson JJ. Soil Structure Interaction (SSI):The status of current analysis methods and research[R]. Lawrence Livermore National Laboratory (LLNL). UCRL-53011. NUREGICR-1780. Washington (DC):US Nuclear Regulatory Commission; 1981.
    [44]Wolf JP. Dynamic soil_structure interaction[M]. Englewood Cliffs (NJ):Prentice-Hall; 1985.
    [45]Wolf JP. Foundation vibration analysis using simple physical models[M]. Englewood Cliffs (NJ):Prentice-Hall; 1994.
    [46]Spyrakos CC, Beskos DE. Dynamic response of flexible strip-foundations by boundary and finite elements[J]. Soil Dyn Earthq Eng,1986,5(2):84_96.
    [47]Luco JE. Soil_structure interaction effects on the seismic response of tall chimneys[J]. Soil Dyn Earthq Eng 1986;5:170_7.
    [48]Goyal A, Chopra AK. Earthquake analysis of intake-outlet towers including tower_water_foundation_soil interaction[J]. Earthq Eng Struct Dyn 1989;18:325_44.
    [49]Spyrakos CC. Seismic behaviour of bridge piers including soil structure interaction[J]. Comput. Structures 1992;43:373_84.
    [50]Xu C, Spyrakos CC. Seismic analysis of towers including foundation uplift[J]. Eng Struct 1996;18(4):271_8.
    [51]Maekawa K, Pimanmas A, Okamoura H. Nonlinear soilstructure interaction[M]. London:Spon Press; 2003.
    [52]Building Seismic Safety Council (BSSC). NEHRP recommended provisions for seismic regulations for new buildings and other structures[S]. FEMA 450. Washington (DC): Federal Emergency Management Agency; 2003.
    [53]Spyrakos, C. C. Assessment of SSI on the longitudinal seismic Response of short span bridges[J]. Eng. Struct.,1990,12(1):60-66.
    [54]Spyrakos, C. C. Seismic behavior of bridge piers including soil_structure interaction[J]. Comput. Struct.,1992,43(2):373-384.
    [55]Ciampoli, M., and Pinto, P. E.. Effects of soil structure interaction on inelastic seismic response of bridge piers[J]. J. Struct. Eng.,1995,121(5):806-814
    [56]Mylonakis, G, and Gazetas, G. Seismic soil-structure interaction:Beneficial or detrimental [J]. J. Earthquake Eng.,2000,4(3):277-301.
    [57]Jeremic, B., Kunnath, S., and Xiong, F. Influence of soilfoundation-structure interaction on seismic response of the 1-880 viaduct[J]. Eng. Struct.,2004,26(3):391-402.
    [58]Makris, N. M., and Zhang, J. Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers[J]. J. Struct. Eng., 2004,130(6):830-845.
    [59]Spyrakos CC. In:Hall WS, Oliveto G, editors. Soil_structure interaction in practice. Boundary element methods for soilstructure interaction[A], Dordrecht:Kluwer Academic Publishers; 2003. p.235_72 [Chapter 5].
    [60]Spyrakos CC, Vlassis AG. Effect of soil_structure interaction on seismically isolated bridges[J]. J Earthq Eng 2002;6(3):391_429.
    [61]Chaudhary MTA, Abe M, Fujino Y. Identification of soil_structure interaction effect in isolated bridges from earthquake records[J]. Soil Dyn Earthq Eng 2001;21:713_25.
    [62]Iemura H, Pradono MH. Passive and semi-active seismic response control of a cable-stayed bridge[J]. J Struct Control 2002;9:189_204.
    [63]Tongaonkar NP, Jangid RS. Seismic response of isolated bridges with soil_structure interaction[J]. Soil Dyn Earthq Eng 2003;23:287_302.
    [64]Dicleli M, Albhaisi S, Mansour MY. Static soilstructure interaction effects in seismic-isolated bridges[J]. Pract Period Struct Des Constr ASCE 2005;10(1):2233.
    [65]Sarrazin M, Moroni O, Roesset JM. Evaluation of dynamic response characteristics of seismically isolated bridges in Chile[J]. Earthq Eng Struct Dyn 2005;34:425_48.
    [66]Vlassis, A. G., and Spyrakos, C. C. Seismically isolated bridge piers on shallow soil stratum with soil-structure interaction[J]. Comput. Struct.,2001,79(32):2847-2861.
    [67]Tongaonkar, N. P., and Jangid, R. S. Seismic response of isolated bridges with soil-structure interaction[J]. Soil Dyn. Earthquake Eng.,2003,23(4):287-302.
    [68]Alper Ucak and Panos Tsopelas. Effect of Soil-Structure Interaction on Seismic Isolated Bridges[J]. Journal of Stru. Eng.,2008,134,(7):1154-1164
    [69]Seeber R, Fisher FD, Rammerstorfer FG. Analysis of a three-dimensional tank_liquid_soil interaction problem[J]. J Press Vessel Technol ASME 1990; 112:28_33.
    [70]Haroun MA, Abou-Izzeddine W. Parametric study of seismic soil_tank interaction.1. Horizontal excitation[J]. J Struct Eng ASCE 1992;118(3):783_97.
    [71]Shenton III HW, Hampton FP. Seismic response of isolated elevated water tanks[J]. J Struct Eng ASCE 1999; 125(9):965_76.
    [72]Kim MK, Lim YM, Cho SY, et al. Seismic analysis of base-isolated liquid storage tanks using the BE_FE_BE coupling technique[J]. Soil Dyn Earthq Eng 2002;22:l 151_8.
    [73]Cho KH, Kim MK, Lim YM, et al. Seismic response of base-isolated liquid storage tanks considering fluid_structure_soil interaction in time domain[J]. Soil Dyn Earthq Eng 2004;24:839_52.
    [74]Kelly JM. Shake table tests of long period isolation system for nuclear facilities at soft soil sites[R]. Report No. UCB/EERC-91=03. University of California at Berkeley; 1991.
    [75]Constantinou MC, Kneifati MC. Effect of soil_structure interaction on damping and frequencies of base-isolated structures[A]. In:Proceedings of the 3rd US national conference on earthquake engineering [C]. vol.1.1986. p.671_81.
    [76]Novak M, Henderson P. Base-isolated buildings with soil_structure interaction[J]. Earthq Eng Struct Dyn 1989; 18:751-65.
    [77]Tsai CS, Chen C-S, Chen B-J. Effects of unbounded media on seismic responses of FPS-isolated structures[J]. J Struct Control Health Monit 2004;11:1-20.
    [78]Tekie, P. B. and Ellingwood, B. R. Seismic fragility assessment of concrete gravity dams[J]. Earthquake Engineering and Structural Dynamics,2003,32(14):2221-2240.
    [79]Basoz, N., Kiremidjian, A., King, S. A., et al. Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA, Earthquake[J]. Earthquake Spectra,1999,15(1):25-53
    [80]Basoz, N. and Kiremidjian, A. S. Development of empirical fragility curves for bridges[A]. Technical Council on Lifeline Earthquake Engineering Monograph Proceedings of the 1999 5th U.S. Conference on Lifeline Earthquake Engineering: Optimazing Post-Earthquake Lifeline System Reliability [C], Aug 12-Aug 14 1999, (16): 693-702.
    [81]Nielson, B. and DesRoches, R. Probabilistic Seismic Analysis of Highway Bridges Using a Component Level Approach[J]. Earthquake Engineering and Structural Dynamics,2007,36(6):823-839
    [82]Kim, S.-H. and Shinozuka, M. Development of fragility curves of bridges retrofitted by column jacketing[J]. Probabilistic Engineering Mechanics,2004,19(1):105-112.
    [83]Kim, S.-H. and Shinozuka, M. Fragility Curves for Concrete Bridges Retrofitted by Column Jacketing and Restrainers[A]. Proceedings of the Sixth U.S. Conference and Workshop on Lifeline Earthquake Engineering [C], Aug 10-13 2003, Technical Council on Lifeline Earthquake Engineering Monograph, Long Beach, CA, United States. American Society of Civil Engineers,906-915.
    [84]Shinozuka, M., Kim, S.-H., and Zhou, Y. Effect of Retrofit, Skew and Number of Spans on Bridge Fragility[A].Second PRC-US Workshop on Seismic Analysis and Design of Special Bridges [C], G. C. Lee and L.-C. Fan, eds., Vol. MCEER-04-006, Buffalo, NY.MCEER,2004,61-73.
    [85]Yamazaki, E, Hamada, T., Motoyama, H., et al. Earthquake DamageAssessment of Expressway Bridges in Japan[J]. Technical Council on Lifeline Earthquake Engineering Monograph,1999,(16):361-370.
    [86]Basoz, N., Kiremidjian, A., King, S. A.,et al. Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA, Earthquake." Earthquake Spectra,1999,15(l):25-54
    [87]Shinozuka, M., Feng, M. Q., Dong, X., et al. Damage Assessment of a Highway Network Under Scenario Earthquakes for Emergency Response Decision Support[A]. Proceedings of SPIE-The International Society for Optical Engineering [C],Vol.3988, Newport Beach, CA, USA. Society of Photo-Optical Instrumentation Engineers,2000,264-275.
    [88]Shinozuka, M., Feng, M. Q.,et al. Statistical Analysis of Fragility Curves[R]. Report No. MCEER-03-0002, MCEER.2003
    [89]Shinozuka, M., Feng, M. Q., et al. Statistical analysis of fragility curves[J]. Journal of Engineering Mechanics,2000),126(12):1224-250
    [90]Shinozuka, M., Feng, Maria, Q.,et al. Nonlinear Static Procedure for Fragility Curve Development[J]. Journal of Engineering Mechanics,2000,126(12):1287-1296.
    [91]Yamazaki, F., Hamada, T., Motoyama, H., et al. Earthquake DamageAssessment of Expressway Bridges in Japan[J]. Technical Council on Lifeline Earthquake Engineering Monograph,1999, (16):361-370.
    [92]Werner, S. D. and Taylor, C. E. Component Vulnerability Modeling Issues for Analysis of Seismic Risks to Transportation Lifeline Systems[R]. Acceptable Risk Processes-Lifelines and Natural Hazards, Council on Disaster Reduction and Technical Council for Lifeline Earthquake Engineering,2002.
    [93]朱美珍.公路桥梁震害预测的实用方法[J].同济大学学报,1994,22(3):280.
    [94]孙振,邹其嘉.公路桥梁地震易损性和震后恢复过程[J].华南地震,1999,199(2):62-70
    [95]徐龙军,章倩.铁路桥梁地震震害预测[J].山东建筑工程学院学报,2003,18(1):27-31.
    [96]Hwang, H. and Jaw, J. W. Probabilistic Damage Analysis of Structures[J].Journal of Structural Engineering,1990,116(7):1992-2007.
    [97]Jernigan, J. B. and Hwang, H. Development of Bridge Fragility Curves[C].7th US National Conference on Earthquake Engineering, Boston, Mass. EERI.,2002.
    [98]Hwang, H., Jernigan, J. B., Billings, S., et al. Expert Opinion Survey on Bridge Repair Strategy and Traffic Impact[R]. Post Earthquake Highway Response and Recovery Seminar, St. Louis, MO. CERI.2000.
    [99]Hwang, H., Jernigan, J. B., and Lin, Y.-W. Evaluation of Seismic Damage to Memphis Bridges and Highway Systems[J]. Journal of Bridge Engineering,2000,5(4):322-330.
    [100]Hwang, H., Liu, J. B., and Chiu, Y.-H. Seismic Fragility Analysis of Highway Bridges[R]. Report No. MAEC RR-4, Center for Earthquake Research Information.2000.
    [101]Mander, J. B. and Basoz, N. Seismic Fragility Curve Theory for Highway Bridges[C]. 5th US Conference on Lifeline Earthquake Engineering, Seattle, WA, USA. ASCE.1999.
    [102]Dutta, A. and Mander, J. B. Seismic Fragility Analysis of Highway Bridges[A]. Center-to-Center ProjectWorkshop on Earthquake Engineering Frontiers in Transportation Systems [C], H. Kameda and I. M. Friedland, eds., Tokyo, Japan. International Center for Disaster-Mitigation Engineering (INCEDE).1998.
    [103]Mander, J. B. Fragility Curve Development for Assessing the Seismic Vulnerability of Highway Bridges[R]. Report No.99-SP01, MCEER.1999.
    [104]Hwang, H. and Huo, J. R. Probabilistic Seismic Damage Assessment of Highway Bridges[C].6th US National Conference on Earthquake Engineering, Seattle, WA. EERI.1998.
    [105]Mackie, K. Fragility Based Seismic Decision Making for Highway Overpass Bridges[D], PhD thesis, University of California, Berkeley.2004.
    [106]Karim, K. R. and Yamazaki, F. A simplified method of constructing fragility curves for highway bridges[J]. Earthquake Engineering and Structural Dynamics, 2003,32(10):1603-1626.
    [107]Elnashai, A., Borzi, B., and Vlachos, S. Deformation-based Vulnerability Functions for RC Bridges[J]. Structural Engineering and Mechanics,2004,17(2):215-244.
    [108]Choi, E., DesRoches, R., and Nielson, B. Seismic Fragility of Typical Bridges in Moderate Seismic Zones[J]. Engineering Structures,2004,26(2):187-199.
    [109]Mackie, K. and Stojadinovic, B. Seismic Demands for Performance-Based Designof Bridges[R]. Report No. PEER 312.2003.
    [110]Hwang, H. and Huo, J. R. Generation of Hazard-Consistent Ground Motion[J]. Soil Dynamics and Earthquake Engineering,1994,13(6):377-386.
    [111]Wen, Y. K. and Wu, C. L. Uniform Hazard Ground Motions for Mid-America Cities[J]. Earthquake Spectra,2001,17(2):359-384
    [112]Rix, G. J. and Fernandez, J. A. (2004). "Earthquake Ground Motion Simulation". (Oct.19,2009).
    [113]Nielson, B. Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones[D], PhD thesis, Georgia Institute of Technology,2005
    [114]Kappos, A.J., Saiidi, M.S., Aydinoglu, M.N.,et al. Seismic Design and Assessment of Bridges[M], Springer; 2012
    [115]DesRoches, R., Choi, E., Leon, R. T., et al. Seismic Response of Multiple Span Steel Bridges in Central and Southeastern United States. I:As Built." Journal of Bridge Engineering[J],2004,9(5):464-472.
    [116]Cornell, A. C., Jalayer, F., and Hamburger, R. O. Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines[J]. Journal of Structural Engineering,2002,128(4):526-532
    [117]Mackie, K. Fragility Based Seismic Decision Making for Highway Overpass Bridges[D]," PhD thesis, University of California, Berkeley,2004.
    [118]Nielson, B. and DesRoches, R. Probabilistic Seismic Analysis of Highway Bridges Using a Component Level Approach [J]. Earthquake Engineering and Structural Dynamics,2007,36(6):823-839
    [119]Kim, S.-H. and Shinozuka, M. Development of fragility curves of bridges retrofitted by column jacketing." Probabilistic Engineering Mechanics,2004,19(1):105-112.
    [120]Kim, S.-H. and Shinozuka, M. Fragility Curves for Concrete Bridges Retrofitted by Column Jacketing and Restrainers[A]. Proceedings of the Sixth U.S. Conference and Workshop on Lifeline Earthquake Engineering, Aug 10-132003, Technical Council on Lifeline Earthquake Engineering Monograph, Long Beach, CA, United States. American Society of Civil Engineers,906-915.
    [121]Shinozuka, M., Kim, S.-H., and Zhou, Y. Effect of Retrofit, Skew and Number of Spans on Bridge Fragility[A]. Second PRC-US Workshop on Seismic Analysis and Design of Special Bridges, G. C. Lee and L.-C. Fan, eds., Vol. MCEER-04-006, Buffalo, NY.MCEER,2004,61-73.
    [122]Khan, R. A., Datta, T. K., and Ahmad, S. A simplified fragility analysis of fan type cable stayed bridges[J]. Earthquake Engineering and Engineering Vibration,2005,4(1): 83-94.
    [123]Cimellaro, G. P. and Domaneschi, M. Reliability of a Cable Stayed Bridge[C].8th U.S. National Conference on Earthquake Engineering, San Francisco, California.2006
    [124]J.Penzien.Seismic Analysis of Bridges on LongPiles [J].J.Engng. Mech. Div.,1964, 90(EM3):223-254.
    [125]J.Penzien.Seismic Analysis or Platform structure Foundation Systems[A].The 7th Annual offshore technology conference,1975,2352:153-160
    [126]Novak, M.,Dynamic Stiffness and Damping of Piles[J].Can.Geotech.J.,1974,11(4): 574-598.
    [127]Novak.M., Grigg, R. Dynamic Experiments with Small Pile Foundations [J]. Can. Geotech.J.,1976,13(4):372-385.
    [128]Novak, M., Nogami, Soil-Pile Interaction in Horizontal Vibration [J].Earthquake Engineering and Structure Dynamics,1977,5(3):263-281.
    [129]Novak, M.Nogami, T.Aboul-Ella, F.Dynamic Soil Reaction for Plane Strain Case[J]. Journal of the Engineering Mechanics Division, ASCE.1978,104, EM4:953-959.
    [130]Novak, M. Aboul-Ella, F.Impedance Function of Piles in Layered Media[J]. Journal of the Engineering Mechanics Division, ASCE,1978,104(6):643-661.
    [131]Novak,.Shamouby E.Stiffness Constants of Single Piles [J]. Journal of the Engineering Mechanics Division, ASCE,1983,109, GT7:961-974.
    [132]M. Novak.Piles Under Dynamic Loads[A].Proceedings:2th Internarional Conference on RecentAdvances in Geotecnical EarthquakeEngineering and SoilDynamics [C],March 11-15,1991,Vol.Ⅲ, St-Louis, Missouri.
    [133]林皋.土一结构动力相互作用[J].世界地震工程.1991,7(2):4-21.
    [134]张楚汉.结构一地基动力相互作用问题.结构与介质相互作用理论及其应用[M].南京:河海大学出版社,1993:243-266.
    [135]林皋.岩土地震工程及土动力学新进展[J].世界地工程,1992,5,2:1-11.
    [136]陈国兴.土体一结构体系的地震性能研究[J].哈尔滨建筑工程学院学报,1994,10,27(5):11-18.
    [137]熊建国.土一结构动力相互作用问题的新进展(Ⅰ)[J].世界地震工程,1992,2:22-29.
    [138]熊建国.土一结构动力相互作用问题的新进展(Ⅱ)[J].世界地震工程,1992,4:17-25.
    [139]李辉,赖明,白绍良.土一结构动力相互作用研究综述(Ⅰ)[J].重庆建筑大学学报,1999.8,21(4):112-116.
    [140]李辉,赖明,白绍良.土一结构动力相互作用研究综述(Ⅱ)[J].重庆建筑大学学报,1999.10,21(5):112-116.
    [141]李辉,赖明,白绍良.土一结构动力相互作用研究综述(Ⅲ)[J].重庆建筑大学学报,2000.2,22(1):119-123.
    [142]肖晓春,林皋,迟世春.土一桩一结构动力相互作用的分析模型与方法[J].世界地震工程,2002,4:123-130.
    [143]P.J. Meymand.Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Structure Interaction in Soft Clay [D].Univ.ofCalifomia.Berkeley,1998.
    [144]李辉,赖明,白绍良.土_结动力相互作用研究综述(Ⅱ)_-简化分析模型[J].重庆建筑大学学报1999,21(5):112-116.
    [145]范立础,袁万城,姜林.橡胶支座连续梁桥非线性地震反应分析[A].中国土木工程学会桥梁及结构工程学会第九届年会论文集[C],中国杭州,1990.
    [146]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [147]Lok, M. Numerical Modeling of Seismic Soil-Pile-Strueture Interaction in Soft Clay [D].Univ.of California Berkeley,1999.
    [148]宰金氓,宰金璋.高层建筑基础分析与设计—土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社,1993.
    [149]周铭.弹性桩与弹性梁的通解[J].岩土工程学报.1982.2.4(1):1-15.
    [150]G.Gazetas, R.Dobry. Horizontal ResPonse of Piles in Layered Soil[J].Journal of Geotechnical Engineering, ASCE.1984,1,110(1):20-40.
    [151]G.Gazetas, K.Fan, A. Kaynia.Dynamic Interaction Factors for Floating Pile Groups [J]. Journal of Geotechnical Engineering, ASCE.1991,10,117(10):1531-1548.
    [152]K.Fan,.Gazetas.A. Kaynia. Kinematie Seismie ResPonse of Single Piles and Pile GrouPs[J]. Journal of Geotechnical Engineering, ASCE,1991,12,117(12):1860-1879.
    [153]G.Gazetas, N.Mrakis.Dynamic Pile-Soil-Pile Inieraction Part I:Analysis of Axial Vibration[J]. Earthquake Engineering and Structure Dynamics,1991,20:115-132.
    [154]N.Mrakis, G.Gazetas.Dynamic Pile-Soil-Pile Interaction Part II:Analysis of Lateral Vibration[J]. Earthquake Engineering and Structure Dynamics,1992,21:145-162.
    [155]G.Gazetas, K.Fan, A.Kaynia.Dynamic Response of Pile Groups with Different Configurations[J].Soil Dynamics and Earthquake Engineering,1993,12:239-257.
    [156]王立忠,柯瀚,陈云敏,吴世明.地震荷载作用下水泥搅拌桩的动力响应[J].振动工程学报,1998,10,11(4):416-423.
    [157]G.Gazetas, G.Mylonkis, A.Nikolaou. Simple Method for the Seismic Response of Piles Applied to Soil-Pile-Bridge Interaction[A], Proceedings:3th International Conference on Recent Advances in Geotechnical of Earthquake Engineering and Soil dynamics[C].April 2-7,1995, Vol.3, St.Louis, Missouri.
    [158]T.Nogami, J.Otani, K.Konagai.Noulinear Soil-Pile Interaction Model for Dynamic Lateral Motion[J], Journal of Geotechnical Engineering, ASCE,1992,118(l):89-106.
    [159]T.Nogami. Soil-Pile Interaction Model for Earthquake Response Analysis of Offshore Pile Foudation[A].Preceedings:2nd international conference on Recent Advances in Geotechnical of Earthquake Engineering and Soil dynamics[C]. March,11-15,1991, VO1.3, St.Louis, Missouri.
    [160]T.Nogami, K.Konagai, J.otani.Nonlinear Time Domain Numerical Model for Pile Group Under Transient Dynamic Forces[A].Proceedings:2nd international conference on Recent Advances in Geotechnical of Earthquake Engineering and Soil Dynamics[C]. March,11-15,1991, VOl.1, St.Louis, Missouri.
    [161]T. Nogami, R. Mosher, H.WJones. Seismic Response Analysis of Pile Supported Structure:Assessment of commonly used Approximations[A].proceedings:2nd international conference on Recent Advances in Geotechnical of Earthquake Engineering and Soil Dynamics[C]. March,11-15,1991, VOl.1, St.Louis, Missouri.
    [162]Y.X.Cai, P.L.Gould, C.S. Desai.Evaluation of Seismic Response of Pile-Supported Structure with 3-D Nonlinear Approach[A].Proceedings:3th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics [C],1995, Vol.III, St.Louis, Missouri, Paper No.5.45.
    [163]Y.X. Cai, P.L.Gould, C.S.Desai. Nonlinear Analysis of 3D Seismic Interaction of Soil-Pile-Structure Systems and Application [J].Engineering Structures,2000.22,191-199.
    [164]GR.Martin, I.P.Lam. Seismic Design of Pile Foundations:Structure and Geotechnical [A]. Proceedings:3th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics [C], April 2-7,1995, Vol.3, St.Louis, Missouri.
    [165]孙利民,章晨南,潘龙等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [166]K. Takanashi,, et al. Seismic failure analysis of structures by computer-pulsator on-line system[J], Journal of the Institute Science, University of Tokyo, Vol.26, No.ll, December,1974
    [167]M. Nakashima and H. Takai. Use of substructuring techniques in pseudo dynamic testing[R]. Technical Report Research paper No.ll 1, Building Research Institute, Ministry of Construction, Tsukuba, Japan,1985.
    [168]S.N. Dermitzakis and S.A. Mahin. Development of substructuring techniques for on-line computer controlled seismic performance testing[R], Report No. UCB/EERC 85-04,University of California,Berkeley,CA,1985
    [169]H. Iemura, Y. Yamada and W. Tanzo, Testing R/C specimen by a substructure based hybrid earthquake loading system[A], Proc. of 9th WCEE[C], Tokyo-Kyoto Japan, Vol.4,August,1988,35-40
    [170]邱法维,国明超,李喧.采用微机开发的拟动力实验[J],地震工程与工程振动,1994,14(3):91-96
    [171]邱法维.联机结构实验的子结构技术及应用[J].实验力学,1995,10(4):335-342
    [172]迟福东,王进廷,金峰,汪强.土-结构-流体动力相互作用的实时耦联动力试验[J].岩土力学,2010,31(12):3765-3770
    [173]Housner GW. Dynamic Pressure on Accelerated Fluid Containers [J]. Bulletin of the Seismological of America,1957,47(1):15-35.
    [174]孙利民,张晨南,潘龙,等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报(自然科学版),2002,30(4):409-416
    [175]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.92-107.
    [176]Spyrakos, C. C., Assessment of SSI on the longitudinal seismic response of short span bridges[J], Eng. Struct.,1990,12(1):60-66.
    [177]Spyrakos, C. C., Seismic behavior of bridge piers including soil structure interaction[J], Comput. Struct.,1992,43(2):373-384.
    [178]Ciampoli, M., and Pinto, P. E., Effects of soil structure interaction on inelastic seismic response of bridge piers[J], J. Struct. Eng.,1995,121(5):806-814.
    [179]Mylonakis, G, and Gazetas, G, Seismic soil-structure interaction:Beneficial or detrimental[J], J. Earthquake Eng.,2000,4(3):277-301.
    [180]Jeremic, B., Kunnath, S., and Xiong, R, Influence of soil-foundation-structure interaction on seismic response of the 1-880 viaduct[J], Eng. Struct.,2004,26(3): 391-402.
    [181]Makris, N. M., and Zhang, J., Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers[J], J. Struct. Eng.,2004,130(6): 830-845.
    [182]Vlassis, A. G, and Spyrakos, C. C., Seismically isolated bridge piers on shallow soil stratum with soil-structure interaction[J], Comput. Struct.,2001,79(32):2847-2861.
    [183]Tongaonkar, N. P., and Jangid, R. S., Seismic response of isolated bridges with soil-structure interaction[J], Soil Dyn.Earthquake Eng.,2003,23(4):287-302.
    [184]刘云贺,陈厚群.大型渡槽铅销橡胶支座减震机理的数值模拟[J].水利学报,2003,(12):98-103.
    [185]庄中华,李敏霞,陈厚群.渡槽结构隔震与耗能减振控制机理的研究[J].噪声与振动控制,2002,(2):10-12
    [186]Jung H-J, Spencer BF Jr, Ni YQ, et al. State-of-the-art of semi-active control systems using MR fluid dampers in civil engineering applications[J], Structural Engineering and Mechanics,2003,17(3):493-526
    [187]Dyke SJ, Spencer BF Jr, Sain MK, et al. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials and Structures,1996,5(5): 565-575.
    [188]Spencer BF Jr, Dyke SJ, Sain MK, et al. Phenomenological model for magnetorhe-ological dampers[J], Journal of Engineering Mechanics,1997,123(3):230-238.
    [189]Yi, F., Dyke, S. J., Caicedo, J. M., et al. Seismic response control using smart dampers[A]. Proa.,1999 Am. Control Conf.[C], American Automatic Control Council, Washington, D.C.,1999,1022-1026.
    [190]Yi, F., Dyke, S. J., Frech, S., et al. Investigation of magnetorheological dampers for earthquake hazard mitigation[A]. Proc.,2nd World Conf. on Struct. Control[C], Wiley, West Sussex, U.K.,1998,349-358.
    [191]Dyke, S. J., Yi, F., and Carlson, J. D., Application of magnetorheological dampers to seismically excited structures[A]. Proc, Int. Modal Anal. Conf.[C], Society of Experimental Mechanics, Bethel, Conn.1999.
    [192]Seismic design of highway bridge foundations[S], vol. I, Executive summary, vol. II, Design procedures and guidelines (Federal Highway Administration (FHWA), US Department of Transportation, USA,1986.
    [193]Gazetas G., Analysis of machine foundation vibrations:state of the art[J], Soil Dyn. Earthquake Eng.,1983, (2):1-42.
    [194]Dyke, S. J., Spencer, B. F., Jr., Quast, P., et al. Implementation of an AMD using acceleration feedback control[J], Micro-computers in Civ. Engrg.,1996, (11):305-323.
    [195]Dyke S J, Spencer Jr B F, Quast P, et al. Acceleration feedback control of MDOF structures[J], J. Eng. Mech. ASCE,1996,122(9):907-918.
    [196]Spencer Jr B., F., Dyke S. J. and Sain M. K., Experimental verification of acceleration feedback control strategies for seismic protection[A]. Proc. Japan Soc. of Civil Eng.3rd Colloquium on Vibration Control of Structures[C], Part A,Tokyo, Japan,1995,259-265.
    [197]Dyke, S. J., Spencer, B. F., Jr., Sain, M. K., et al. Seismic response reduction using magnetorheological dampers[A], Proc., IFAC World Congr.[C],1996,145-150.
    [198]Dyke, S. J., Spencer, B. F., Sain, M. K., et al., Experimental verification of semi-active structural control strategies using acceleration feedback[A]. Proc.,3rd Int.Conf. on Motion and Vibration ControI[C], Vol.3, Japan Society of Mechanical Engineers, Tokyo,1996,291-296.
    [199]Nielson, B.G and DesRoches, R. Influence of modeling assumptions on the seismic response of multi-span simply supported steel girder bridges in moderate seismic zones[J]. Engineering Structures 2006,28:1083-1092
    [200]Mander, J. B., Kim, D. K., Chen, S. S., et al. Response of Steel Bridge Bearings to the Reversed Cyclic Loading[R]. Technical Report NCEER 96-0014, NCEER, Buffalo, NY. 1996.
    [201]Ma, Y. and Deng, N. Deep Foundations[A]. Bridge Engineering Handbook[M], W.-F. Chen and L. Duan, eds., CRC Press.2000.
    [202]Wolf, J., P. Dynamic Soil-Structure Interaction[M]. Prentice-Hall, Inc, Englewood Clis, N.J.1985.
    [203]Martin, G.R. and Lam, I.P. Seismic design of pile foundations:structural and geotechnical issues[A],3rd ICRAGEESD[C],3,1995:1491-1515.
    [204]Choi, E. Seismic Analysis and Retrofit of Mid-America Bridges[D]. PhD thesis,Georgia Institute of Technology,2002.
    [205]Caltrans. Caltrans Structures Seismic Design References[S]. California Department of Transportation, Sacramento, CA, first edition.1990
    [206]B.G. Nielson. Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones[D], PhD thesis, Georgia Institute of Technology,2005.
    [207]Caltrans. Caltrans Seismic Design Criteria[S]. California Department of Transportation, Sacramento, CA, first edition.1999.
    [208]Maroney, B., Kutter, B., Romstad, K., et al. Interpretation of Large Scale Bridge Abutment Test Results[A]. Proceedings of 3rd Annual Seismic Research Workshop[C], Sacramento, CA. Caltrans.1994.
    [209]Maroney, B., Romstad, K., and Kutter, B. Experimental Testing of Laterally Loaded Large Scale Bridge Abutments [A]. Structural Engineering in Natural Hazards Mitigation[C], Irvine, CA. ASCE.1993.
    [210]Martin, G. R. and Yan, L. Modeling Passive Earth Pressure for Bridge Abutments[A]. Earthquake-Induced Movements and Seismic Remediation of Existing Foundations and Abutments[C], ASCE 1995 Annual National Convention, Vol. Geotechnical Special Publication 55, San Diego, CA. ASCE.
    [211]范立础,王志强.桥梁减隔震设计[M].北京:人民交通出版社.2001
    [212]Basoz N, Kiremidjian S. Risk assessment for highway transportation systems[R]. Tech. Rep. NCEER-118. JohnA. Blume Earthquake EngineeringCenter; November 1996.
    [213]Dicleli M, Bruneau M. Seismic performance of multi-span simply supported slab-on-girder steel highway bridges[J]. Engineering Structures,1995,17(1):4-14
    [214]Dicleli M, Bruneau M. Seismic performance of single-span simply supported and continuous slab-on-girder steel highway bridges[J]. Journal of Structural Engineering 1995,121(10):1381-540
    [215]Rashidi S, Ala Saadeghvaziri M. Seismic modeling of multi-span simply supported bridges using adina[J]. Computers and Structures 1997,64(5):1025-39.
    [216]Ala Saadeghvaziri M, Rashidi S. Effect of steel bearings on seismicresponse of bridges in eastern united states[A]. In:6th US national conference on earthquake engineering[C]. EERI; 1998.
    [217]DesRoches R, Choi E, Leon RT, et al. Seismic responseof multiple span steel bridges in central and southeastern United States[J]. I:As built. Journal of Bridge Engineering 2004;9(5):464-72
    [218]B.G. Nielson. Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones[D], PhD thesis, Georgia Institute of Technology,2005
    [219]Andreas J. Kappos, M. Saiid Saiidi, M. Nuray Aydinoglu, et al. Seismic Design and Assessment of Bridges[M]. Springer Netherlands,2012.
    [220]Taucer F, Spacone E, Filippou FC. A fiber beam-column element for seismic response analysis of RC structures[R], Report EERC 91-17, Earthquake Engineering Research Center,University of California, Berkeley,1991.
    [221]Guedes J, Pegon P, Pinto AV. A fibre/Timoshenko beam element in CASTEM 2000[P], Special Publication Nr.1.94.31 applied mechanics unit, Safety Technology Institute, Commission of the European Communities, Joint Research Centre, Ispra Establishment, Italy,1994.
    [222]Guedes J, Seismic behaviour of reinforced concrete bridges. Modelling, numerical analysisand experimental assessment[D]. PhD thesis, University of Porto, Porto, Portugal.1997.
    [223]SeismoSoft. SeismoStruct-A computer program for static and dynamic nonlinear analysis of framed structures [on line]. Available from URL: http://www.seismosoft.com. Accessed 30 March 2005
    [224]Kabeyasawa T, Shiohara H, Otani S, et al. Analysis of the full-scale seven-story reinforced concrete test structure. J Fac Eng Univ Tokyo,1983,37(2):431-478
    [225]Vulcano A, Bertero W, Caloti V. Analytical modelling of RC structural walls[A]. Proc 9th WCEE[C],1989,Tokyo-Kyoto, Maruzen 6:41-46
    [226]Fischinger M, Vidic T, Fajfar P Non-linear seismic analysis of structural walls using the multiple-vertical-line-element model[A], workshop on non-linear seismic analysis and design of reinforced concrete buildings[C].1992,Elsevier, Bled, pp 191-202
    [227]Fischinger M, Isakovic'T, Kante P. Implementation of a macro model to predict seismic response of RC structural walls[J]. Comput Concrete 2004,1(2):211-226
    [228]Shinozuka, M., Feng, Maria, Q., et al. Nonlinear Static Procedure for Fragility Curve Development[J]. Journal of Engineering Mechanics,2000,126(12):1287-1296.
    [229]Hwang, H., Liu, J. B., and Chiu, Y.-H. Seismic Fragility Analysis of Highway Bridges[R]. Report No. MAEC RR-4, Center for Earthquake Research Informaion,2000.
    [230]Choi, E. Seismic Analysis and Retrofit of Mid-America Bridges[D]. Georgia Institute of Technology.2002.
    [231]Choi, E., DesRoches, R., and Nielson, B. Seismic Fragility of Typical Bridges in Moderate Seismic Zones[J]. Engineering Structures,2004,26(2):187-199.
    [232]ATC. Seismic Vulnerability and Impact of Disruption of Lifelines in the Conterminous United States[R]. Report No. ATC-25, Applied Technology Council.1991.
    [233]Jernigan, J. B. and Hwang, H. Development of Bridge Fragility Curves[A].7th US National Conference on Earthquake Engineering[C], Boston, Mass. EERI.2002.
    [234]Hwang, H., Liu, J. B., and Chiu, Y.-H. Seismic Fragility Analysis of Highway Bridges[R]. Report No. MAEC RR-4, Center for Earthquake Research Informaion. 2000.
    [235]Mander, J. B. and Basoz, N. Seismic Fragility Curve Theory for Highway Bridges[A]. 5th US Conference on Lifeline Earthquake Engineering[C], Seattle, WA, USA.ASCE. 1999.
    [236]Dutta, A. and Mander, J. B. Seismic Fragility Analysis of Highway Bridges[A]. Center-to-Center Project Workshop on Earthquake Engineering Frontiers in Transportation Systems[C], H. Kameda and I. M. Friedland, eds., Tokyo, Japan. International Center for Disaster-Mitigation Engineering (INCEDE).1998.
    [237]Shinozuka, M., Feng, Maria, Q., et al. Nonlinear Static Procedure for Fragility Curve Development[J]. Journal of Engineering Mechanics,2000,126(12):1287-1296.
    [238]Mander, J. B. Fragility Curve Development for Assessing the Seismic Vulnerability of Highway Bridges[R]. Report No.99-SP01, MCEER.1999.
    [239]Mackie, K. Fragility Based Seismic Decision Making for Highway Overpass Bridges [D], PhD thesis, University of California, Berkeley.2004.
    [240]Karim, K. R. and Yamazaki, F. A simplified method of constructing fragility curves for highway bridges[J]. Earthquake Engineering and Structural Dynamics, 2003,32(10):1603-1626.
    [241]Elnashai, A., Borzi, B., and Vlachos, S. Deformation-based Vulnerability Functions for RC Bridges[J]. Structural Engineering and Mechanics,2004,17(2):215-244.
    [242]FEMA. HAZUS-MH MR1:Technical Manual[M], Vol. Earthquake Model. Federal Emergency Management Agency, Washington DC.2003
    [243]Gupta, A., and Krawinkler, H. Estimation of seismic drift demands for frame structures [J]. Earthquake Eng. and Struct. Dyn.2000,29:1287-1305
    [244]Mackie, K.R., and Stojadinovic, B. Performance-based seismic bridge design for damage and loss limit states[J].Earthquake Engineering and Structural Dynamics, 2007,36(13):1953-1971.
    [245]HAZUS, Earthquake Loss Estimation Methodology[M], Technical Manual SR2, Federal Emergency Management Agency through agreements with National Institute of Building Science, Washington, D.C., USA.1999.
    [246]Shinozuka, M., Feng, Maria, Q., et al. Nonlinear Static Procedure for Fragility Curve Development[J]. Journal of Engineering Mechanics,2000,126(12):1287-1296.
    [247]Shinozuka, M., Feng, Maria, Q., et al. Statistical Analysisof Fragility Curves[R]. Report No. MCEER-03-0002, MCEER.2003.
    [248]Yamazaki F, Motomura H and Hamada T. Damage Assessment of Expressway Networks in Japan Based on Seismic Monitoring[A], Proceeding of the 12th World conference on Earthquake Engineering[C], Upper Hurt, New Zealand,2000,Paper No. 0551.
    [249]Tanaka S, Kameda H, Nojima N. et al. Evaluation of Seismic Fragility for Highway Transportation Systems[A], Proceedings of the 12th World Conference on Earthquake Engineering,[C] Upper Hurt, New Zealand,2000,Paper No.0546.
    [250]Basoz N and Kiremidjian A.S. Evaluation of Bridge Damage Data from the Loma Prieta and Northridge, California Earthquakes[R], Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, USA.1998.
    [251]Shinozuka M, Banerjee S and Kim SH.Statistical and Mechanistic Fragility Analysis of Reinforced Concrete Bridges[R], Technical Report MCEER-07-0015, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo.2007
    [252]Choi, E., DesRoches, R. and Nielson, B. Seismic fragility of typical bridges in moderate seismic zones[J]. Engineering Structures,2004,26:187-199.
    [253]Hwang H, Liu JB and Chiu YH. Seismic Fragility Analysis of Highway Bridges[R], Technical Report, Center for Earthquake Research and Information, University of Memphis, Tennessee, USA.2001
    [254]BasSz N and Mander JB. Enhancement of the Highway Transportation Lifeline Module in HAZUS[R], Final Pre-Publication Draft (#7), National Institute of Building Sciences.1999
    [255]Cornell, C. A. Bounds on the Reliability of Structural Systems [A]. Proc. Amer. Soc. Civil Eng., N. Y.,93(ST1), February 1967..
    [256]Kottegoda, N. T., and Rosso, R. Statistics, probability, and reliability for civil and environmental engineers[M], McGraw-Hill, NewYork.1997
    [257]Melchers RE. Structural Reliability, Analysis and Prediction[M],2nd ed. John Wiley& Sons; 1999.
    [258]Pan, Ying. Seismic fragility and risk management of highway bridges in New York State [D]. City University of New York, N.Y.,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700